Supplementary Materials

Contents

Supplementary Methods		2
-----------------------	--	---

- Supplementary Table S2 4
- Supplementary Table S3 5
- Supplementary Figures 7

(Supplementary Table S1 is shown in a separate file.)

Supplementary Methods

Immunoprecipitation and Microarray Analysis of Methylated DNA.

The genomic DNA was sonicated to produce random fragments ranging in size from 100 to 1,000 bp. Immunoprecipitation (IP) using anti-methylcytosine antibody was performed as described by Weber et al (2005). DNA samples were sent to NimbleGen for labeling and hybridization. Two independent experiments (experiments A and B) were performed using different plants and different probe amplification methods. In the experiment A, the immunoprecipitated DNA was amplified following the NimbleGen's instruction using GenomePlex Complete Whole Genome Amplification Kit (SIGMA, WGA2). In the experiment B, the probe was amplified by linear amplification method described by Liu et al. (2003). Although the amplification methods are different, response to the *ibm1* mutation in each gene gave consistent results (Supplementary Fig. S1-S13). The analyses in Figure 1, 3, 4, 5A, 5C, and 5D are based on results of experiment A.

Data Normalization. The Arabidopsis genome is covered by three 385K chips of NimbleGen. The first chip covers entire chromosome 1 and part of chromosome 2. The second chip covers entire chromosome 3 and parts of chromosome 2 and 4. The third chip covers entire chromosome 5 and part of chromosome 4. In order to integrate the results from three chips, the IP/input signal values of each chip was normalized using average of one chromosome for each chip: chromosome 1, 3, and 5 for chip 1, 2, and 3, respectively. Values for part of chromosomes were not used, in order to avoid bias caused by the different proportion of methylated pericentromeric regions and arm regions in the part of chromosome. As methylation level of transposons are similar between *ibm1* and wild type (Fig. 1C, 2N-2P), we used value of y-intercept of Figure 1C for comparison between *ibm1* and wild type.

Relationship between DNA Methylation and Gene Expression. Data used in the analyses of gene expression levels and tissue specificities were from a previous study analyzing the genome-wide expression pattern in various developmental stages and tissues of Arabidopsis (Schmid et al. 2005). For Fig. 4A and 4B, sum of expression in all of stages and tissues was used. For tissue specificity (Fig. 4C and 4D), entropy levels of each gene were calculated as described by Zhang et al. (2006). For Fig. 5C, 5D, and S15, expression profiles in wild-type leaf in our microarray analysis (data not shown) were used.

References for Supplementary Methods

Liu CL, Schreiber, SL and Bernstein BE (2003) Development and validation of a T7 based linear amplification for genomic DNA. *BMC Genomics* **4**: 19

Schmid M et al. (2005) A gene expression map of Arabidopsis thaliana development. *Nat. Genet.* **37**: 501

Weber M et al. (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. *Nat. Genet.* **37**: 853-862

Zhang, X. et al. (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. *Cell* **126**, 1189-1201

Supplementary Table S2

Genes responding to *ibm1* were not necessarily located near transposons.

	Class I	Class II	Class III	Total
Total	651	2,461	23,931	27,043
	(0.024)	(0.091)	(0.88)	
Transposon-flanked	156	841	7,813	8,710
	(0.018)	(0.097)	(0.90)	

Genes flanked by transposons were counted for each Class of genes. We defined the "transposon-flanked" genes as those flanked by transposons within 1,000 bp, and that do not overlap with transposons more than 1,000 bp. Proportion of each Class within the total and transposon-flanked genes are shown in the parenthesis. Class I genes were not enriched in the transposon-flanked population.

Supplementary Table 3

Primer sequences and restriction enzymes used for the bisulfite sequencing.				
		Pestriction		

Taraat	Primore	Restriction	Sequence (5' to 3')	
Taiyet	Fillers	enzyme		
170010000	AT2G16920-F1	HindIII	TGAGAATGATTYTGGGAGGAA	
	AT2G16920-R1	<i>i iii i</i> diii	CCCCRACTATTACTRCCCTCA	
	AT2G16920-F2	HindIII	AAGAAGGTTGATYAAGAYTGGAAAA	
A12010920	AT2G16920-R2	<i>1 111</i> 0111	TTCCRACCTRCTTATCATACCC	
	AT2G16920-F3	EcoT14	GGAYAGGYAGGGGAAATGAAGT	
	AT2G16920-R3	2001141	CCCAAAACATRACCAACCAA	
	AT4G00450-F1	EcoP)/	TTGTAATTGAGGTTYTGAAYYTTTGG	
	AT4G00450-R1	ECORV	TCACTTTTATAAACCAARTARCTCTCAATA	
AT4C00450	AT4G00450-F2	FeeD\/	GGAGGAGAYAAAGAAAAGATGGA	
A14G00450	AT4G00450-R2	ECORV	CACCATATACCACCATTTAAAAT	
	AT4G00450-F3		AATGGAYAAAAGATGTTATTGAATATTTG	
	AT4G00450-R3	ECORV	AACAATACTCTCTAAAACACCATACACAAT	
	AT4G16310-F1	Sonl	GAAGAATTTAGTTATGTGTGATTGTGG	
	AT4G16310-R1	Sspi	ACATCTTAAARTACACCCTTCTTATAA	
AT4C16210	AT4G16310-F2	HindIII	AAGGAAATTGAAATTGGTAGAG	
A14G16310	AT4G16310-R2	HINGIII	AAACCARCACTCATTCTCTTTC	
	AT4G16310-F3	HindIII	TGTTATATTTGTGTGGTTYGAT	
	AT4G16310-R3		CTATAACTTTCTTCTCATCTATAACCTC	
	AT4G31440-F1	Ndel	GTTTTTGGGGAGATGAGATTG	
	AT4G31440-R1		CAAAARRACCCAAAACCTTTCC	
AT4C21440	AT4G31440-F2	Ndel	GGTGYTTGGGAAAGAAGATGG	
A14031440	AT4G31440-R2	NUEI	CACTCCRCTRAAACCCCTCC	
	AT4G31440-F3	N/-/-1	TGAGGAAGAGGATGGAGAATATTG	
	AT4G31440-R3	70001	CCAAATTTCTTTRATCTTACAACAACAC	
	At5G35210-tF1	EcoT14	AGATTTGGTYATTGGGTTAGGTTT	
	At5G35210-tR1	2001141	ATCAAATCCAATTTCARATTCTTC	
At5G35210	At5G35210-tF2	Dral	ATTGGGATGAAATTGAAGATT	
Top-Strand	At5G35210-tR2	Diai	CTAATTCCAACAAATRCAAAACAAATT	
	At5G35210-tF3	Dral	GAGGAGYTGTAYAGTTTGGAATGGAT	
	At5G35210-tR3	Dial	CCAATTTTTTCCCCTRTATTCCACAT	
	At5G35210-bF1		TTTGTGTAATGATTATTGTATGTGTTGGG	
	At5G35210-bR1		TTTTCRTTRCCTCCATTCATACATAATTT	
At5G35210	At5G35210-bF2	Dral	AGGGGAATAGATTGAAAGAT	
Bottom-Strand	At5G35210-bR2		AAATARAATACTACTCRTTACCCATT	
	At5G35210-bF3	EcoT14	GGTTTTAGYGAATYTGGGGTGGA	
	At5G35210-bR3	LC01 141	CTTTATATCTRCCCATTTRAACTCAAT	

	At5G01580-tF1		TTGTTTAATGAGAYAYAAGAATAAAG
At5G01580 Top-Strand	At5G01580-tR1	Ndel&HindIII	СТСААТССААССАТТТСТАААСААТС
	At5G01580-tF2		TTTGAYTGTTAATGTGAATTATATGTG
	At5G01580-tR2	Ndel&Hindill	TTCTRTTCACCAAARACATATAAAT
	At5G01580-tF3		TAGATTTGTAYYATGGGTGGTTGTGAATAA
	At5G01580-tR3	Ndel&Hindill	TAACCTTTARCCTCCAAAATCTTCA
	At5G01580-bF1		ATGTAATGGTATTTGGGATATTATAAA
	At5G01580-bR1	Drai	CCCAAGTTTRCTATTCCAATCACTAA
At5G01580	At5G01580-bF2		GTGTAGAAYGAATTGGAGAGGAG
Bottom-Strand	At5G01580-bR2	Nael&Hinaiii	AACATTARTTAACTTATACARCCACAACA
	At5G01580-bF3		TTGAAAGTTATTAGYTTAATTTATAGGA
	At5G01580-bR3	Ndel&Hindill	CTTAATCTCATCCATTRATCTCCA
	AT3G19650-tF1	A / . / . 1	AAAAGGTTAAATATGGGAAGGA
	AT3G19650-tR1	Ndel	CTTTCTTRRATTTATCAAAACCCTCT
AT3G16950	AT3G19650-tF2	A / . / . 1	GTAAATAGTAGAAAATAAGATTTTAAGG
Top-Strand	AT3G19650-tR2	INDEI	САСАААТСТТСССААТТСА
	AT3G19650-tF3		TAAGGATAYTTTGGAGGTAA
	AT3G19650-tR3	Ndel	CCCCTTTCCATCRATCACAC
	AT3G16950-bF1		TAAAAGGTGGGATTTAGTGT
	AT3G16950-bR1	EcoRV	CAAATACTRCTTCTCTTTCTCTATACA
AT3G16950	AT3G16950-bF2		TGAATAAGAATAGATTTAAGTTTAA
Bottom-Strand	AT3G16950-bR2	Nael&Hinaiii	CAATTARCAATRTTCTCCAATTTTCTA
	AT3G16950-bF3	Drol	AATAYAGGAAGAGAYYAAAYAAAGAA
	AT3G16950-bR3	Drai	CTACCAAAATACRAAACAATCT
	AT3G21215-F1		GGTATTGTTGGGGATTYAAATGYTTATGAT
	AT3G21215-R1	EC01 141	ATCAAACAATCARAAACTTTARCAAATTCA
472004045	AT3G21215-F2	Mdol	GGTTGTGTGGGAAYAATAGTTGTT
AT3G21215	AT3G21215-R2	Ndel	TATRCCTTTCTTRTCTCARAATCTTCAT
	AT3G21215-F3	EeeT14	GAAGAAGAATTGAGGAGYYTGTTGAGTG
	AT3G21215-R3	EC01 141	CCTTCCTTTCTCTCCCATATRRATTCTTT
	AT4G35270-F1	Ndal	TGYTTYAAGGGGAAGGYATTGTAGGAA
AT4C25270	AT4G35270-R1	Ndel	TTCTCTRCAAAAACAACTTCCTCTCTAAC
A14G35270	AT4G35270-F2	Ndal	GTTAGAGAGGAAGTTGTTTTTGYAGAGAA
	AT4G35270-R2	Ndel	TCTTTTCTRTTTTRTTCTTCTCTCTCAC
AtMu1	ATMU1-bF1	FeeD\/	GTGTTTATGATTATAATTGTGTTATAAT
	ATMU1-bR1	ECORV	CCTTCTCTTTCATTCARATTTTAATTTT
To2	JP1615 ^{*1}	Drol	GGTTTAATGTTGGTTTAGTGATATTYGGTTTAGT
Ido	JP1616 ^{*1}	Dial	AATCAAAAAACRAATAAACCTCRCTCTRATACCACTTATT
CACTAO	CAC2-bsF2	Drol	САТАТАААССССААААТСАААТС
CACTA2	CAC2-bsR2	Dial	ATGGAAAAGGAGAAGGAGGTAT

Supplementary Figure S1 Genes showing strong response to the *ibm1* mutation. (**A**, **B**) Each gene was compared between *ibm1* and wild type for the average of methylation signal of every probes covered by that gene. Experiment A (panel **A**) and B (panel **B**) were independent experiments using different *ibm1* and wild type plants and different probe amplification methods (See Supplementary Methods). (**C**) As at least 4,000 genes show significant changes, they were compared between experiments A and B. Among the 27,043 genes, we selected 3,112 genes (651 species of Class I genes, and 2,461 Class II genes) that reproducibly show most dense increase in methylation signal induced by the *ibm1* mutation.

Legend for Supplementary Figure S2-S13.

Full results for DNA methylation status in the 12 representative loci. Results are shown in the format of Figure 2 in the main text. Tiling array results of both experiments A and B are shown. In the Supplementary Figure S2-S4, bisulfite sequencing results of both sense and antisense strands are shown.

Supplementary Figure S4

Supplementary Figure S5

Supplementary Figure S6

Supplementary Figure S8

Supplementary Figure S10

Supplementary Figure S12

Supplementary Figure S13

Supplementary Figure S14 The *ibm1* mutation affects 5' and 3' halves of a gene in a coordinated manner. Each gene was divided into halves and average change in the methylation signal was compared. For controls, the methylation change was also compared to upstream and downstream flanking regions of the same length.

~				
		М	А	U
	Class I	348	165	34
	Class II	1173	642	217
	Class III	2760	4235	11651

Supplementary Figure S15 (**A**) Relationship between DNA methylation in wild type and the response to the *ibm1* mutation. Methylated (M), ambiguous (A), and unmethylated (U) gene groups reflect methylation level in wild type, which are from Zilberman et al. (Nat Genet 39, 61-69). Gene Class I, II, and III are classified by response to the *ibm1* mutation (Supplementary Fig. S1). Gene number is indicated in each group. (**B-G**) Histograms showing the expression profiles of gene groups defined in a. Class I and II are combined. X-axis indicates log₁₀ of expression in wild type leaves in our microarray experiment. Class III groups show bipartite pattern of expression, indicating that they include genes with high- and low-expression levels. In Class I and II, proportion of genes with low expression level was reduced. That was also seen in genes not methylated in wild type (A and U).

Α

Supplementary Figure S16 (legend in the next page)

В

Supplementary Figure S16 Effect of intron number and gene length on the methylation change in *ibm1*.
(A; previous page) Relationship between gene length and the methylation change in *ibm1*. Each graph shows the result of each gene group having the same intron number. The methylation change shows mean of log₂ (ibm1/WT) signals in each gene. Lines were drawn by linear approximation.
(B) Superimposed lines from (A). Even within a group of genes with the same intron number, longer gene showed stronger response to *ibm1*.

Supplementary Figure S17 Methylation status of *ERL2* gene (At5g07180) in the double mutants. Genomic DNA used in the experiment in Fig.6 was digested with or without the methylation-sensitive restriction enzyme *Msp* I (CCGG, sensitive to methylation in the first C) and amplified using primer pair 5'-CAGATCATGTAAGGCTTGTCTTATGC-3' + 5'-ACGTACAGATTGGCAAGACTGAAG-3'. Both the *Msp* I-digested and undigested samples were digested with *Dra* I and *Pst* I before the PCR. Although the *ibm1*-induced hypermethylation was less penetrant than that in the *BNS* locus, the double mutants also showed hypermethylation in the *ERL2* gene.

Supplementary Figure S18 Relationship between the CHG hyper-methylation in *met1* and *ibm1*. (A) Methylation signal for each gene in wild type and *ibm1*. Genes showing increased CHG methylation and decreased CG methylation in *met1* tend to be hyper-methylated in *ibm1* (magenta dots). On the other hand, the response to *ibm1* was not so strong in genes showing increased CHG methylation without decrease in CG methylation in *met1* (yellow dots). (B) Venn diagram showing the relationship between genes methylated in wild type (yellow circle; Zilberman et al. 2006), genes with CHG hyper-methylation in *met1* (red circle; Lister et al. 2008), and genes hyper-methylated in *ibm1* (Blue circle; this work, Class I and Class II genes). Number of genes methylated in wild type and CHG hyper-methylation in *met1* (the overlap between yellow and red circles) was 247. Of the 247 genes, 170 showed hyper-methylation in *ibm1*.