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Time Series Data for All Four Sites. See Fig. S1.

Simulation Tests of Parameter Estimation Methodology. We simu-
lated Eq. 5, 100 times, for all four sites over the same length of
time as the time series. We used our data on S and R and the
means of our best-fit parameters detailed in Fig. 3, as the
equation parameters, reflecting the methodology used in the
main study. Each simulation was initialized with the earliest time
series estimates for the population density of infected individ-
uals. The equation was integrated over monthly time steps by
using the method outlined in the main article, and log normally
distributed process error was added at the end of each 28-day
period of integration. This modified value was used as the
infected population density at the beginning of the next inte-
gration period, i.e., process error accumulates. Observation
error was then applied to the whole time series: the susceptible
and recovered population densities from the data, and our
estimated population densities for infected individuals. In the
absence of estimates of observation or process error, we used
estimates of observation error from our capture-mark-recapture
(CMR) estimation of total abundance. We assumed that obser-
vation error for the subcomponents was the same and estimated
a log-normal observation error standard deviation of 0.13 loge

units. In the absence of other data, we assumed the same figure
for the standard deviation of log normally distributed process
error. We then applied our parameter estimation techniques to
these simulated datasets.

Our analysis reveals that our methodology can accurately
capture the original parameters used in the model despite
significant process and observation error (Table S1). All 100
parameter estimation trials contained the true parameter within
the 95% credibility intervals, for all five model parameters, and
the deviation of the mean of these parameter estimates from the
true mean was small (Table S1). Although these experiments do
not exclude the possibility that temporally varying or non-log-
normally distributed observation and process error may bias our
parameter estimates, they do indicate prima facie evidence of
robustness to substantial unmodeled process error.

Full Parameter Estimation Results. See main text for parameter
definitions.
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This model combines death and recovery rate into a single
combined seasonal function with a period of 1 year (Fig. S2).
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This model combines death and recovery rate into a constant
rate parameter (Fig. S3).
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This model assumes that recovery rate is exactly equal to
infection rate 28 days previously, discounting for the number of
infected individuals that died in the intervening time period.
Death rate is assumed to be seasonal with a period of 1 year
(Fig. S4).
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This model assumes that recovery rate is exactly equal to
infection rate 28 days previously, discounting for the number of
infected individuals that died in the intervening time period.
Death rate is assumed to be constant (Fig. S6).

Effects of Incorporating Seasonality into the Transmission Term of Eq.
5 on the Fit of the Model Predictions to the Data. Here we report
more details on the relative improvement of the predictions of our
best-fit model (Eq. 5 in the main text) by allowing the transmission
coefficient �, or the density dependence of host contact rate q, to
become seasonal functions of time. To allow for seasonal variation
we converted these parameters into sinusoidally varying functions
of time with a period of exactly one year and with 3 free parameters:
the amplitude, the mean, and the phase shift. We estimated the
most likely parameter values in the resulting model by using the
same Markov Chain Monte Carlo (MCMC) model fitting proce-
dure as described in the Methods in the main text. We report the
change in mean �log10(likelihood) and the Deviance Information
Criterion (DIC) relative to our previous best fit model (Eq. 5 in the
main text).

Making � a function of time alone (q constant) reduced
�log10(likelihood) by 4.1 units (95% C.I., �6.2 and �2.0) and
DIC by 3.8 units. Making q a function of time alone (� constant)
reduced log10(likelihood) by 7.8 units (95% C.I., �9.9 and �5.7)
and DIC by 7.4 units. Making � and q functions of time reduced
�log10(likelihood) by 9.9 units (95% C.I., �13 and �4.0) and
DIC by 10 units (note that reductions in �log10(likelihood)
correspond to an improvement in model fit to the data).

Theoretical Model of Field Vole–Cowpox Virus Interactions and the
Effects of Adding Stochasticity. The theoretical model we studied
to produce Fig. 2B is a straightforward modification of that
investigated previously (1) to study the population dynamical
consequences of cowpox virus–field vole interactions. The model
is given by

dS�t�
dt

� ��t��S�t� � fZ�t���1 � k1N�t�� �
�KqS�t�I�t�

N�t�q � S�t�, [S5a]

dI�t�
dt
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dY�t�
dt

� �I�t� � �� � �Y�t�, and [S5c]
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dZ�t�
dt

� �Y�t� � Z�t�, [S5d]

with

��t� � �� T � t � T � L
0 T � L � t � T � 1� , and

N�t� � S�t� � I�t� � Y�t� � Z�t�

Here, L is the reproductive season length in units of a fraction
of one year, T is time in integer years, and t is continuous time.
The host population, N(t), is divided into four classes of indi-
vidual: those that are susceptible to infection [S(t)], infected
individuals that cannot reproduce [I(t)], recovered and immune
individuals that cannot yet reproduce [Y(t)], and recovered and
immune individuals that can reproduce [Z(t)]. We assume that
disease free per capita death rate, , is constant throughout the
year, but that the per capita birth rate is seasonal [�(t)] with no
births possible in the nonreproductive season (�(t) � 0) and a
constant maximum per capita birth rate in the reproductive
season (�(t) � �). The birth rate is also assumed to be
density-dependent and is modified because of a susceptibility to
crowding coefficient, k1. Infected individuals potentially have an
increased mortality rate due to effects of the disease (�), and
recover at a constant rate (�). Recovered individuals initially
enter an immune, but nonreproductive class that they leave at
rate � and regain a proportion of their reproductive capacity ( f ).
Our modification to this set of equations (1) is that we have
adopted our generalized transmission term (Eq. 4), but we
assume that k2 is the equilibrium population size of hosts in an
aseasonal environment (for all time). This means that in asea-
sonal environments (for all time) the equilibrium abundances of
all population components are independent of q. The parameter
values assumed to produce Fig. 1 are identical to those used in
ref. 1 to produce their figure 1 (m–r) and are f � 0.225, � �
10.628,  � 3.7, k1 � 0.0026, L � 0.5833, � � 0.9, � � 4.3, � �
14, � � 1.884, and K � 38.

This model was solved by using a standard differential equa-
tion solving algorithm (the MATLAB algorithm ‘‘ode45,’’ which
is based on an explicit Runge-Kutta (4,5) formula) and the
MATLAB code used is available from the corresponding author
on request. In addition we have developed a software tool that
can be used to solve these equations for user-defined sets of
parameter values. This is downloadable from the Microsoft
Research Cambridge Software and Tools for Computational
Science web page (http://research.microsoft.com/en-us/groups/
science/software.aspx) or is available from the author on request.

The analysis of this model presented in the main article was for
demonstration purposes only. In Fig. S5 we give the results of the
same simulations but with the birth rate parameter � perturbed
by a normally distributed amount with a mean of zero and a
standard deviation of 0.1, to illustrate the effects of stochasticity
on our findings. This shows that, whereas much of the bifurcation
structure is removed by the addition of noise, there are still
notable changes in the character of the multiyear dynamics in
terms of the dominant period, the mean population size at a
given time of the year, and the amplitude of the multiyear
variation.

Preliminary Analysis of the Performance of the Best-Fit Model over
Longer-Term Simulations. Here we give the results of our prelim-
inary analysis of the performance of our best-fit model over

longer-term simulations, included for purposes of illustration.
We performed the simulations in two different ways. In the first
we followed the general approach of our other methods and
assumed that the dynamics of susceptible and recovered indi-
viduals through time are exactly as determined by our data. We
have taken this approach throughout, because we have no
models of the dynamics of these subcomponents that have been
tested with data. In the second approach we modified our
theoretical model, detailed in the preceding section, to see
whether the simulated dynamics show any similarities to the
actual data. We present our data as qualitative illustrations and
leave formal quantitative analysis and model comparisons to
future studies.

For the first analysis we selected 100 parameter combinations
at random from the MCMC model-fitting exercise (transients
removed) and simulated the data in exactly the same way as
detailed in Simulation Tests of Parameter Estimation Methodol-
ogy, but with noise due to process and observation error re-
moved. The results of these simulations for one site only are
shown in Fig. S7A (we only present data for one site because of
SI Text space constraints). We also repeated these simulations by
using the parameters from the MCMC fitting exercises where we
fit Eq. 5, but assuming q � 0 and q � 1 (examples in Fig. S7 B
and C). These simulations indicate that the model performs well
at simulating the dynamics over a complete 6-year window,
especially given that it has only previously been tested against its
ability to predict 28 days into the future. However, it was notable
from the simulations that the model performs less well at certain
times in the time series and for certain sites (omitted because of
space constraints). Determining the reasons for these discrep-
ancies is a natural area for future work. Comparing the predic-
tions of the different models, those models with q � 0 and q �
1 predict similar qualitative dynamics, but with notable quanti-
tative differences. We found that their fits to the data were
visibly worse than those of the best-fit model, but have not
performed any formal comparison.

For the second analysis we again selected 100 parameter
combinations at random from each MCMC model-fitting exer-
cise (transients removed). However this time we simulated the
dynamics by using Eq. S5 above, but with the transmission and
loss terms changed to be those of our best-fit model, or those of
the best-fit models assuming q � 0 and q � 1. We changed the
timing of onset of the nonreproductive season such that it started
on November 1 and ended on March 31, and arbitrarily set Y(0)
equal to 10% of the initial population size of recovered indi-
viduals in the dataset and Z(0) to the remaining 90%. Otherwise
we modified none of the other parameters, and no forms of
stochasticity were added to the model. The simulations predict
similar dynamics for all four sites so we only illustrate their
predictions for one site (Fig. S8). The results indicate that the
simulations perform surprisingly well considering that the model
has never been previously tested with field data. Similar con-
clusions to those from the previous analysis can be drawn
regarding the absolute predictive ability of these simulations and
the model comparisons: the model performs less well at certain
times in the time series and for certain sites and the different
models predict similar qualitative dynamics, but with notable
quantitative differences. Again, although the fits to the data of
the models with q � 0 and q � 1 are visibly worse than those of
the best model.

1. Smith M, et al. (2008) Disease effects on reproduction can cause population cycles in
seasonal environments. J Anim Ecol 77:378–389.
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Fig. S1. Time series data of cowpox infection status in four natural populations of field voles. The format is identical to Fig. 1 of the main text except that all
four populations are detailed. Refer to the legend of Fig. 1 for details.
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Fig. S2. Parameter estimates for Eq. S1 from MCMC model fitting to time series data. See Table 1 legend (main text) for parameter definitions.
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Fig. S3. Parameter estimates for Eq. S2 from MCMC model fitting to time series data. See Table 1 legend (main text) for parameter definitions.
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Fig. S4. Parameter estimates for Eq. S3 from MCMC model fitting to time series data. See Table 1 legend for parameter definitions.
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Fig. S5. The effects of nonlinear contact rate–abundance relationships in the presence of stochasticity. Predictions of the same model used to create Fig. 2 of
the main text but with the birth rate parameter � perturbed by a normally distributed amount with a mean of zero and a standard deviation of 0.1. (A) The
updated bifurcation diagram. N(T) is the total population size at time T, the start of the reproductive season. (B) The dominant period of the data in the
bifurcation diagram (256 years for each value of q). We used discrete Fourier transform to identify the dominant period, having set the maximum ‘‘dominant
period’’ shown in the graph to be 10. For values of q � 0.5, the time series show quite complex dynamics and the strength of the dominant period is relatively
weak compared with the other periods. This is illustrated in C, which shows the relative strengths of the dominant period (note the log axis). In D, we show the
amplitude of the dominant period, simply determined as the difference between the maximum and minimum of the time series. In E, we show the average N(T)
in the time series over 256 years of simulated data.
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Fig. S6. Parameter estimates for Eq. S4 from MCMC model fitting to time series data. See Table 1 legend (main text) for parameter definitions.
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Fig. S7. Long-term predictions of the population density of field voles infected with Cowpox virus from our best-fit model, Eq. 5, and from our models fit by
MCMC while assuming q � 0 and q � 1. We used 100 randomly selected parameter combinations from our MCMC model-fitting exercise in combination with
the time series of S(t) and R(t), and the initial value of infected individuals, I(0). (A) Our best-fit model, Eq. 5. (B) The best fit model with identical structure to
Eq. 5 but with q � 0. (C) The best fit model with identical structure to Eq. 5 but with q � 1. Owing to space constraints, we show predictions for one site only.
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Fig. S8. Long-term predictions of the population density of field voles infected with Cowpox virus from the theoretical model. We modified the transmission
and loss terms to be those of our best-fit model (Eq. 5) (A) or those of the best-fit models where q � 0 (B) or q � 1 (C) is assumed. We used 100 randomly selected
parameter combinations from our MCMC model fitting exercises in each case. We show predictions for one site only, because they are very similar for all four
sites.
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Table S1. Mean and root mean square deviation of parameter
estimates from the true parameter values from our simulation
experiments

Parameter

Mean deviation of
estimated mean from

true parameter

Root mean square
deviation of estimated

mean from true parameter

q 0.003 0.03
� �0.002 0.01
� 0.001 0.008
M 0.02 0.05
� �0.09 0.3

Parameters defined in Table 1 legend (main text).
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