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APPENDIX 

 
1. Overview 

The purpose of this appendix to provide additional details related to the statistical methods 
utilized in Soy isoflavones do not affect bone resorption in postmenopausal women:  A dose response study 
using a novel approach with 41Ca.  In setting up a multi-subject model to assess treatment 
effectiveness, there are several things that one must keep in mind.  These include: 
 

• Time:  The urinary 41Ca/Ca ratio decreases over time due to the fact that the amount 
of available 41Ca is continually decreased by excretion.  For a given subject, we will 
assume (as suggested by visual inspection of data) that this relationship is linear over 
any 2-3 year period that begins at least six months after the initial dose. 

• Dose:  The amount of the initial dose was not the same for all subjects.  The amount 
of dose was not random.  Neither was the reduction in dose planned at the beginning 
of the study.  Rather, the dose was reduced as a matter of standard safety protocol 
when it was determined that measurements could still be easily obtained at a smaller 
initial dosage level.  This will lead to differences in the 41Ca/Ca ratio across subjects. 

• Subject:  Even in the case where dose sizes are the same, subjects are not.  Subjects 
who receive the same initial dose will still incorporate different amounts of 41Ca into 
bone due to differences in formation rate.  Resorption rates would also be expected to 
differ by subject.  Hence a statistical model must be arranged in such a way that each 
subject acts as her own control.   

2. Adjusting for Dose, Subject, and Time 

Graphical evidence indicates that the urinary 41Ca/Ca ratio curves for subjects who received a 
different initial dose were not fundamentally different.  The difference in dosage level simply 
affects the magnitude of the responses, while the shape of the curve is approximately the same.  
This is illustrated in Figure 1 below.  Furthermore, smaller differences in magnitude exist even 
for subjects given the same initial dose.  These occur due to the simple fact that bone 
formation rates also differ among the subjects and so the amount of 41Ca incorporated into 
bone will vary by subject even when the initial doses are identical.   For this reason subject will 
need to be included as a blocking variable [1,2] in any model that we wish to use for treatment 
comparison.   
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Figure 1.  Subjects on different doses – the vertical axis for the low-dose subject has been 
rescaled to illustrate similarity of form. 
 
By including subject as a variable, we have allowed for differences in the starting amount of 
41Ca in the bone.  It is also necessary to include time as a covariate since clearly the urinary 
41Ca/Ca ratio is a decreasing function of time.  By including a subject-by-time interaction, we 
allow for the fact that 41Ca is naturally resorbed at different rates for different subjects.  
 
The inclusion of these covariates (subject and time) helps to remove a large component of the 
variation in the urinary 41Ca/Ca ratio.  This makes it possible to observe treatment effects that 
would otherwise be concealed by that excess variation.    
3. Initial Model Results 

Before adding treatments, consider the model including subject and time as described above.  
The value of ( )k jR t , the  urinary 41Ca/Ca ratio of subject k at time jt  is: 

( ) ( )b b e= + +0, 1,k j k k j k jR t t t  
where b0,k  and b1,k  are parameters to be estimated for each subject, and where we assume 

that the model deviations are independent normal random variables with variance s 2 .  This 
model allows that each subject be represented by a different line.  The expected value of 

( )k jR t  depends only on the two parameters for each subject: 

( ) b bé ù= +ê úë û 0, 1,k j k k jE R t t  
The GLM procedure in SAS 9.1 is used for calculations (coding is given in Section 8).  
Analysis of variance indicates that all model parameters are significant and hence useful in 
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decreasing the variation in the response.  The model removes 82% of the total variation in the 
urinary 41Ca/Ca ratio, as is required to be able to see treatment effects across subjects and time.   

 
If desired, a nested model can be used to further divide the subject effect into a dose effect 
and a subject within dose effect.  This is unnecessary when analyzing treatments, but included 
to satisfy the reader that the dose effect is indeed accounted for by the inclusion of subject in 
the model.  The analysis of variance table for this model is shown in Table 1.  It illustrates that 
a good portion of the subject-to-subject variation (about 80%) is in fact due to the initial dose 
size.    Any remaining subject-to-subject variation would thus be due to the absorption rate 
(subject alone) and resorption rate (subject interacting with time).   
 
 

Source DF SS MS F-Value Pr > F
Dose 1 930 930 44.9 < 0.0001
Subject(Dose) 11 228 20.7 33.1 < 0.0001
Time 1 483 483 187 < 0.0001
Dose*Time 1 28 28 44.7 < 0.0001
Subject(Dose)*Time 11 11 1 1.53 0.1153
Error 569 357 0.628
Total 594 2037   

Table 1.  Analysis of Variance Table for Nested Model 
 
Another method of considering the analysis of variance is to simply consider the percentage of 
total variation explained by each source.  The percentages (shown in Table 2) have some fairly 
straightforward interpretations.  In particular, the error in this model represents all other day-
to-day variation within subjects.  Any treatment effects would be part of this.       
 

Source SS Percentage
Dose 930 45.6 Initial Dose Received
Subject(Dose) 228 11.2 Subject Genetics; Initial Dose Absorbed
Time
Subject*Time

Error 357 17.5 Treatments?  Diet?  Experimental Error?  
Other Variables? 

Total 2037

25.6522 Subject Genetics; Resorption Rates?

 
Table 2.  Breakdown of Sums of Squares 

4. Heteroscedasticity:  The Natural Log Transformation 

In assessment of assumptions for the model described in Section 2, it was found that the 
homogeneity of variance assumption was not satisfied.  In fact the subjects may be divided 
into two groups, and that the divisive factor is initial dose size.  The subjects having the larger 
initial dose display about five times the variation among their residuals when compared to 
subjects having the smaller dose.     
 
Measurement error is the likely cause of this phenomenon.  The accelerator mass spectrometer 
obtains measurements by counting atoms [3].  Thus a Poisson distribution would apply and we 
would expect the variability to increase as there are more atoms to count.  In particular, 



 

Page 4 

because the higher dose is ten times the lower one, the standard deviations would be expected 
to differ by a factor of 10 .  The variation in the residuals actually reflects a slightly larger 
difference – probably because of differences in formation rates.   
 
One simple way by which to circumvent the issue and obtain a situation in which the 
homogeneity assumption is satisfied is to consider the log of the response variable.   In general, 
we will let  

( ) ( )( )= logL t R t  
where the logarithm is taken on the natural scale.  Our new model becomes 

( ) ( )( ) ( )b b e¢ ¢= = + +0, 1,logk j k j k k j k jL t R t t t  
for a given subject k at time jt .   Note that the parameters are not the same parameters as in 
the previous model, but are related to the previous model by the transformation.  A simple 
check of diagnostic plots showed that the problems with homogeneity of variance were 
substantially reduced by this transformation.      
 
5. Treatments 

The final piece to our model is the inclusion of treatments.  Note that the “treatment” variable 
here includes both pre-treatment and treatment periods.  To determine whether or not a 
treatment is effective, subjects are used as their own controls.  This is accomplished by the 
inclusion of subject described in Section 2.  The 41Ca/Ca ratio is also adjusted for time as 
previously described.  It is then reasonable to compare measurements taken during treatment 
with measurements taken prior to treatment and to do so across different subjects.   
 
One may assume that time-post-dose has nothing to do with the effect of a treatment on bone 
resorption.  Hence the treatment-by-time interaction term is excluded from the model.  The 
treatment-by-subject term is included since it is conceivable that subjects might react 
differently to a treatment.    
 
Repeated measures also come into play because approximately five measurements are taken 
over the course of each fifty-day treatment (or pretreatment) phase of the study.  Because of 
the repeated measures, the mean square error represents within subject variation over a fifty day 
interval, which is not the correct denominator for testing treatment effects.  In fact, using the 
MSE as the error term for this test would result test statistics that are at least one order of 
magnitude too large!   
 
The correct ‘error term’ (for a balanced design) is instead the treatment-by-subject interaction 
as derived from the following expected mean squares: 
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Note that ( )f treatment  is the fixed effect term associated to the treatments, and = 5n  is 
the number of observations for each treatment/subject combination.   In our experiment, we 
do not always have exactly five observations per treatment period.  Thus SAS software is used 
to obtain the expected mean squares and approximate tests for treatment effects. 
  
6.  Testing for Treatment Effects 

As this study is designed in such a way that the treatment variable consists of both treatment 
and pre-treatment phases, contrasts are necessary in order to compare each treatment period 
to the pre-treatment phase directly preceding it.   The null hypothesis for each contrast is that, 
for a specified treatment, the log urinary 41Ca/Ca ratio adjusted for subject and time is not 
different from the immediately preceding period during which there was no actual treatment.  
Using the appropriate combination of least-squares means, it is also possible to obtain 
confidence intervals for the difference between a treatment period and its corresponding pre-
treatment period – again adjusted for subject and time.  Any confidence interval that did not 
contain 0 would indicate a positive treatment effect.  While we are working in the natural log 
scale, the CI’s for  

( ) ( )-= -, | , | ,log logDiff T RT PRE T RT SUBJ T IME T RT SUBJ T IMEL Ratio Ratio  
are perfectly functional for answering the question of whether a treatment is or is not effective.  
They do not, however, carry any particular biological meaning.  Thus we consider the relative 
resorption defined as follows: 
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From a biological standpoint, the resorption reduction is the factor by which the resorption 
rate has changed between the pre-treatment and treatment phases in question.   A resorption 
ratio of 0.85 would indicate that resorption rate during the treatment was 85% of resorption 
rate before the treatment.  An even more concise statement would be that the resorption rate 
was reduced by 15%.  The interpretation of these numbers as percentages is quite important as 
it allows us to consider the size of each treatment effect.  Approximate confidence limits for 
the RR may be obtained by simply exponentiating the confidence limits for - ,Diff T RTL .   
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8. Appendix 

The following SAS code was used to execute the analysis. 
 
PROC GLM data=Ca41; 
  class Subject Treatment; 
  model LNratio = Subject|Time Treatment Subject*Treatment; 
  test H=Treatment E=Subject*Treatment; 
  lsmeans Treatment /adjust=Tukey pdiff tdiff cl E=Subject*Treatment; 
  contrast 'Treatment 0' trt 1 0 0 -1 0 0 /E=Subject*Treatment; 
  contrast 'Treatment 97' trt 0 1 0 0 -1 0 /E=Subject*Treatment; 
  contrast 'Treatment 135' trt 0 0 1 0 0 -1 /E=Subject*Treatment; 
RUN; QUIT; 


