Cell Stem Cell, Volume 2

Supplemental Data

ER71 Acts Downstream of BMP,

Notch, and Wnt Signaling in Blood

and Vessel Progenitor Specification

Dongjun Lee, Changwon Park, Ho Lee, Jesse J. Lugus, Seok Hyung Kim, Elizabeth Arentson, Yun Shin Chung, Gustavo Gomez, Michael Kyba, Shuo Lin, Ralf Janknecht, Dae-Sik Lim, and Kyunghee Choi

Figure S1. (A) Sequence of the promoter of *Flk1* used for the luciferase assay. Nine boxes indicate potential Ets binding sites (4 red in sense and 5 blue in anti-sense). T in green box indicates transcriptional start site (based on the numbering by Ronicke et al., 1996). (B) ER71 can activate *Flk1* gene in a dosage dependent manner. RNA from MS1 endothelial cells transfected with control or ER71 were analysed by RT-PCR with the indicated oligos. Numbers indicate the relative ratio of band intensity. *Er71*: forward-5'-GGGGGATTCCAGGACTGCAGCATCCCTTTCG-3', reverse-5'-GGGGGATTCCAGGACGGTATGTGTACTTGCG-3', *Vegfr2* (*Flk1*): forward-5'-TACACAATTCAGAGCGATGTGTGGT-3', reverse-5'-CTGGTTCCTCCAATGGGATATCTTC-3' (Hamada et al., 2005), *β-actin*: forward-5'-ATGAAG ATCCTGACCGAGCG-3', reverse-5'-TACTTGCGCTCAGGAGGAGC-3' (Kubo et al., 2004).

Figure S2. (A) H & E staining of transverse section of E9.0 and E9.5. Mutant embryos show lack of endocardium and disorganized myocardium. The boxed area is shown at higher magnification. DA, dorsal aorta; He, heart; NT, neural tube. Scale bar; 50 μm (B) H & E staining of sagittal section of E9.0. SM; somites. Scale bars; 50 μm. (C) Whole-

mount staining with anti-SM actin of E9.5 embryos. V; ventricle, A; Atrium. Scale bars; 200 μ m. (D) Thickness of labyrinth layer. (E) Tunel assay of sagittal sections of E9.5. Fb; Fore-brain, Mb; Mid-brain. Scale bars; 200 μ m

Figure S3. (A) Microarray analysis of $Er71^{-/-}$ embryos at E8.5 and E9.5. Aliquots of 1µg of total RNA extracted from whole embryos were used as a template for reverse transcriptase with oligo-dT primers (Intron). All the microarray experiments were done with 20K mouse cDNA chips from Digital Genomics (Seoul, South Korea). Genes showing significant expression changes (at least 1.5 fold) were selected. Data represent increase (red; b) or decreased (green; a) gene expression that was changed at least 1.5 fold in $Er71^{-/-}$ embryos. 1, E8.5 $Er71^{+/+}$ vs. $Er71^{+/-}$ 2, E8.5 $Er71^{+/-}$ vs. $Er71^{-/-}$; 3, E8.5 $Er71^{+/+}$ vs. $Er71^{-/-}$; 4, E9.5 $Er71^{+/+}$ vs. $Er71^{-/-}$. (B) Gene expression of $Er71^{+/+}$ and $Er71^{-/-}$ embryonic hearts at E9.0 (Abu-Issa and Kirby, 2007). Genes were normalized against *Gapdh* and then the ratio of the gene quantity (WT) to gene quantity (MT) was determined to yield normalized fold change.

Supplementary References

Abu-Issa, R. and Kirby, M. L. (2007). Heart field: from mesoderm to heart tube. Annu. Rev. Cell. Dev. Biol. 23, 45-68.

Chase, L. G., Ulloa-Montoya, F., Kidder, B. L. and Verfaillie, C. M. (2007). Islet-derived fibroblast-like cells are not derived via epithelial-mesenchymal transition from Pdx-1 or insulin-positive cells. Diabetes *56*, 3-7.

Hamada, K., Sasaki, T., Koni, P. A., Natsui, M., Kishimoto, H., Sasaki, J., Yajima, N., Horie, Y., Hasegawa, G., Naito, M., *et al.* (2005). The PTEN/PI3K pathway governs normal vascular development and tumor angiogenesis. Genes Dev. *19*, 2054-2065.

Kubo, A., Shinozaki, K., Shannon, J. M., Kouskoff, V., Kennedy, M., Woo, S., Fehling, H. J. and Keller, G. (2004). Development of definitive endoderm from embryonic stem cells in culture. Development *131*, 1651-1662.

Ronicke, V., Risau, W. and Breier, G. (1996). Characterization of the endotheliumspecific murine vascular endothelial growth factor receptor-2 (Flk-1) promoter. Circ. Res. *79*, 277-285.

Wang, X. and Seed, B. (2003). A PCR primer bank for quantitative gene expression analysis. Nucleic Acids Research 31, e154;1-8.

Α

Β

Supplementary Figure 1

E9.5

E9.5

Supplementary Figure 2

Supplementary Figure 3

Table S1. Genotypes of progeny from ER71 heterozygous intercrosses

Age (dpc)	No.(%) of mice with indicated genotype			No.(%) of resorptions	Total
	+/+	+/-	-/-		
E8.5	10(23.3)	20(46.5)	12(27.9)	1(2.3)	43
E9.0	20(19.4)	59(57.3)	24(23.3)		103
E9.5	103(34.3)	129(43)	55(18.3)	13(4.3)	300
E11.0-11.5	8(53.3)	7(46.7)	0(0)		15
P21	145(34.8)	272(65.2)	0		417
Total	286(32.6)	487(55.4)	91(10.4)	14(1.6)	878

Table S2. Primer sequences for qRT-PCR

Genes		Sequences (5'-3')	References	
Eaf10	Forward	TTTGGTGTCTTCGTTCCCTGT	Primer Bank [‡]	
, g, r g	Reverse	TAGCTCCGCACATGCCTTC	ID 7106313a1	
Isl1	Forward	ATGATGGTGGTTTACAGGCTAAC	Primer Bank	
	Reverse	TCGATGCTACTTCACTGCCAG	ID 31543007a1	
Matac	Forward	ATGCCATCAGTGAATCAAAGGAT	Primer Bank	
Merzo	Reverse	GTGGTACGGTCTCCCAACT	ID 13384624a1	
Thys	Forward	ATGGCCGATACAGATGAGGG	Primer Bank	
10x5	Reverse	TTCGTGGAACTTCAGCCACAG	ID 34098933a1	
Brachyury	Forward	CTCCCCTGCACATTACACAC		
Diacityury	Reverse	GAGGCTATGAGGAGGCTTTG		
Cerherus1	Forward	ATCACCTCTACAGGAGGAAGC	Primer Bank	
	Reverse	GGTCTCCCAGTGTACTTCGTG	ID 6753410a3	
Fr71	Forward	CAGAGTCCAGCATTCACCAC		
	Reverse	AGGAATTGCCACAGCTGAAT		
Faf8	Forward	CCGAGGAGGGATCTAAGGAAC	Primer Bank	
	Reverse	CTTCCAAAAGTATCGGTCTCCAC	ID 22094093a1	
Foxa2	Forward	ACATACCGACGCAGCTACAC		
1 0/02	Reverse	CCGGTAGAAAGGGAAGAGGT		
	Forward	AACTCTGGCGATGGGTGTTTA	Chase et al. 2007	
α-ΓΡ	Reverse	ACACTGATGTCTTTCCACTCCA		
Goosecoid	Forward	CAGATGCTGCCCTACATGAAC	Primer Bank	
	Reverse	TCTGGGTACTTCGTCTCCTGG	ID 6754076a1	
Mesn1	Forward	GTCACTCGGTCCTGGTTTAAG	Primer Bank	
	Reverse	ACGATGGGTCCCACGATTCT	ID 33469091a1	
Mesp2	Forward	CGGCGTTCTCTCACCGATG	Primer Bank	
/-	Reverse	CACCCCACTACTCATGGCTG	ID 6678864a1	
Pax6	Forward	GCAGATGCAAAAGTCCAGGTG	Primer Bank	
	Reverse	CAGGTTGCGAAGAACTCTGTTT	ID 18138024a3	
Sox17	Forward	GATGCGGGATACGCCAGTG	Primer Bank	
	Reverse	CCACCACCTCGCCTTTCAC	ID 6755604a1	
Tbx6	Forward	ATGTACCATCCACGAGAGTTGT	Primer Bank	
	Reverse	GGTAGCGGTAACCCTCTGTC	ID 6755722a1	

[‡]Wang and Seed, 2003.

Table S3. Primer sequences for ChIPand Luciferase Assay Construct

ChIP Primers		Sequences (5'-3')	References	
-501~-323 Forward		AAACATTCAGACGGGGCG	Ronicke et al., 1996	
-321~-155 Forward AGAGTTCTGCACTGCAGGC		AGAGTTCTGCACTTGCAGGC	Ronicke et al., 1996	
-17/~-81	Forward	TTGCTCTCAGATGCGACTTG	Ronicke et al. 1996	
	Reverse	CCACTGGATACCAGGTTTGG CAGGACCCCAAGAGAGTAAG	Ronicke et al., 1996	
+20~+239	Reverse	GCCCGCAAAGAAGTCACAG		
-50.4kb	-50.4kb Forward GAGGGGAAATTGAGCAGGTA Reverse GTGTGACAGTTCCCCTGCTT		Ronicke et al., 1996	
Flk1 promoter Se		Sequences (5'-3')		
-492~+39	Forward	AATTCTCGAGGACGGGGGGGGGGGGGGGGGGGGGG	Ronicke et al., 1996	
	Reverse	AATTAAGCTICTIACICTCTTGGGGTCCTG		