YORF	Gene	Description	Fold	Fold
			change	change
~			myo1 Δ	$chs2\Delta$
Cell				
organization				
and biogenesis	NODI			
YDL014W	NOPI	Nop1p Nucleolar protein, component	-2.62	-2.04
		of the small subunit processome		
		complex, which is required for		
		similarity to mammalian fibrillarin:		
		similarity to manimanan normani,		
		protein counig		
YOL077C	BRX1	Brx1p Nucleolar protein, constituent	-2.08	-2.76
		of 66S pre-ribosomal particles;		
		depletion leads to defects in rRNA		
		processing and a block in the		
		assembly of large ribosomal subunits;		
		possesses a sigma(70)-like RNA-		
		binding motif; protein coding		
YDR465C	RMT2	Arginine methyltransferase;	-2.40	-3.86
		ribosomal protein L12 is a		
		substrate Rmt2p; protein coding		
YPL226W	NEW1	ATP binding cassette family member;	-2.34	-2.57
		Asn/Gln-rich rich region supports		
		[NU+] prion formation, susceptibility		
		to [PSI+] prion induction and		
		aggregation of a fragment of the		
		numan Machado-Joseph Disease		
VKD07CW	ECMA	For the low of the second seco	2.20	2 4 2
IKKU/OW	ECM4	transformed not assortial; similar to	3.26	2.13
		Var154an; groon fluorescent protein		
		(GEP)-fusion protein localizes to the		
		cytoplasm: protein coding		
YKR057W	RPS21A	Protein component of the small (40S)	-2 32	-1 98
111100711	10 52111	ribosomal subunit: nearly identical to	2.52	1.50
		Rps21Bp and has similarity to rat S21		
		ribosomal protein Rps21ap: protein		
		coding		
YDR418W	RPL12B	Protein component of the large (60S)	-3.28	-2.92
		ribosomal subunit, nearly identical to		
		Rpl12Ap; rpl12a rpl12b double		
		mutant exhibits slow growth and		
		slow translation; has similarity to E.		
		coli L11 and rat L12 ribosomal		

		proteins Rpl12bp; protein coding		
YOL004W	SIN3	Component of the Sin3p-Rpd3p	2.29	-1.13
		histone deacetylase complex,		
		involved in transcriptional repression		
		and activation of diverse processes,		
		including mating-type switching and		
		meiosis: involved in the maintenance		
		of chromosomal integrity/Sin3p:		
		protein coding		
YCL059C	KRR1	Essential nucleolar protein required	-2 37	-1 80
1020070		for the synthesis of 18S rRNA and	2107	1.00
		for the assembly of 40S ribosomal		
		subunit Krr1n: protein coding		
YII 052C	RPI 34R	Protein component of the large (60S)	-2.13	-1 63
1120520		ribosomal subunit nearly identical to	2.15	1.05
		Rpl $3/An$ and has similarity to rat I $3/$		
		ribosomal protein Rpl3/bp: protein		
		coding		
VGL 135W	RPI 1R	N-terminally acetylated protein	-2.65	-1 96
102155 W	KI LID	component of the large (60S)	-2.05	-4.90
		ribosomal subunit nearly identical to		
		Ppl1 Ap and has similarity to E coli		
		L 1 and rat L 10a ribosomal protoing:		
		mile mile double null mutation is		
		lathallDrl1bry protein agding		
VCI 120C	עתת 42	Drm 42r DNA baliance in the DEAL	2 2 2	1 47
I GL120C	PRP45	how family functions in both PNA	-2.55	1.47
		polymorese L and polymorese II		
		transcript matchelism involved in		
		release of the lariet intron from the		
		anliances on the farfat-inition from the		
VNI 210W	DEAD	Description of the start string strin	2.00	1 5 2
INL512W	KFAZ	Riazp Subuliit of heterotrimeric	-2.00	-1.52
		Replication Protein A (RPA), which		
		Is a highly conserved single-stranded		
		DNA binding protein involved in		
		DNA replication, repair, and		
NCI 000M	I CC 1	recombination; protein coding	4.05	1.24
YGL099W	LSGI	Lsg1p Putative G1Pase involved in	-1.95	-1.31
		605 ribosomal subunit biogenesis;		
		frequired for the release of Nmd3p		
		from 608 subunits in the cytoplasm;		
		protein coding		
YML034W	SRCI	Inner nuclear membrane (INM)	2.17	1.25
		protein with a putative role in sister		
		chromatid segregation, potentially		
		phosphorylated by Cdc28p; contains		

		helix-extension-helix (HEH) motif,		
		nuclear localization signal		
		sequence Src1p; protein coding		
YDR309C	GIC2	Gic2p Protein of unknown function	-2.40	2.17
		involved in initiation of budding and	_	
		cellular polarization, interacts with		
		Cdc42p via the Cdc42/Rac-		
		interactive binding (CRIB) domain:		
		protein coding		
YDR300C	PRO1	Gamma-glutamyl kinase, catalyzes	-1.45	-2.8
		the first step in proline		
		biosynthesis Pro1p: protein coding		
YNL283C	WSC2	Partially redundant sensor-transducer	-1.96	1.48
		of the stress-activated PKC1-MPK1		
		signaling pathway involved in		
		maintenance of cell wall integrity and		
		recovery from heat shock: secretory		
		pathway Wsc2p is required for the		
		arrest of secretion response/Wsc2p:		
		protein coding		
YHR203C	RPS4B	Protein component of the small (40S)	-2.67	-2.90
11112000	111 2 12	ribosomal subunit: identical to	2.07	2.50
		Rps4Ap and has similarity to rat S4		
		ribosomal protein Rps4bp; protein		
		coding		
YKL113C	RAD27	5' to 3' exonuclease 5' flap	-1 89	-1 04
	14122/	endonuclease, required for Okazaki	1.05	1.01
		fragment processing and maturation		
		as well as for long-patch base-		
		excision repair: member of the S.		
		pombe RAD2/FEN1 family/Rad27p:		
		protein coding		
YHR170W	NMD3	Nmd3p Protein involved in nuclear	-2.01	-3.09
		export of the large ribosomal subunit:		0.00
		acts as a Crm1p-dependent adapter		
		protein for export of nascent		
		ribosomal subunits through the		
		nuclear pore complex: protein coding		
YDR225W	HTA1	Hta1plOne of two nearly identical	-5.92	-1.55
		(see also HTA2) histone H2A	0.01	2.00
		subtypes: core histone required for		
		chromatin assembly and chromosome		
		function: DNA damage-dependent		
		phosphorylation by Mec1p facilitates		
		DNA repair: acetylated by Nat4n		
		protein coding		

YDR224C	HTB1	Htb1p One of two nearly identical (see HTB2) histone H2B subtypes required for chromatin assembly and	-2.36	1.69
		chromosome function; Rad6p-Bre1p-		
		Lge1p mediated ubiquitination		
		regulates transcriptional activation,		
		meiotic DSB formation and H3		
		methylation; protein coding		
YHR139C	SPS100	Protein required for spore wall	6.98	2.50
		maturation; expressed during		
		sporulation; may be a component of		
		the spore wall Sps100p; protein		
		coding		
YLR409C	UTP21	Possible U3 snoRNP protein involved	-2.04	-2.24
		in maturation of pre-18S rRNA,		
		based on computational analysis of		
		large-scale protein-protein interaction		
		data Utp21p; protein coding		
YOR340C	RPA43	RNA polymerase I subunit	-2.06	-1.26
		A43 Rpa43p; protein coding		
YKL013C	ARC19	Arc19p Subunit of the ARP2/3	-1.53	-1.20
		complex, which is required for the		
		motility and integrity of cortical actin		
		patches; protein coding		
YKL009W	MRT4	Mrt4p Protein involved in mRNA	-3.61	-3.29
		turnover and ribosome assembly,		
		localizes to the nucleolus; protein		
		coding		
YOR312C	RPL20B	Protein component of the large (60S)	-3.33	-2.53
		ribosomal subunit, nearly identical to		
		Rpl20Ap and has similarity to rat		
		L18a ribosomal protein Rpl20bp;		
		protein coding		
YJR145C	RPS4A	Protein component of the small (40S)	-2.79	-2.70
		ribosomal subunit; mutation affects		
		20S pre-rRNA processing; identical		
		to Rps4Bp and has similarity to rat		
		S4 ribosomal protein Rps4ap; protein		
		coding		
YDR129C	SAC6	Fimbrin, actin-bundling protein;	1.92	-1.04
		cooperates with Scp1p		
		(calponin/transgelin) in the		
		organization and maintenance of the		
		actin cytoskeleton Sac6p; protein		
		coding		

YBR106W	PHO88	Pho88p Probable membrane protein.	-2.76	-2.30
		involved in phosphate transport:		2.00
		pho88 pho86 double null mutant		
		exhibits enhanced synthesis of		
		repressible acid phosphatase at high		
		inorganic phosphate concentrations:		
		nrotein coding		
VHR030C	SIT2	Serine/threenine MAP kinase	1 72	1 20
11110300	SL12	involved in regulating the	1.72	1.29
		maintenance of cell wall integrity and		
		progression through the cell cycle:		
		regulated by the PKC1 mediated		
		signaling notherwork Sit2ne protoin		
		signaling pathway Sit2p; protein		
	MICI	Mistal Mitashar daist C1	2.04	1.01
IBK084W	MISI	MISIP/Mitochondrial CI-	-2.04	-1.91
		tetranydrofolate synthase, involved in		
		interconversion between different		
		oxidation states of tetrahydrofolate		
		(1HF); provides activities of formyl-		
		THF synthetase, methenyl-THF		
		cyclohydrolase, and methylene-THF		
		dehydrogenase; protein coding		
YOR241W	MET7	Folylpolyglutamate synthetase,	-1.98	-1.82
		catalyzes extension of the glutamate		
		chains of the folate coenzymes,		
		required for methionine synthesis and		
		for maintenance of mitochondrial		
		DNA Met7p; protein coding		
YNL066W	SUN4	Cell wall protein related to	-6.61	-1.06
		glucanases, possibly involved in cell		
		wall septation; member of the SUN		
		family Sun4p; protein coding		
YBR048W	RPS11B	Protein component of the small (40S)	-4.04	-3.27
		ribosomal subunit; identical to		
		Rps11Ap and has similarity to E. coli		
		S17 and rat S11 ribosomal		
		proteins Rps11bp; protein coding		
YHL033C	RPL8A	Ribosomal protein L4 of the large	-3.16	-3.34
		(60S) ribosomal subunit, nearly		
		identical to Rpl8Bp and has similarity		
		to rat L7a ribosomal protein;		
		mutation results in decreased		
		amounts of free 60S subunits Rpl8ap:		
		protein coding		
YDR060W	MAK21	Constituent of 66S pre-ribosomal	-2.30	-2.99
· ·		particles, required for large (60S)		

		ribosomal subunit biogenesis:		
		involved in nuclear export of pre-		
		ribosomes: required for maintenance		
		of dsRNA virus: homolog of human		
		CAATT-binding protein Mak 21p.		
		protein coding		
VI D240W	VEE2	Translational alongation factor 2	2.16	1 0 /
1 LK249 W	TEF 5	atimulates the hinding of eminescul	-2.10	-1.04
		tDNA (A A tDNA) to ribesomes by		
		IRINA (AA-IRINA) to fibosomes by		
		releasing EF-1 alpha from the		
		ribosomai complex; contains two		
		ABC cassettes; binds and hydrolyses		
		ATP/Yef3p; protein coding		
YOR198C	BFRI	Bfr1p Component of mRNP	-2.38	1.26
		complexes associated with		
		polyribosomes; implicated in		
		secretion and nuclear segregation;		
		multicopy suppressor of BFA		
		(Brefeldin A) sensitivity; protein		
		coding		
YJR043C	POL32	Pol32p Third subunit of DNA	-1.74	-1.22
		polymerase delta, involved in		
		chromosomal DNA replication;		
		required for error-prone DNA		
		synthesis in the presence of DNA		
		damage and processivity; interacts		
		with Hys2p, PCNA (Pol30p), and		
		Pol1p; protein coding		
YER116C	SLX8	Slx8p Subunit of the Slx5-Slx8	1.85	2.01
		substrate-specific ubiquitin ligase		
		complex; stimulated by prior		
		attachment of SUMO to the substrate;		
		protein coding		
YLR197W	SIK1	Essential evolutionarily-conserved	-2.55	-1.20
		nucleolar protein component of the		
		box C/D snoRNP complexes that		
		direct 2'-O-methylation of pre-rRNA		
		during its maturation: overexpression		
		causes spindle orientation		
		defects Sik1p: protein coding		
YMR307W	GASI	Beta-1 3-glucanosyltransferase	-2.87	1 44
	01101	required for cell wall assembly:	2.07	1.74
		localizes to the cell surface via a		
		glycosylphosphatidylinositol (GPI)		
		anchor/Gas1p: protein coding		
	1	anononousip, protoni counig	1	

r				
YMR302C	PRP12	Integral inner mitochondrial	2.13	1.23
		membrane protein with a role in		
		maintaining mitochondrial nucleoid		
		structure and number; mutants exhibit		
		an increased rate of mitochondrial		
		DNA escape; shows some sequence		
		similarity to exonucleases Yme2p;		
		protein coding		
YLR167W	RPS31	Fusion protein that is cleaved to yield	-2.48	-5.21
		a ribosomal protein of the small (40S)	_	_
		subunit and ubiquitin: ubiquitin may		
		facilitate assembly of the ribosomal		
		protein into ribosomes: interacts		
		genetically with translation factor		
		eIF2B Rps31p: protein coding		
YDL226C	GCS1	ADP-ribosylation factor GTPase	-1 98	-1 54
1012200	0051	activating protein (ARE GAP)	1.50	1.54
		involved in FR-Golgi transport:		
		shares functional similarity with		
		Glo3p/Ges1p: protein coding		
VII 100C	DDCJJA	Drotein component of the small (40S)	2.24	4.07
IJL190C	KF SZZA	ribosomal subunity nearly identical to	-3.24	-4.07
		noosomal subunit; nearly identical to		
		Kps22Bp and has similarity to E. con		
		58 and rat 515a ribosomal		
NED 070M		proteins Rps22ap; protein coding		
YER0/0W	RNRI	Ribonucleotide-dipnosphate	-4.62	-2.13
		reductase (RNR), large subunit; the		
		RNR complex catalyzes the rate-		
		limiting step in dNTP synthesis and is		
		regulated by DNA replication and		
		DNA damage checkpoint pathways		
		via localization of the small		
		subunits Rnr1p; protein coding		
YDL198C	GGC1	Ggc1p Mitochondrial GTP/GDP	3.35	3.93
		transporter, essential for		
		mitochondrial genome maintenance;		
		has a role in mitochondrial iron		
		transport; member of the		
		mitochondrial carrier family; protein		
		coding		
YDL192W	ARF1	ADP-ribosylation factor, GTPase of	-2.00	-1.53
		the Ras superfamily involved in		
		regulation of coated vesicle formation		
		in intracellular trafficking within the		
		Golgi; functionally interchangeable		
		with Arf2p Arf1p; protein coding		

YBL035C	POL12	B subunit of DNA polymerase alpha-	-2.12	-1.53
		primase complex, required for		
		initiation of DNA replication during		
		mitotic and premeiotic DNA		
		synthesis: also functions in telomere		
		capping and length		
		regulation Pol12p: protein coding		
YDL188C	PPH22	Catalytic subunit of protein	1 68	-1 07
12L100C	1 1 1122	phosphatase 2A functionally	1.00	1.07
		redundant with Pph21p: methylated		
		at C terminus: forms alternate		
		complexes with several regulatory		
		subunits: involved in signal		
		transduction and regulation of		
		mitosis Pph22p: protein coding		
VBI 032W	HEK?	Hek2p RNA binding protein with	1 71	1 /0
I DL032 W	IILK2	similarity to hnPND K that localizes	-1.71	1.40
		to the extendesm and to subtalamaria		
		DNA: required for the proper		
		DNA, required for the proper		
		involved in the regulation of telemone		
		involved in the regulation of telomere		
		position effect and telomere length;		
		protein coding	• • •	4.00
YMR241W	YHM2	Mitochondrial DNA-binding protein,	-2.69	-1.88
		component of the mitochondrial		
		nucleoid structure, involved in		
		mtDNA replication and segregation		
		of mitochondrial genomes; member		
		of the mitochondrial carrier protein		
		family Yhm2p; protein coding		
YBL003C	HTA2	Hta2p One of two nearly identical	-6.53	-1.57
		(see also HTA1) histone H2A		
		subtypes; core histone required for		
		chromatin assembly and chromosome		
		function; DNA damage-dependent		
		phosphorylation by Mec1p facilitates		
		DNA repair; acetylated by Nat4p;		
		protein coding		
YLR090W	XDJ1	Putative chaperone, homolog of E.	1.59	1.04
		coli DnaJ, closely related to Ydj1p;		
		the authentic, non-tagged protein is		
		detected in highly purified		
		mitochondria in high-throughput		
		studies Xdj1p; protein coding		
YER006W	NUG1	GTPase that associates with nuclear	-1.93	-3.21
		60S pre-ribosomes, required for		

		export of 60S ribosomal subunits		
		coding		
VDI 1/3W	CCT4	Cct4p Subunit of the cytosolic	-1 50	_1 79
	0014	chaperonin Cct ring complex related	-1.50	-1.75
		to Tcp1p, required for the assembly		
		of actin and tubulins in vivo: protein		
		coding		
YMR202W	ERG2	C-8 sterol isomerase, catalyzes the	-4.03	-1.47
		isomerization of the delta-8 double		
		bond to the delta-7 position at an		
		intermediate step in ergosterol		
		biosynthesis Erg2p; protein coding		
YGR123C	PPT1	Ppt1p Protein serine/threonine	-1.91	-3.29
		phosphatase with similarity to human		
		phosphatase PP5; present in both the		
		nucleus and cytoplasm; expressed		
		during logarithmic growth;		
		computational analyses suggest roles		
		in phosphate metabolism and rRNA		
		processing; protein coding		
YJL074C	SMC3	Smc3p Subunit of the multiprotein	-2.02	-1.78
		cohesin complex required for sister		
		chromatid cohesion in mitotic cells;		
		also required, with Rec8p, for		
		cohesion and recombination during		
		meiosis; phylogenetically conserved		
		SMC chromosomal ATPase family		
		member; protein coding		
YDL083C	RPS16B	Protein component of the small (40S)	-3.23	-3.08
		ribosomal subunit; identical to		
		Rps16Ap and has similarity to E. coli		
		S9 and rat S16 ribosomal		
		proteins Rps16bp; protein coding		
YMR142C	RPL13B	Protein component of the large (60S)	-2.16	-2.19
		ribosomal subunit, nearly identical to		
		Rpl13Ap; not essential for viability;		
		has similarity to rat L13 ribosomal		
		protein Rpl13bp; protein coding		
YAL025C	MAK16	Essential nuclear protein, constituent	-3.03	-1.97
		of 66S pre-ribosomal particles;		
		required for maturation of 25S and		
		5.8S rRNAs; required for		
		maintenance of M1 satellite double-		
		stranded RNA of the L-A		
		virus Mak16p; protein coding		

YJL042W	MHP1	Mhp1p Microtubule-associated	2.29	1.29
		protein involved in assembly and		
		stabilization of microtubules;		
		overproduction results in cell cycle		
		arrest at G2 phase; similar to		
		Drosophila protein MAP and to		
		mammalian MAP4 proteins; protein		
		coding		
YGR070W	ROM1	GDP/GTP exchange protein (GEP)	2.81	1.34
		for Rho1p; mutations are		
		synthetically lethal with mutations in		
		rom2, which also encodes a		
		GEP Rom1p; protein coding		
YOL121C	RPS19A	Protein component of the small (40S)	-2.12	-2.18
		ribosomal subunit, required for		
		assembly and maturation of pre-40 S		
		particles; mutations in human RPS19		
		are associated with Diamond		
		Blackfan anemia; nearly identical to		
		Rps19Bp Rps19ap; protein coding		
YMR116C	ASC1	Asc1p G-protein beta subunit and	-3.77	-3.05
		guanine nucleotide dissociation		
		inhibitor for Gpa2p; ortholog of		
		RACK1 that inhibits translation; core		
		component of the small (40S)		
		ribosomal subunit: represses Gcn4p		
		in the absence of amino acid		
		starvation: ncRNA		
YLL045C	RPL8B	Ribosomal protein L4 of the large	-2.55	-4.72
		(60S) ribosomal subunit, nearly		
		identical to Rpl8Ap and has		
		similarity to rat L7a ribosomal		
		protein: mutation results in decreased		
		amounts of free 60S subunits/Rpl8bp:		
		protein coding		
YORF	Gene	Description	Fold	Fold
1 OIG	Gene	Description	change	change
			$mvo1\Lambda$	$chs2\Lambda$
			my01Δ	CH52A
Protein				
biosynthesis				
VGR034W	RPI 76R	Protein component of the large (608)	_2 60	_1 00
1 01(0)+ 11	KI L20D	ribosomal subunit nearly identical to	-2.00	-1.55
		Rpl26Ap and has similarity to E coli		
		I 24 and rat I 26 ribosomal proteins:		
		$\square \square \square + and \square \square$	1	1

		binds to 5.8S rRNA Rpl26bp; protein		
		coding		
YPL249C-A	RPL36B	Protein component of the large (60S)	-2.29	-1.89
		ribosomal subunit, nearly identical to		
		Rpl36Ap and has similarity to rat L36		
		ribosomal protein; binds to 5.8 S		
		rRNA Rpl36bp; protein coding		
YDR471W	RPL27B	Protein component of the large (60S)	-2.55	-1.80
		ribosomal subunit, nearly identical to		
		Rpl27Ap and has similarity to rat L27		
		ribosomal protein Rpl27bp; protein		
		coding		
YPL220W	RPL1A	N-terminally acetylated protein	-2.48	-4.36
		component of the large (60S)		
		ribosomal subunit, nearly identical to		
		Rpl1Bp and has similarity to E. coli		
		L1 and rat L10a ribosomal proteins;		
		rpl1a rpl1b double null mutation is		
		lethal Rpl1ap; protein coding		
YCR046C	IMG1	Img1p Mitochondrial ribosomal	-1.58	-1.25
		protein of the large subunit, required		
		for respiration and for maintenance of		
		the mitochondrial genome; protein		
		coding		
YIL133C	RPL16A	N-terminally acetylated protein	-2.71	-2.46
		component of the large (60S)		
		ribosomal subunit, binds to 5.8 S		
		rRNA; has similarity to Rpl16Bp, E.		
		coli L13 and rat L13a ribosomal		
		proteins; transcriptionally regulated		
		by Rap1p Rpl16ap; protein coding		
YGL189C	RPS26A	Protein component of the small (40S)	-2.12	-2.62
		ribosomal subunit; nearly identical to		
		Rps26Bp and has similarity to rat S26		
		ribosomal protein Rps26ap; protein		
		coding		
YPL143W	RPL33A	N-terminally acetylated ribosomal	-1.86	-1.54
		protein L37 of the large (60S)		
		ribosomal subunit, nearly identical to		
		Rpl33Bp and has similarity to rat		
		L35a; rpl33a null mutant exhibits		
		slow growth while rpl33a rpl33b		
		double null mutant is		
		inviable Rpl33ap; protein coding		
YPL131W	RPL5	Protein component of the large (60S)	-2.40	-3.71
		ribosomal subunit with similarity to		

		E. coli L18 and rat L5 ribosomal		
		proteins; binds 5S rRNA and is		
		required for 60S subunit		
		assembly Rpl5p; protein coding		
YGL147C	RPL9A	Protein component of the large (60S)	-2.39	-4.36
		ribosomal subunit, nearly identical to		
		Rpl9Bp and has similarity to E. coli		
		L6 and rat L9 ribosomal		
		proteins Rpl9ap; protein coding		
YML073C	RPL6A	N-terminally acetylated protein	-2.51	-2.32
		component of the large (60S)		
		ribosomal subunit, has similarity to		
		Rpl6Bp and to rat L6 ribosomal		
		protein; binds to 5.8S rRNA Rpl6ap;		
		protein coding		
YML063W	RPS1B	Ribosomal protein 10 (rp10) of the	-3.28	-2.41
		small (40S) subunit; nearly identical		
		to Rps1Ap and has similarity to rat		
		S3a ribosomal protein Rps1bp;		
		protein coding		
YKL180W	RPL17A	Protein component of the large (60S)	-3.49	-2.46
		ribosomal subunit, nearly identical to		
		Rpl17Bp and has similarity to E. coli		
		L22 and rat L17 ribosomal proteins;		
		copurifies with the Dam1 complex		
		(aka DASH complex) Rpl17ap:		
		protein coding		
YGL123W	RPS2	Protein component of the small (40S)	-2.40	-4.09
		subunit, essential for control of		
		translational accuracy; has similarity		
		to E. coli S5 and rat S2 ribosomal		
		proteins Rps2p; protein coding		
YIL018W	RPL2B	Protein component of the large (60S)	-3.24	-1.89
		ribosomal subunit, identical to		
		Rpl2Ap and has similarity to E. coli		
		L2 and rat L8 ribosomal proteins;		
		expression is upregulated at low		
		temperatures Rpl2bp; protein coding		
YPL090C	RPS6A	Protein component of the small (40S)	-2.52	-2.10
		ribosomal subunit; identical to		
		Rps6Bp and has similarity to rat S6		
		ribosomal protein Rps6ap; protein		
		coding		
YPL079W	RPL21B	Protein component of the large (60S)	-3.22	-3.09
		ribosomal subunit, nearly identical to		
		Rpl21Ap and has similarity to rat L21		

		ribosomal protein Rpl21bp; protein		
		coding		
YGL076C	RPL7A	Protein component of the large (60S)	-1.82	-1.51
		ribosomal subunit, nearly identical to		
		Rpl7Bp and has similarity to E. coli		
		L30 and rat L7 ribosomal proteins;		
		contains a conserved C-terminal		
		Nucleic acid Binding Domain		
		(NDB2) Rpl7ap; ncRNA		
YGL031C	RPL24A	Ribosomal protein L30 of the large	-2.67	-1.51
		(60S) ribosomal subunit, nearly		
		identical to Rpl24Bp and has		
		similarity to rat L24 ribosomal		
		protein; not essential for translation		
		but may be required for normal		
		translation rate Rpl24ap; protein		
		coding		
YGL030W	RPL30	Protein component of the large (60S)	-3.01	-1.77
		ribosomal subunit, has similarity to		
		rat L30 ribosomal protein; involved		
		in pre-rRNA processing in the		
		nucleolus; autoregulates splicing of		
		its transcript Rpl30p; protein coding		
YKL081W	TEF4	Tef4p Translation elongation factor	-2.90	-1.15
		EF-1 gamma; ncRNA		
YBR191W	RPL21A	Protein component of the large (60S)	-3.75	-2.78
		ribosomal subunit, nearly identical to		
		Rpl21Bp and has similarity to rat L21		
		ribosomal protein Rpl21ap; protein		
		coding		
YBR189W	RPS9B	Protein component of the small (40S)	-2.28	-3.97
		ribosomal subunit; nearly identical to		
		Rps9Ap and has similarity to E. coli		
		S4 and rat S9 ribosomal		
		proteins Rps9bp; protein coding		
YBR181C	RPS6B	Protein component of the small (40S)	-2.51	-2.34
		ribosomal subunit; identical to	_	-
		Rps6Ap and has similarity to rat S6		
		ribosomal protein Rps6bp; protein		
		coding		
YLR388W	RPS29A	Protein component of the small (40S)	-2.01	-1.82
	~~~~	ribosomal subunit: nearly identical to		
		Rps29Bp and has similarity to rat S29		
		and E. coli S14 ribosomal		
		proteins Rps29ap; protein coding		

VED022C A	00100	$\mathbf{D}_{\mathbf{n}} \mathbf{f}_{\mathbf{n}} \mathbf{f}$	1.00	244
YFR052C-A	RPL29	Protein component of the large (60S)	-1.88	-2.14
		ribosomal subunit, has similarity to		
		rat L29 ribosomal protein; not		
		essential for translation, but required		
		for proper joining of the large and		
		small ribosomal subunits and for		
		normal translation rate Rpl29p;		
		protein coding		
YFR031C-A	RPL2A	Protein component of the large (60S)	-3.62	-1.52
		ribosomal subunit, identical to		
		Rpl2Bp and has similarity to E_coli		
		I 2 and rat I 8 ribosomal		
		proteins Ppl2ap: protein coding		
VNI 160W		Drotein component of the large (60S)	2 4 2	2.00
INLIG2 W	KFL42A	ribesemal subunit identical to	-2.43	-3.00
		ribosomal subunit, identical to		
		RpI42Bp and has similarity to rat L44		
		ribosomal protein Rpl42ap; protein		
		coding		
YLR344W	RPL26A	Protein component of the large (60S)	-2.56	-1.83
		ribosomal subunit, nearly identical to		
		Rpl26Bp and has similarity to E. coli		
		L24 and rat L26 ribosomal proteins;		
		binds to 5.8S rRNA Rpl26ap; protein		
		coding		
YBR121C	GRS1	Cytoplasmic and mitochondrial	-2.08	-2.43
		glycyl-tRNA synthase that ligates		
		glycine to the cognate anticodon		
		bearing tRNA: transcription		
		termination factor that may interact		
		with the 3'-end of pre-mRNA to		
		promote 3'-end formation Grs1p:		
		protein coding		
VEL 022C	EDC2	Alpha subunit of autoplasmia	1 01	1 75
IFL022C	FK32	Alpha subulit of cytoplashic	-1.81	-1.75
		phenylalanyl-tKNA synthetase, forms		
		a tetramer with Frs1p to form active		
		enzyme; evolutionarily distant from		
		mitochondrial phenylalanyl-tRNA		
		synthetase based on protein sequence,		
		but substrate binding is similar Frs2p;		
		protein coding		
YNL096C	RPS7B	Protein component of the small (40S)	-2.13	-1.16
		ribosomal subunit, nearly identical to		
		Rps7Ap; interacts with Kti11p;		
		deletion causes hypersensitivity to		
		zymocin; has similarity to rat \$7 and		
		Xenopus S8 ribosomal		
		deletion causes hypersensitivity to zymocin; has similarity to rat S7 and		
		Xenopus S8 ribosomal		

		proteins Rps7bp; protein coding		
YNL069C	RPL16B	N-terminally acetylated protein	-1.84	-2.64
		component of the large (60S)		
		ribosomal subunit, binds to 5.8 S		
		rRNA; has similarity to Rpl16Ap, E.		
		coli L13 and rat L13a ribosomal		
		proteins; transcriptionally regulated		
		by Rap1p Rpl16bp; protein coding		
YNL067W	RPL9B	Protein component of the large (60S)	-2.38	-3.19
		ribosomal subunit, nearly identical to		
		Rpl9Ap and has similarity to E. coli		
		L6 and rat L9 ribosomal		
		proteins Rp19bp; protein coding		
YER131W	RPS26B	Protein component of the small (40S)		
		ribosomal subunit; nearly identical to	-2 76	-3 55
		Rps26Ap and has similarity to rat	2.70	5.55
		S26 ribosomal protein Rps26bp;		
		protein coding		
YDR025W	RPS11A	Protein component of the small (40S)	-3.19	-2.92
		ribosomal subunit; identical to		
		Rps11Bp and has similarity to E. coli		
		S17 and rat S11 ribosomal		
		proteins Rps11ap; protein coding		
YER102W	RPS8B	Protein component of the small (40S)	-2.53	-2.97
		ribosomal subunit; identical to		
		Rps8Ap and has similarity to rat S8		
		ribosomal protein Rps8bp; protein		
		coding		
YGR264C	MES1	Mes1p Methionyl-tRNA synthetase,	-2.04	-2.97
		forms a complex with glutamyl-		
		tRNA synthetase (Gus1p) and Arc1p,		
		which increases the catalytic		
		efficiency of both tRNA synthetases;		
		also has a role in nuclear export of		
		tRNAs; protein coding		
YER074W	RPS24A	Protein component of the small (40S)	-2.06	-2.29
		ribosomal subunit; identical to		
		Rps24Bp and has similarity to rat S24		
		ribosomal protein Rps24ap; protein		
		coding		
YJL177W	RPL17B	Protein component of the large (60S)	-4.81	-2.01
		ribosomal subunit, nearly identical to		
		Rpl17Ap and has similarity to E. coli		
		L22 and rat L17 ribosomal		
		proteins Rpl17bp; protein coding		

YGR214W	RPSOA	Protein component of the small (40S) ribosomal subunit, nearly identical to Rps0Bp; required for maturation of 18S rRNA along with Rps0Bp; deletion of either RPS0 gene reduces	-2.67	-1.94
		growth rate, deletion of both genes is lethal Rps0ap; protein coding		
YER056C-A	RPL34A	Protein component of the large (60S) ribosomal subunit, nearly identical to Rpl34Bp and has similarity to rat L34 ribosomal protein Rpl34ap; protein coding	-2.96	-2.43
YOR096W	RPS7A	Protein component of the small (40S) ribosomal subunit, nearly identical to Rps7Bp; interacts with Kti11p; deletion causes hypersensitivity to zymocin; has similarity to rat S7 and Xenopus S8 ribosomal proteins Rps7ap; protein coding	-2.62	-2.49
YDL184C	RPL41A	Ribosomal protein L47 of the large (60S) ribosomal subunit, identical to Rpl41Bp and has similarity to rat L41 ribosomal protein; comprised of only 25 amino acids; rpl41a rpl41b double null mutant is viable Rpl41ap; protein coding	-1.99	-3.33
YGR185C	TYS1	Cytoplasmic tyrosyl-tRNA synthetase, class I aminoacyl-tRNA synthetase that aminoacylates tRNA(Tyr), required for cytoplasmic protein synthesis, interacts with positions 34 and 35 of the anticodon of tRNATyr Tys1p; protein coding	-1.64	-1.68
YDL136W	RPL35B	Protein component of the large (60S) ribosomal subunit, identical to Rpl35Ap and has similarity to rat L35 ribosomal protein Rpl35bp; protein coding	-2.21	-1.89
YDL133C-A	RPL41B	Ribosomal protein L47 of the large (60S) ribosomal subunit, identical to Rpl41Ap and has similarity to rat L41 ribosomal protein; comprised of only 25 amino acids; rpl41a rpl41b double null mutant is viable Rpl41bp; protein coding	-2.13	-3.45

YPR102C	RPL11A	Protein component of the large (60S)	-2.77	-2.80
		ribosomal subunit, nearly identical to		
		Rpl11Bp: involved in ribosomal		
		assembly: depletion causes		
		degradation of proteins and RNA of		
		the 60S subunit: has similarity to F		
		coli I 5 and rat I 11/Rpl11ap: protein		
		coding		
VI DOG1W	001 224	$\frac{1}{2}$	2 00	2 06
I LKUUI W	KF L22A	ribosomal subunit has similarity to	-3.69	-2.00
		Del22De and to get L 22 minarity to		
		Rpi22Bp and to fat L22 fibosofilat		
VI DOCOM		protein Rpi22ap; protein coding	2 5 4	2.00
YLR060W	FRSI	Beta subunit of cytoplasmic	-2.54	-2.39
		phenylalanyl-tRNA synthetase, forms		
		a tetramer with Frs2p to generate		
		active enzyme; sequence is		
		evolutionarily distant from		
		mitochondrial phenylalanyl-tRNA		
		synthetase (Msf1p), but substrate		
		binding is similar Frs1p; protein		
		coding		
YEL054C	RPL12A	Protein component of the large (60S)	-2.45	-3.09
		ribosomal subunit, nearly identical to		
		Rpl12Bp; rpl12a rpl12b double		
		mutant exhibits slow growth and		
		slow translation; has similarity to E.		
		coli L11 and rat L12 ribosomal		
		proteins Rpl12ap; protein coding		
YDL082W	RPL13A	Protein component of the large (60S)	-3.24	-2.58
		ribosomal subunit, nearly identical to		
		Rpl13Bp; not essential for viability;		
		has similarity to rat L13 ribosomal		
		protein Rpl13ap; protein coding		
YPR043W	RPL43A	Protein component of the large (60S)	-2.79	-2.69
		ribosomal subunit, identical to		
		Rpl43Bp and has similarity to rat		
		L37a ribosomal protein; null		
		mutation confers a dominant lethal		
		phenotype Rpl43ap; protein coding		
YOL139C	CDC33	Cdc33p Cytoplasmic mRNA cap	-2.11	-1.68
		binding protein; the eIF4E-cap		
		complex is responsible for mediating		
		cap-dependent mRNA translation via		
		interactions with the translation		
		initiation factor eIF4G (Tif4631p or		
		Tif4632p): protein coding		

YDL061C	RPS29B	Protein component of the small (40S)	-2.48	-2.13
		ribosomal subunit; nearly identical to		
		Rps29Ap and has similarity to rat		
		S29 and E. coli S14 ribosomal		
		proteins Rps29bp; protein coding		
YOL127W	RPL25	Primary rRNA-binding ribosomal	-2.96	-2.38
		protein component of the large (60S)		
		ribosomal subunit, has similarity to		
		E. coli L23 and rat L23a ribosomal		
		proteins; binds to 26S rRNA via a		
		conserved C-terminal motif Rpl25p;		
		protein coding		
YOL120C	RPL18A	Protein component of the large (60S)	-3.67	-2.11
		ribosomal subunit, identical to		
		Rpl18Bp and has similarity to rat L18		
		ribosomal protein; intron of RPL18A		
		pre-mRNA forms stem-loop		
		structures that are a target for Rnt1p		
		cleavage leading to		
		degradation Rpl18ap; protein coding		
YOL097C	WRS1	Cytoplasmic tryptophanyl-tRNA	-2.56	-2.19
		synthetase, aminoacylates		
		tryptophanyl-tRNA Wrs1p; protein		
		coding		
		• • • • • • • •		
YORF	Gene	Description	Fold	Fold
YORF	Gene	Description	Fold change	Fold change
YORF	Gene	Description	Fold change <i>myo1</i> ∆	Fold change chs2∆
YORF Metabolism	Gene	Description	Fold change <i>myo1</i> ∆	Fold change chs2∆
YORF Metabolism YOL056W	Gene GPM3	Description Gpm3p Homolog of Gpm1p	Fold change myo1∆ -1.48	Fold change chs2∆ -1.41
YORF Metabolism YOL056W	Gene GPM3	Description Gpm3p Homolog of Gpm1p phosphoglycerate mutase, which	Fold change myo1∆ -1.48	Fold change chs2∆ -1.41
YORF Metabolism YOL056W	Gene GPM3	Description Gpm3p Homolog of Gpm1p phosphoglycerate mutase, which converts 3-phosphoglycerate to 2-	Fold change myo1∆ -1.48	Fold change chs2∆ -1.41
YORF Metabolism YOL056W	Gene GPM3	Description Gpm3p Homolog of Gpm1p phosphoglycerate mutase, which converts 3-phosphoglycerate to 2- phosphoglycerate in glycolysis; may	Fold change myo1∆ -1.48	Fold change chs2∆ -1.41
YORF Metabolism YOL056W	Gene GPM3	Description Gpm3p Homolog of Gpm1p phosphoglycerate mutase, which converts 3-phosphoglycerate to 2- phosphoglycerate in glycolysis; may be non-functional derivative of a	Fold change myo1∆ -1.48	Fold change chs2∆ -1.41
YORF Metabolism YOL056W	Gene GPM3	Description Gpm3p Homolog of Gpm1p phosphoglycerate mutase, which converts 3-phosphoglycerate to 2- phosphoglycerate in glycolysis; may be non-functional derivative of a gene duplication event; protein	Fold change myo1∆ -1.48	Fold change chs2∆ -1.41
YORF Metabolism YOL056W	Gene GPM3	Description Gpm3p Homolog of Gpm1p phosphoglycerate mutase, which converts 3-phosphoglycerate to 2- phosphoglycerate in glycolysis; may be non-functional derivative of a gene duplication event; protein coding	Fold change myo1∆ -1.48	Fold change chs2∆ -1.41
YORF Metabolism YOL056W YGL257C	Gene GPM3 MNT2	Description Gpm3p Homolog of Gpm1p phosphoglycerate mutase, which converts 3-phosphoglycerate to 2- phosphoglycerate in glycolysis; may be non-functional derivative of a gene duplication event; protein coding Mannosyltransferase involved in	Fold change myo1∆ -1.48	Fold change chs2∆ -1.41 -1.80
YORF Metabolism YOL056W YGL257C	Gene GPM3 MNT2	Description Gpm3p Homolog of Gpm1p phosphoglycerate mutase, which converts 3-phosphoglycerate to 2- phosphoglycerate in glycolysis; may be non-functional derivative of a gene duplication event; protein coding Mannosyltransferase involved in adding the 4th and 5th mannose	Fold change myo1∆ -1.48 -2.35	Fold change chs2∆ -1.41 -1.80
YORF Metabolism YOL056W YGL257C	Gene GPM3 MNT2	Description Gpm3p Homolog of Gpm1p phosphoglycerate mutase, which converts 3-phosphoglycerate to 2- phosphoglycerate in glycolysis; may be non-functional derivative of a gene duplication event; protein coding Mannosyltransferase involved in adding the 4th and 5th mannose residues of O-linked glycans Mnt2p;	Fold change myo1∆ -1.48	Fold change <i>chs2∆</i> -1.41 -1.80
YORF Metabolism YOL056W YGL257C	Gene GPM3 MNT2	Description Gpm3p Homolog of Gpm1p phosphoglycerate mutase, which converts 3-phosphoglycerate to 2- phosphoglycerate in glycolysis; may be non-functional derivative of a gene duplication event; protein coding Mannosyltransferase involved in adding the 4th and 5th mannose residues of O-linked glycans Mnt2p; protein coding	Fold change myo1∆ -1.48	Fold change chs2∆ -1.41 -1.80
YORF Metabolism YOL056W YGL257C YKR066C	Gene GPM3 MNT2 CCP1	Description Gpm3p Homolog of Gpm1p phosphoglycerate mutase, which converts 3-phosphoglycerate to 2- phosphoglycerate in glycolysis; may be non-functional derivative of a gene duplication event; protein coding Mannosyltransferase involved in adding the 4th and 5th mannose residues of O-linked glycans Mnt2p; protein coding Ccp1p Mitochondrial cytochrome-c	Fold change <i>myo1</i> ∆ -1.48 -2.35 6.02	Fold change chs2∆ -1.41 -1.80 -1.67
YORF Metabolism YOL056W YGL257C YKR066C	Gene GPM3 MNT2 CCP1	Description         Description         Gpm3p Homolog of Gpm1p         phosphoglycerate mutase, which         converts 3-phosphoglycerate to 2-         phosphoglycerate in glycolysis; may         be non-functional derivative of a         gene duplication event; protein         coding         Mannosyltransferase involved in         adding the 4th and 5th mannose         residues of O-linked glycans Mnt2p;         protein coding         Ccp1p Mitochondrial cytochrome-c         peroxidase; degrades reactive oxygen	Fold change myo1∆ -1.48 -2.35 6.02	Fold change chs2∆ -1.41 -1.41 -1.80
YORF Metabolism YOL056W YGL257C YKR066C	Gene GPM3 MNT2 CCP1	Description         Gpm3p Homolog of Gpm1p         phosphoglycerate mutase, which         converts 3-phosphoglycerate to 2-         phosphoglycerate in glycolysis; may         be non-functional derivative of a         gene duplication event; protein         coding         Mannosyltransferase involved in         adding the 4th and 5th mannose         residues of O-linked glycans Mnt2p;         protein coding         Ccp1p Mitochondrial cytochrome-c         peroxidase; degrades reactive oxygen         species in mitochondria, involved in	Fold change <i>myo1</i> ∆ -1.48 -2.35 6.02	Fold change chs2∆ -1.41 -1.80 -1.67
YORF Metabolism YOL056W YGL257C YKR066C	Gene GPM3 MNT2 CCP1	Description         Gpm3p Homolog of Gpm1p         phosphoglycerate mutase, which         converts 3-phosphoglycerate to 2-         phosphoglycerate in glycolysis; may         be non-functional derivative of a         gene duplication event; protein         coding         Mannosyltransferase involved in         adding the 4th and 5th mannose         residues of O-linked glycans Mnt2p;         protein coding         Ccp1p Mitochondrial cytochrome-c         peroxidase; degrades reactive oxygen         species in mitochondria, involved in         the response to oxidative stress;	Fold change <i>myo1</i> ∆ -1.48 -2.35 6.02	Fold change chs2∆ -1.41 -1.80 -1.67
YORF Metabolism YOL056W YGL257C YKR066C	Gene GPM3 MNT2 CCP1	Description         Description         Gpm3p Homolog of Gpm1p         phosphoglycerate mutase, which         converts 3-phosphoglycerate to 2-         phosphoglycerate in glycolysis; may         be non-functional derivative of a         gene duplication event; protein         coding         Mannosyltransferase involved in         adding the 4th and 5th mannose         residues of O-linked glycans Mnt2p;         protein coding         Ccp1p Mitochondrial cytochrome-c         peroxidase; degrades reactive oxygen         species in mitochondria, involved in         the response to oxidative stress;         protein coding	Fold change <i>myo1</i> ∆ -1.48 -2.35 6.02	Fold change chs2∆ -1.41 -1.41 -1.80 -1.67
YORF Metabolism YOL056W YGL257C YKR066C YML126C	Gene GPM3 MNT2 CCP1 ERG13	Description         Gpm3p Homolog of Gpm1p         phosphoglycerate mutase, which         converts 3-phosphoglycerate to 2-         phosphoglycerate in glycolysis; may         be non-functional derivative of a         gene duplication event; protein         coding         Mannosyltransferase involved in         adding the 4th and 5th mannose         residues of O-linked glycans Mnt2p;         protein coding         Ccp1p Mitochondrial cytochrome-c         peroxidase; degrades reactive oxygen         species in mitochondria, involved in         the response to oxidative stress;         protein coding         3-hydroxy-3-methylglutaryl-CoA	Fold change myo1∆ -1.48 -2.35 6.02 -2.15	Fold change chs2∆ -1.41 -1.41 -1.80 -1.67 -1.67

		formation of HMG-CoA from acetyl-		
		CoA and acetoacetyl-CoA: involved		
		in the second step in mevalonate		
		biosynthesis Frg13p: protein coding		
VML 120C	NDU	NADH:ubiquinone ovidoreductase	2.15	2 / 5
I WIL120C	NDII	transferra electrons from NADH to	2.15	2.45
		ualisters electrons from NADH to		
		ubiquinone in the respiratory chain		
		but does not pump protons, in		
		contrast to the higher eukaryotic		
		multisubunit respiratory complex I;		
		phosphorylated; homolog of human		
		AMID Ndi1p; protein coding		
YML106W	URA5	One of two orotate	-3.45	-2.48
		phosphoribosyltransferase isozymes		
		(see also URA10) that catalyze the		
		fifth enzymatic step in de novo		
		biosynthesis of pyrimidines,		
		converting orotate into orotidine-5'-		
		phosphate Ura5p; protein coding		
YDR380W	ARO10	Aro10p Phenylpyruvate	-3.58	3.54
		decarboxylase, catalyzes		
		decarboxylation of phenylpyruvate to		
		phenylacetaldehyde, which is the first		
		specific step in the Ehrlich pathway;		
		protein coding		
YKL211C	TRP3	Bifunctional enzyme exhibiting both	-1.70	2.12
		indole-3-glycerol-phosphate synthase		
		and anthranilate synthase activities.		
		forms multifunctional hetero-		
		oligomeric anthranilate		
		synthase; indole-3-glycerol phosphate		
		synthase enzyme complex with		
		Trp2p Trp3p: protein coding		
VNR019W	ARF2	Acvl-CoA:sterol acvltransferase	1 4 1	2 23
11(1(01))()	111122	isozyme of Areln: endoplasmic	1.71	2.25
		reticulum enzyme that contributes the		
		major sterol esterification activity in		
		the presence of oxygen Are2p:		
		protein coding		
VCI 149W	AP02	Aro2p Bifunctional chorismate	257	2 00
10L140W	AK02	Arozpibliunctional chorisinate	-2.57	-2.09
		synthase and navin reductase,		
		catalyzes the conversion of 5-		
		(EDSD) to form ob ariameter which it		
		(EFSP) to form chorismate, which is		
		a precursor to aromatic amino acids;		
		protein coding		

YIL045W	PIG2	Pig2p Putative type-1 protein	6.76	9.00
		phosphatase targeting subunit that		
		tethers Glc7p type-1 protein		
		phosphatase to Gsy2p glycogen		
		synthase; protein coding		
YDR321W	ASP1	Asp1p Cytosolic L-asparaginase,	-2.06	-2.95
		involved in asparagine catabolism:		
		protein coding		
YKL150W	MCR1	Mcr1p/Mitochondrial NADH-	6.11	2.29
	_	cytochrome b5 reductase, involved in	•	
		ergosterol biosynthesis: protein		
		coding		
YML008C	ERG6	Delta(24)-sterol C-methyltransferase.	-2.20	-1.29
		converts zymosterol to fecosterol in		
		the ergosterol biosynthetic pathway		
		by methylating position C-24:		
		localized to both lipid particles and		
		mitochondrial outer		
		membrane/Erg6p: protein coding		
YHR193C	EGD2	Alpha subunit of the heteromeric	-1 87	-1.80
Thirtybe	2002	nascent polypeptide-associated	1.07	1.00
		complex (NAC) involved in protein		
		sorting and translocation associated		
		with cytoplasmic ribosomes/Egd2n:		
		protein coding		
VBR252W		Dut1ndUTPase_catalyzes hydrolysis	-2.30	_1 78
1 DR252 W	Don	of dUTP to dUMP and PPi, thereby	2.55	1.70
		preventing incorporation of uracil		
		into DNA during replication: critical		
		for the maintenance of genetic		
		stability: protein coding		
VBR249C	ARO4	3-deoxy-D-arabino-hentulosonate-7-	-2.67	-3 50
I DR2+)C	/IIII	phosphate (DAHP) synthase	2.07	5.55
		catalyzes the first step in aromatic		
		amino acid biosynthesis and is		
		feedback_inhibited by tyrosine or		
		high concentrations of phenylalanine		
		or tryptophan Aro/n: protein coding		
VBR248C		His7n/Imidazole glycerol phosphate	_2 02	_1 /15
1002400	11157	synthase (glutamine	2.02	1.45
		amidotransferase: cyclase) catalyzes		
		the fifth and eivth steps of histiding		
		biosynthesis and also produces 5		
		aminoimidazole_A_corboyamide		
		ribotide (AICAR) a purine prequesor		
		protein coding		
1			1	

YGL022W	STT3	Stt3p Subunit of the	-1.75	-1.24
		oligosaccharyltransferase complex of		
		the ER lumen, which catalyzes		
		asparagine-linked glycosylation of		
		newly synthesized proteins: forms a		
		subcomplex with Ost3p and Ost4p		
		and is directly involved in catalysis.		
		protein coding		
VDR231C	COX20	Cox20n/Mitochondrial inner	2 1 5	2 1 8
1002510	CONZO	membrane protein required for	2.15	2.10
		proteolytic processing of Cov2p and		
		its assambly into outochrome a		
		its assembly into cytochrome c		
VOL 010W		Oxidase; protein coding	2 5 4	2.46
YGL012W	ERG4	C-24(28) steroi reductase, catalyzes	-2.54	-2.16
		the final step in ergosterol		
		biosynthesis; mutants are viable, but		
		lack ergosterol Erg4p; protein coding		
YOR377W	ATF1	Alcohol acetyltransferase with	2.20	2.32
		potential roles in lipid and sterol		
		metabolism; responsible for the major		
		part of volatile acetate ester		
		production during		
		fermentation Atf1p; protein coding		
YHR128W	FUR1	Fur1p Uracil	-2.72	-2.75
		phosphoribosyltransferase,		
		synthesizes UMP from uracil;		
		involved in the pyrimidine salvage		
		pathway; protein coding		
YHR123W	EPT1	Ept1p/sn-1.2-diacylglycerol	-1.90	-1.25
		ethanolamine- and		
		cholinephosphotranferase: not		
		essential for viability: protein coding		
YBR183W	YPC1	Alkaline ceramidase that also has	2 89	1 48
1 DICIOS ()	11.01	reverse (CoA-independent) ceramide	2.05	1.10
		synthase activity catalyzes both		
		breakdown and synthesis of		
		phytoceramide: overexpression		
		confers fumonisin P1		
		registence/Vno1n; protoin coding		
VNI 1520	CIM2	Circ2alSchergit of the	2.00	4.20
INLISSC	GIM3	Gimsp Subunit of the	-2.06	-1.30
		neteronexameric cochaperone		
		pretoldin complex which binds		
		specifically to cytosolic chaperonin		
		and transfers target proteins to it;		
		protein coding		

YBR117C	TKL2	Tkl2p Transketolase, similar to	14.35	1.27
		Tkl1p; catalyzes conversion of		
		xylulose-5-phosphate and ribose-5-		
		phosphate to sedoheptulose-7-		
		phosphate and glyceraldehyde-3-		
		phosphate in the pentose phosphate		
		pathway: needed for synthesis of		
		aromatic amino acids: protein coding		
YJR143C	PMT4	Pmt4p Protein O-	-2.83	-2.43
10111100		mannosyltransferase, transfers		
		mannose residues from dolichyl		
		phosphate-D-mannose to protein		
		serine/threonine residues: appears to		
		form homodimers in vivo and does		
		not complex with other Pmt proteins:		
		target for new antifungals: protein		
		coding		
YIR121W	ATP2	Atp2plBeta subunit of the F1 sector	2 76	2 88
101(121 //		of mitochondrial F1F0 ATP synthase	2.70	2.00
		which is a large evolutionarily		
		conserved enzyme complex required		
		for ATP synthesis: phosphorylated		
		protein coding		
YOR236W	DFR1	Dfr1pDibydrofolate reductase part	_2 77	_1 /17
10K250W	DIKI	of the dTTP biosynthetic pathway	-2.77	-1.47
		involved in folate metabolism		
		possibly required for mitochondrial		
		function: protein coding		
VI R251W	SYM1	Protein required for ethanol	3 30	1 01
1 LR251 W	51111	metabolism: induced by heat shock	5.50	1.51
		and localized to the inner		
		mitochondrial membrane:		
		homologous to mammalian		
		perovisorial membrane protein		
		Mpv17 Svm1p: protein coding		
VI R221C	RSA 3	Protein with a likely role in ribosomal	_1 00	_1 17
ILK22IC	NSA5	maturation required for accumulation	-1.90	-1.17
		of wild-type levels of large (60S)		
		ribosomal subunits: binds to the		
		helicase Dhn6n in pre-60S ribosomal		
		nercase Dopop in pre-005 ribosomar		
		protein coding		
VGR285C	71/01	Cytosolic ribosome associated	1 70	1 60
101/2030	2001	chaperone that acts together with	-1.79	1.09
		Signature that acts, together with		
		sszip and the ssuproteins, as a		
		chaperone for hascent polypeptide		

		chains: contains a DnaJ domain and		
		functions as a J-protein partner for		
		Ssb1p and Ssb2p Zuo1p; protein		
		coding		
YGR256W	GND2	6-phosphogluconate dehydrogenase	9.92	3.06
		(decarboxylating), catalyzes an		
		NADPH regenerating reaction in the		
		pentose phosphate pathway: required		
		for growth on D-glucono-delta-		
		lactone Gnd2p; protein coding		
YGR248W	SOL4	6-phosphogluconolactonase with	15.32	2.97
	~	similarity to Sol3p Sol4p; protein		
		coding		
YMR300C	ADE4	Ade4p Phosphoribosvlpvrophosphate	-1.78	2.17
		amidotransferase (PRPPAT:		
		amidophosphoribosyltransferase).		
		catalyzes first step of the 'de novo'		
		purine nucleotide biosynthetic		
		pathway: protein coding		
YMR274C	RCE1	Rce1plType II CAAX prenyl protease	-1 81	-1 26
111112710	nebi	involved in the proteolysis and	1.01	1.20
		maturation of Ras and the a-factor		
		mating pheromone: protein coding		
YDL205C	HEM3	Hem3p Phorphobilinogen deaminase	1 96	3 15
IDL203C	11Linis	catalyzes the conversion of 4-	1.50	5.15
		porphobilingen to		
		hydroxymethylbilane the third step		
		in the heme biosynthetic nathway:		
		localizes to both the cytoplasm and		
		nucleus: expression is regulated by		
		Han2n-Han3n: protein coding		
VER055C	HIST	ATP phosphoribosyltransferase a	-2.32	-2.05
TEROJJC	11151	hexameric enzyme catalyzes the first	-2.52	-2.05
		sten in histidine biosynthesis:		
		mutations cause histidine auxotrophy		
		and sensitivity to Cu. Co. and Ni		
		solts: transcription is regulated by		
		general amino acid controllHis1p:		
		protein coding		
VER0/3C	SAH1	S-adenosyl-L-homocysteine	2 7 9	1 26
ILK04JC	5/111	hydrolase catabolizes S-adenosyl-L-	-2.70	-1.20
		homocysteine which is formed after		
		donation of the activated methyl		
		group of S-adenosyl-I -methionine		
		(AdoMet) to an accentor Sahln:		
		protein coding		
	1		1	

YJL155C	FBP26	Fbp26p Fructose-2,6-bisphosphatase,	2.09	1.93
		protein coding		
YMR250W	GAD1	Gad1p/Glutamate decarboxylase.	7.09	10.78
	_	converts glutamate into gamma-		
		aminobutyric acid (GABA) during		
		glutamate catabolism; involved in		
		response to oxidative stress; protein		
		coding		
YPR145W	ASN1	Asn1p Asparagine synthetase,	-4.10	-1.73
		isozyme of Asn2p; catalyzes the		
		synthesis of L-asparagine from L-		
		aspartate in the asparagine		
		biosynthetic pathway; protein coding		
YBL015W	ACH1	Acetyl-coA hydrolase, primarily	1.93	6.16
		localized to mitochondria;		
		phosphorylated; required for acetate		
		utilization and for diploid		
		pseudohyphal growth Ach1p; protein		
		coding		
YER023W	PRO3	Delta 1-pyrroline-5-carboxylate	-2.07	1.36
		reductase, catalyzes the last step in		
		proline biosynthesis Pro3p; protein		
		coding		
YLR100W	ERG27	3-keto sterol reductase, catalyzes the	-2.59	-1.34
		last of three steps required to remove		
		two C-4 methyl groups from an		
		intermediate in ergosterol		
		biosynthesis; mutants are sterol		
		auxotrophs Erg27p; protein coding		
YDL141W	BPL1	Biotin:apoprotein ligase, covalently	-2.08	-1.32
		modifies proteins with the addition of		
		biotin, required for acetyl-CoA		
		carboxylase (Acc1p) holoenzyme		
		formation Bpl1p; protein coding		
YAL060W	BDH1	Bdh1p NAD-dependent (2R,3R)-2,3-	5.86	2.67
		butanediol dehydrogenase, a zinc-		
		containing medium-chain alcohol		
		denydrogenase, produces 2,3-		
		butanediol from acetoin during		
		hyteradial as a soften source during		
		outaneutoi as a carbon source during		
VDI 102C	OP11	OrithUDD N control alugocomine	2 4 5	1 50
IDLIUSC	QKII	QIIIP UDF-IN-acetyIgIucosamine	-2.45	-1.50
		formation of LDD N		
1		TOTHIAUOH OF UDF-IN-		

		acetylglucosamine (UDP-GlcNAc), which is important in cell wall		
		biosynthesis protein N-glycosylation		
		and GPI anchor biosynthesis: protein		
		coding		
YMR165C	SMP2	$Mg^2$ +-dependent phosphatidate (PA)	2 188	1 86
111111050	5111 2	phosphatase catalyzes the	2.100	1.00
		dephosphorylation of PA to yield		
		diacylglycerol and Pi, responsible for		
		de novo lipid synthesis: homologous		
		to mammalian lipin 1/Pah1p: protein		
		coding		
YLR017W	MEU1	Methylthioadenosine phosphorylase	-1.64	-1.64
		(MTAP), catalyzes the initial step in		
		the methionine salvage pathway:		
		affects polyamine biosynthesis		
		through regulation of ornithine		
		decarboxylase (Spe1p) activity;		
		regulates ADH2 gene		
		expression Meu1p; protein coding		
YGR078C	PAC10	Pac10p Part of the heteromeric co-	-2.01	1.25
		chaperone GimC/prefoldin complex,		
		which promotes efficient protein		
		folding; protein coding		
YDR518W	EUG1	Eug1p Protein disulfide isomerase of	-1.82	-1.53
		the endoplasmic reticulum lumen,		
		function overlaps with that of Pdi1p;		
		may interact with nascent		
		polypeptides in the ER; protein		
		coding		
YORF	Gene	Description	Fold	Fold
			change	change
			myo1 $\Delta$	$chs2\Delta$
Stress response				
YCR104W	PAU3	Part of 23-member seripauperin	1.75	2.25
		multigene family encoded mainly in		
		subtelomeric regions, active during		
		alcoholic fermentation, regulated by		
		anaerobiosis, negatively regulated by		
		oxygen, repressed by heme Pau3p;		
VCD000C	CTTC	Protein coding	7.00	
I GRUU8C	SIF2	Protein involved in regulation of the	7.29	3.24
		Initochondrial F1FU-A1P synthase;		
		Suip and Su2p act as stabilizing		
		actors that enhance inhibitory action		
		of the minip protein Sti2p; protein	<u> </u>	

		coding		
YOL052C-A	DDR2	Ddr2p Multistress response protein,	3.30	2.12
		expression is activated by a variety of		
		xenobiotic agents and environmental		
		or physiological stresses; protein		
		coding		
YPL223C	GRE1	Gre1p Hydrophilin of unknown	9.48	1.68
		function; stress induced (osmotic,		
		ionic, oxidative, heat shock and		
		heavy metals); regulated by the HOG		
		pathway; protein coding		
YKR072C	SIS2	Negative regulatory subunit of the	1.89	-1.15
		protein phosphatase 1 Ppz1p;		
		involved in ion homeostasis and cell		
		cycle progression Sis2p; protein		
		coding		
YIL101C	XBP1	Transcriptional repressor that binds to	2.29	1.95
		promoter sequences of the cyclin		
		genes, CYS3, and SMF2; expression		
		is induced by stress or starvation		
		during mitosis, and late in meiosis;		
		member of the Swi4p/Mbp1p family;		
		potential Cdc28p substrate Xbp1p;		
		protein coding		
YIL053W	RHR2	Constitutively expressed isoform of	-2.58	-1.59
		DL-glycerol-3-phosphatase; involved		
		in glycerol biosynthesis, induced in		
		response to both anaerobic and, along		
		with the Hor2p/Gpp2p isoform,		
		osmotic stress Rhr2p; protein coding		
YKL201C	MNN4	Mnn4p Putative positive regulator of	2.53	3.12
		mannosylphosphate transferase		
		(Mnn6p), involved in		
		mannosylphosphorylation of N-		
		linked oligosaccharides; expression		
		increases in late-logarithmic and		
		stationary growth phases; protein		
		coding		
YML070W	DAK1	Dak1p Dihydroxyacetone kinase,	5.87	1.37
		required for detoxification of		
		dihydroxyacetone (DHA); involved		
		in stress adaptation; protein coding		
YDR214W	AHA1	Aha1p Co-chaperone that binds to	3.85	1.39
		Hsp82p and activates its ATPase		
		activity; similar to Hch1p: expression		
		is regulated by stresses such as heat		

		shock; protein coding		
YBR169C	SSE2	Member of the heat shock protein 70	7.11	1.89
		(HSP70) family; may be involved in		
		protein folding; localized to the		
		cytoplasm; highly homologous to the		
		heat shock protein Sse1p Sse2p;		
		protein coding		
YHR104W	GRE3	Aldose reductase involved in	4.11	2.06
		methylglyoxal, d-xylose and		
		arabinose metabolism; stress induced		
		(osmotic, ionic, oxidative, heat shock,		
		starvation and heavy metals);		
		regulated by the HOG		
		pathway Gre3p; protein coding		
YNL160W	YGP1	Cell wall-related secretory	7.55	2.15
		glycoprotein; induced by nutrient		
		deprivation-associated growth arrest		
		and upon entry into stationary phase;		
		may be involved in adaptation prior		
		to stationary phase entry; has		
		similarity to Sps100p Ygp1p; protein		
		coding		
YFL020C	PAU5	Part of 23-member seripauperin	1.82	2.62
		multigene family encoded mainly in		
		subtelomeric regions, active during		
		alcoholic fermentation, regulated by		
		anaerobiosis, negatively regulated by		
		oxygen, repressed by heme Pau5p;		
		protein coding		
YFL014W	HSP12	Hsp12p Plasma membrane localized	36.77	17.86
		protein that protects membranes from		
		desiccation; induced by heat shock,		
		oxidative stress, osmostress,		
		stationary phase entry, glucose		
		depletion, oleate and alcohol;		
		regulated by the HOG and Ras-Pka		
		pathways; protein coding		
YFL010C	WWM1	WW domain containing protein of	-1.71	1.16
		unknown function; binds to Mca1p, a		
		caspase-related protease that		
		regulates H2O2-induced apoptosis;		
		overexpression causes Gi phase		
		growth arrest and clonal death that is		
		suppressed by overexpression of		
		MCA1 Wwm1p; protein coding		

YBR072W       HSP26       Hsp26p Small heat shock protein (sHSP) with chaperone activity; forms hollow, sphere-shaped oligomers that suppress unfolded proteins aggregation; oligomer activation requires a heat-induced conformational change; not expressed in unstressed cells; protein coding       9.17         YMR251W-A       HOR7       Hor7p Protein of unknown function; overexpression suppresses Ca2+ sensitivity of mutants lacking inositol phosphorylceramide mannosyltransferases Csg1p and Csh1p; transcription is induced under hyperosmotic stress and repressed by alpha factor; protein coding       9.17       14.53         YAR020C       PAU7       Patr of 23-member seripauperin multigene family, active during alcoholic fermentation, regulated by anaerobiosis, inhibited by oxygen, repressed by heme Pau7p; protein coding       1.79       2.55         YMR169C       ALD3       Ald3p Cytoplasmic aldehyde dehydrogenase, involved in beta- alanine synthesis; uses NAD+ as the preferred coenzyme; very similar to Ald2p; expression is induced by stress and repressed by glucose; protein coding       41.51       2.68         YORF       Gene       Description       Fold change myol∆       Fold change myol∆         YPL234C       TFP3       Tfp3p Vacuolar ATPase V0 domain subunit c', involved in proton transport activity; hydrophobic integral membrane protein (proteolipid) containing four transmembrane segments; N and C termini are in the vacuolar lumen; protein coding       -1.41       1.70         YPL134C       ODC1       Mitochondrial inner membrane       1.96       1.52					
YMR251W-A(sHSP) with chaperone activity; forms hollow, sphere-shaped oligomers that suppress activation requires a heat-induced conformational change; not expressed in unstressed cells; protein coding9.1714.53YMR251W-AHOR7Hor7plProtein of unknown function; overexpression suppresses Ca2+ sensitivity of mutants lacking inositol phosphorylceramide mannosyltransferases Csg1p and Csh1p; transcription is induced under hyperosmotic stress and repressed by alpha factor; protein coding9.1714.53YAR020CPAU7Part of 23-member seripauperin multigene family, active during alcoholic fermentation, regulated by anaerobiosis, inhibited by oxygen, repressed by heme Pau7p; protein coding1.792.55YMR169CALD3Ald5plCytoplasmic aldehyde dehydrogenase, involved in beta- alanine synthesis; uses NAD+ as the prefered coenzyme; very similar to Ald2p; expression is induced by stress and repressed by glucose; protein coding26.811.63YGR088WCTT1Ctt1plCytosolic catalase T, has a role in protection from oxidative damage by hydrogen peroxide; protein coding50dFold change chs2AYPL234CTFP3Tfp3plVacuolar ATPase V0 domain subunit c', involved in proton transport activity; hydrophobic integral membrane protein (proteolipid) containing four transmembrane segments; N and C termini are in the vacuolar lumen; protein coding-1.411.70YPL134CODC1Mitochondrial inmer membrane transporte_exports_2-oxoadinate and1.961.52	YBR072W	HSP26	Hsp26p Small heat shock protein	23.32	19.36
forms hollow, sphere-shaped oligomers that suppress unfolded proteins aggregation; oligomer activation requires a heat-induced 			(sHSP) with chaperone activity;		
oligomers that suppress unfolded proteins aggregation; oligomer activation requires a heat-induced conformational change; not expressed in unstressed cells; protein coding9.17YMR251W-AHOR7Hor7plProtein of unknown function; overexpression suppresses Ca2+ sensitivity of mutants lacking inositol phosphorylceramide mannosyltransferases Csg1p and Csh1p; transcription is induced under hyperosmotic stress and repressed by alpha factor; protein coding9.1714.53YAR020CPAU7Part of 23-member seripauperin multigene family, active during alcoholic fermentation, regulated by anaerobiosis, inhibited by oxygen, repressed by hemelPau7p; protein coding1.792.55YMR169CALD3Ald3plCytoplasmic aldehyde dehydrogenase, involved in beta- alanine synthesis; uses NAD+ as the preferred coenzyme; very similar to Ald2p; expression is induced by stress and repressed by glucose; protein codingFold change chs2Fold change chs2YORFGeneDescription-1.411.70YPL234CTFP3Tfp3plVacuolar ATPase V0 domain subunit c', involved in proton transport (proteolin) containing four transmembrane segments; N and C termini are in the vacuolar lumen; protein coding-1.411.70YPL134CODC1Mitochondrial inner membrane transports - exports 2-oxoadinate and transporte, exports 2-oxoadinate and transporte, exports 2-oxoadinate and transporte1.961.52			forms hollow, sphere-shaped		
Proteins aggregation; oligomer activation requires a heat-induced conformational change; not expressed in unstressed cells; protein coding9.17YMR251W-AHOR7Hor7plProtein of unknown function; overexpression suppresses Ca2+ sensitivity of mutants lacking inositol phosphorylceramide mannosyltransferases Csg1p and Csh1p, transcription is induced under hyperosmotic stress and repressed by alpha factor; protein coding9.1714.53YAR020CPAU7Part of 23-member seripauperin multigene family, active during alcoholic fermentation, regulated by anaerobiosis, inhibited by oxygen, repressed by heme Pau7p; protein coding1.792.55YMR169CALD3Ald3plCytoplasmic aldehyde dehydrogenase, involved in beta- alanine synthesis; uses NAD+ as the preferred coenzyme; very similar to Ald2p; expression is induced by stress and repressed by glucose; protein coding41.512.68YGR088WCTT1Ctt1plCytosolic catalase T, has a role in protection from oxidative damage by hydrogen peroxide; protein codingFold change chs2AYORFGeneDescription-1.411.70YPL234CTFP3Tfp3plVacuolar ATPase V0 domain subunit c', involved in proton transport transporter, exports 2-oxoadinate and to in proton transporter, exports 2-oxoadinate and termini are in the vacuolar lumen; protein coding-1.411.70YPL134CODC1Mitochondrial inner membrane transporter, exports 2-oxoadinate and transporter, exports 2-oxoadinate and termini are in the vacuolar lumen; protein coding1.961.52			oligomers that suppress unfolded		
Activation requires a heat-induced conformational change; not expressed in unstressed cells; protein coding9.17YMR251W-AHOR7Hor7plProtein of unknown function; overexpression suppresses Ca2+ sensitivity of mutants lacking inositol phosphorylceramide mannosyltransferases Csg1p and Csh1p; transcription is induced under hyperosmotic stress and repressed by alpha factor; protein coding9.1714.53YAR020CPAU7Part of 23-member seripauperin multigene family, active during alcoholic fermentation, regulated by anaerobiosis, inhibited by oxygen, repressed by heme Pau7p; protein coding1.792.55YMR169CALD3Ald3p[Cytoplasmic aldehyde dehydrogenase, involved in beta- alanine synthesis; uses NAD+ as the preferred coenzyme; very similar to Ald2p; expression is induced by stress and repressed by glucose; protein coding26.811.63YGR088WCTT1Ctt1p[Cytosolic catalase T, has a role in protection from oxidative damage by hydrogen peroxide; protein coding60dFold change change myolAYORFGeneDescriptionFold ctmage change myolAFold change change myolAFold change change myolAYPL234CTFP3Tfp3p[Vacuolar ATPase V0 domain transport activity; hydrophobic integral membrane protein (proteolipid) containing four transporter, exports 2-oxoadinate and termin are in the vacuolar lumen; protein coding1.52YPL134CODC1Mitochondrial inner membrane transporte, exports 2-oxoadinate and terminare in the vacuolar lumen; protein coding four transporte, exports 2-oxoadinate and protein coding1.52			proteins aggregation; oligomer		
YMR251W-AHOR7Conformational change; not expressed in unstressed cells; protein coding9.1714.53YMR251W-AHOR7Hor7p Protein of unknown function; overexpression suppresses Ca2+ sensitivity of mutants lacking inositol phosphorylceramide mannosyltransferases Csg1p and Csh1p; transcription is induced under hyperosmotic stress and repressed by alpha factor; protein coding9.1714.53YAR020CPAU7Part of 23-member seripauperin multigene family, active during alcoholic fermentation, regulated by anaerobiosis, inhibited by oxygen, repressed by hemelPau7p; protein coding1.792.55YMR169CALD3Ald3p Cytoplasmic aldehyde dehydrogenase, involved in beta- alanine synthesis; uses NAD+ as the preferred coenzyme; very similar to Ald2p; expression is induced by stress and repressed by glucose; protein coding41.512.68YGR088WCTT1Cttlp[Cytoplosic catalase T, has a role in protection from oxidative damage by hydrogen peroxide; protein coding26.811.63YORFGeneDescriptionFold change myoJAFold change chs2A2FoldYPL234CTFP3Tfp3p Vacuolar ATPase V0 domain subunt c', involved in proton transport activity; hydrophobic integral membrane protein (proteolipid) containing four transmembrane segments; N and C termini are in the vacuolar lumen; protein coding-1.411.70YPL134CODC1Mitochondrial inner membrane transport1.961.52			activation requires a heat-induced		
in unstressed cells; protein codingYMR251W-AHOR7Hor7p[Protein of unknown function; overexpression suppresses Ca2+ sensitivity of mutants lacking inositol phosphorylceramide mannosyltransferases Csg1p and Csh1p; transcription is induced under hyperosmotic stress and repressed by alpha factor; protein coding9.1714.53YAR020CPAU7Part of 23-member seripauperin multigene family, active during alcoholic fermentation, regulated by anaerobiosis, inhibited by oxygen, repressed by heme]Pau7p; protein coding1.792.55YMR169CALD3Ald3p[Cytoplasmic aldehyde dehydrogenase, involved in beta- alanine synthesis; uses NAD+ as the preferred coenzyme; very similar to Ald2p; expression is induced by stress and repressed by glucose; protein coding26.811.63YGR088WCTT1Ctt1p]Cytosolic catalase T, has a role in protection from oxidative damage by hydrogen peroxide; protein coding50d50dYORFGeneDescriptionFold change myo1A52.24532.44YPL234CTFP3Tfp3p Vacuolar ATPase V0 domain subunit c', involved in proton transmort activity; hydrophobic integral membrane protein (proteolipid) containing four transmort ransmort activity; hydrophobic integral membrane segments; N and C termini are in the vacuolar lumen; protein coding1.961.52YPL134CODC1Mitochondrial inner membrane transport1.961.52			conformational change; not expressed		
YMR251W-A       HOR7       Hor7p Protein of unknown function; overexpression suppresses Ca2+ sensitivity of mutants lacking inositol phosphorylceramide mannosyltransferases Csg1p and Csh1p; transcription is induced under hyperosmotic stress and repressed by alpha factor; protein coding       9.17       14.53         YAR020C       PAU7       Part of 23-member seripauperin multigene family, active during alcoholic fermentation, regulated by anaerobiosis, inhibited by oxygen, repressed by hemelPau7p; protein coding       1.79       2.55         YMR169C       ALD3       Ald3p[Cytoplasmic aldehyde dehydrogenase, involved in beta- alanine synthesis; uses NAD+ as the preferred coenzyme; very similar to Ald2p; expression is induced by stress and repressed by glucose; protein coding       41.51       2.68         YGR088W       CTT1       Ctt1p[Cytosolic catalase T, has a role in protection from oxidative damage by hydrogen peroxide; protein coding       Fold change myo1∆       Fold change myo1∆         YPL234C       TFP3       Tfp3p[Vacuolar ATPase V0 domain subunit c', involved in proton transport activity; hydrophobic integral membrane protein (proteolipid) containing four transmembrane segments; N and C termini are in the vacuolar lumen; protein coding       -1.41       1.70         YPL134C       ODC1       Mitochondrial inner membrane transport exports 2-oxoadipate and       1.96       1.52			in unstressed cells; protein coding		
YAR020CPAU7Part of 23-member seripauperin multigene family, active during alcoholic fermentation, regulated by anaerobiosis, inhibited by oxygen, repressed by hemelPau7p; protein coding1.792.55YMR169CALD3Ald3p Cytoplasmic aldehyde dehydrogenase, involved in beta- alanine synthesis; uses NAD+ as the preferred coenzyme; very similar to Ald2p; expression is induced by stress and repressed by glucose; protein coding41.512.68YGR088WCTT1Ctt1p Cytosolic catalase T, has a role in protection from oxidative damage by hydrogen peroxide; protein coding26.811.63YORFGeneDescriptionFold change myo1AFold change myo1AFold change myo1AFold change myo1AYPL234CTFP3Tfp3p Vacuolar ATPase V0 domain subunit c', involved in proton transport are in the vacuolar lumen; protein coding-1.411.70YPL134CODC1Mitochondrial inner membrane transport, exports 2-oxoadibate and1.961.52	YMR251W-A	HOR7	Hor7p Protein of unknown function;	9.17	14.53
Sensitivity of mutants lacking inositol phosphorylceramide mannosyltransferases Csg lp and Csh1p; transcription is induced under hyperosmotic stress and repressed by alpha factor; protein coding1.792.55YAR020CPAU7Part of 23-member seripauperin multigene family, active during alcoholic fermentation, regulated by anaerobiosis, inhibited by oxygen, repressed by heme Pau7p; protein coding1.792.55YMR169CALD3Ald3p Cytoplasmic aldehyde dehydrogenase, involved in beta- alanine synthesis; uses NAD+ as the preferred coenzyme; very similar to Ald2p; expression is induced by stress and repressed by glucose; protein coding41.512.68YGR088WCTT1Ctt1p Cytosolic catalase T, has a role in protection from oxidative damage by hydrogen peroxide; protein coding26.811.63YORFGeneDescriptionFold change myo1AFold change 			overexpression suppresses Ca2+		
Phosphorylceramide mannosyltransferases Csg1p and Csh1p; transcription is induced under hyperosmotic stress and repressed by alpha factor; protein coding1.79YAR020CPAU7Part of 23-member seripauperin multigene family, active during alcoholic fermentation, regulated by anaerobiosis, inhibited by oxygen, repressed by heme]Pau7p; protein coding1.792.55YMR169CALD3Ald3p]Cytoplasmic aldehyde dehydrogenase, involved in beta- alanine synthesis; uses NAD+ as the preferred coenzyme; very similar to Ald2p; expression is induced by stress and repressed by glucose; protein coding41.512.68YGR088WCTT1Ctt1p]Cytosolic catalase T, has a role in protection from oxidative damage by hydrogen peroxide; protein coding26.811.63YORFGeneDescriptionFold change myo1AFold change myo1AFold change myo1AYPL234CTFP3Tfp3p Vacuolar ATPase V0 domain subunit c', involved in proton transport activity; hydrophobic integral membrane protein (proteolipid) containing four transmembrane segments; N and C termini are in the vacuolar lumen; protein coding-1.411.70YPL134CODC1Mitochondrial inner membrane transport, exports 2-oxoadibate and1.961.52			sensitivity of mutants lacking inositol		
YAR020CPAU7Part of 23-member seripauperin multigene family, active during alcoholic fermentation, regulated by anaerobiosis, inhibited by oxygen, repressed by heme]Pau7p; protein coding1.792.55YMR169CALD3Ald3p Cytoplasmic aldehyde dehydrogenase, involved in beta- alanine synthesis; uses NAD+ as the preferred coenzyme; very similar to Ald2p; expression is induced by stress and repressed by glucose; protein coding41.512.68YGR088WCTT1Ctt1p Cytosolic catalase T, has a role in protection from oxidative damage by hydrogen peroxide; protein coding26.811.63YORFGeneDescriptionFold change (change)Fold change (change)Fold change (change)YPL234CTFP3Tfp3p Vacuolar ATPase V0 domain subunit c', involved in proten (proteolipid) containing four transport activity; hydrophobic integral membrane protein (proteolipid) containing four transmembrane segments; N and C termini are in the vacuolar lumen; protein coding1.961.52YPL134CODC1Mitochondrial inner membrane transports 2-oxoadinate and1.961.52			phosphorylceramide		
YAR020CPAU7Part of 23-member seripauperin multigene family, active during alcoholic fermentation, regulated by anaerobiosis, inhibited by oxygen, repressed by heme Pau7p; protein coding1.792.55YMR169CALD3Ald3p Cytoplasmic aldehyde dehydrogenase, involved in beta- alanine synthesis; uses NAD+ as the preferred coenzyme; very similar to Ald2p; expression is induced by stress and repressed by glucose; protein coding41.512.68YGR088WCTT1Ctt1p[Cytosolic catalase T, has a role in protection from oxidative damage by hydrogen peroxide; protein coding26.811.63YORFGeneDescriptionFold change myo1AFold change chs2AFold change myo1AFold change chs2AYPL234CTFP3Tfp3p Vacuolar ATPase V0 domain subunit c', involved in proton transport activity; hydrophobic integral membrane protein (proteolipid) containing four transmembrane segments; N and C termini are in the vacuolar lumen; protein coding-1.411.70YPL134CODC1Mitochondrial inner membrane transports 2-oxoadinate and1.961.52			mannosyltransferases Csg1p and		
YAR020CPAU7Part of 23-member seripauperin multigene family, active during alcoholic fermentation, regulated by anaerobiosis, inhibited by oxygen, repressed by heme Pau7p; protein coding1.792.55YMR169CALD3Ald3p Cytoplasmic aldehyde dehydrogenase, involved in beta- alanine synthesis; uses NAD+ as the preferred coenzyme; very similar to Ald2p; expression is induced by stress and repressed by glucose; protein coding41.512.68YGR088WCTT1Ctt1p Cytosolic catalase T, has a role in protection from oxidative damage by hydrogen peroxide; protein coding26.811.63YORFGeneDescriptionFold change (change myo1/aFold change change (change myo1/aFold change change (change myo1/aFold change change (change myo1/aYPL234CTFP3Tfp3p Vacuolar ATPase V0 domain subunit c', involved in proton transport activity; hydrophobic integral membrane protein (proteolipid) containing four transmembrane segments; N and C termini are in the vacuolar lumen; protein coding1.961.52YPL134CODC1Mitochondrial inner membrane transporter, exports 2-oxoadinate and1.961.52			Csh1p; transcription is induced under		
alpha factor; protein coding1.79YAR020CPAU7Part of 23-member seripauperin multigene family, active during alcoholic fermentation, regulated by anaerobiosis, inhibited by oxygen, repressed by heme Pau7p; protein coding1.79YMR169CALD3Ald3p Cytoplasmic aldehyde dehydrogenase, involved in beta- alanine synthesis; uses NAD+ as the preferred coenzyme; very similar to Ald2p; expression is induced by stress and repressed by glucose; protein coding41.512.68YGR088WCTT1Ctt1p Cytosolic catalase T, has a role in protection from oxidative damage by hydrogen peroxide; protein coding26.811.63YORFGeneDescriptionFold change myo1AFold change chs2AFold change myo1AYPL234CTFP3Tfp3p Vacuolar ATPase V0 domain subunit c', involved in proton transport activity; hydrophobic integral membrane protein (proteolipid) containing four transmembrane segments; N and C termini are in the vacuolar lumen; protein coding1.961.52YPL134CODC1Mitochondrial inner membrane transporte, exports 2-oxoadipate and1.961.52			hyperosmotic stress and repressed by		
YAR020CPAU7Part of 23-member seripauperin multigene family, active during alcoholic fermentation, regulated by anaerobiosis, inhibited by oxygen, repressed by heme Pau7p; protein coding1.792.55YMR169CALD3Ald3p[Cytoplasmic aldehyde dehydrogenase, involved in beta- alanine synthesis; uses NAD+ as the preferred coenzyme; very similar to Ald2p; expression is induced by stress and repressed by glucose; protein coding41.512.68YGR088WCTT1Ctt1p[Cytosolic catalase T, has a role in protection from oxidative damage by hydrogen peroxide; protein codingFold change chs2\DeltaYORFGeneDescriptionFold change chs2AFold change chs2AYPL234CTFP3Tfp3p Vacuolar ATPase V0 domain subunit c', involved in proton transport activity; hydrophobic integral membrane protein (proteolipid) containing four transmembrane segments; N and C termini are in the vacuolar lumen; protein coding1.96YPL134CODC1Mitochondrial inner membrane transporte, exports 2-oxoadipate and1.96			alpha factor: protein coding		
MR169CALD3multigene family, active during alcoholic fermentation, regulated by anaerobiosis, inhibited by oxygen, repressed by heme Pau7p; protein coding41.512.68YMR169CALD3Ald3p Cytoplasmic aldehyde dehydrogenase, involved in beta- alanine synthesis; uses NAD+ as the preferred coenzyme; very similar to Ald2p; expression is induced by stress and repressed by glucose; protein coding41.512.68YGR088WCTT1Ctt1p Cytosolic catalase T, has a role in protection from oxidative damage by hydrogen peroxide; protein coding26.811.63YORFGeneDescriptionFold change myo1\DFold change ch2\DFold change myo1\DYPL234CTFP3Tfp3p Vacuolar ATPase V0 domain subunit c', involved in proton transport activity; hydrophobic integral membrane protein (proteolipid) containing four transmembrane segments; N and C termini are in the vacuolar lumen; protein coding1.961.52YPL134CODC1Mitochondrial inner membrane transporter, exports 2-oxoadipate and1.961.52	YAR020C	PAU7	Part of 23-member seripauperin	1.79	2.55
Alcoholic fermentation, regulated by anaerobiosis, inhibited by oxygen, repressed by heme Pau7p; protein coding41.512.68YMR169CALD3Ald3p Cytoplasmic aldehyde dehydrogenase, involved in beta- alanine synthesis; uses NAD+ as the preferred coenzyme; very similar to Ald2p; expression is induced by stress and repressed by glucose; protein coding41.512.68YGR088WCTT1Ctt1p Cytosolic catalase T, has a role in protection from oxidative damage by hydrogen peroxide; protein coding26.811.63YORFGeneDescriptionFold change myol \lambdaFold change chs2\lambdaYPL234CTFP3Tfp3p Vacuolar ATPase V0 domain subunit c', involved in proton transport activity; hydrophobic integral membrane protein (proteolipid) containing four transmembrane segments; N and C termin are in the vacuolar lumen; protein coding-1.411.70YPL134CODC1Mitochondrial inner membrane transporter, exports 2-oxoadipate and1.961.52			multigene family, active during		
YMR169CALD3Ald3p Cytoplasmic aldehyde dehydrogenase, involved in beta- alanine synthesis; uses NAD+ as the preferred coenzyme; very similar to Ald2p; expression is induced by stress and repressed by glucose; protein coding41.512.68YGR088WCTT1Ctt1p Cytosolic catalase T, has a role in protection from oxidative damage by hydrogen peroxide; protein coding26.811.63YORFGeneDescriptionFold change myo1\alphaFold change change changeFold change changeYPL234CTFP3Tfp3p Vacuolar ATPase V0 domain subunit c', involved in proton transport activity; hydrophobic integral membrane protein (proteolipid) containing four transmembrane segments; N and C termini are in the vacuolar lumen; protein coding-1.411.70YPL134CODC1Mitochondrial inner membrane transporter, exports 2-oxoadipate and1.961.52			alcoholic fermentation, regulated by		
YMR169CALD3Ald3p Cytoplasmic aldehyde dehydrogenase, involved in beta- alanine synthesis; uses NAD+ as the preferred coenzyme; very similar to Ald2p; expression is induced by stress and repressed by glucose; protein coding41.512.68YGR088WCTT1Ctt1p Cytosolic catalase T, has a role in protection from oxidative damage by hydrogen peroxide; protein coding26.811.63YORFGeneDescriptionFold change myo1∆Fold change chs2∆YPL234CTFP3Tfp3p Vacuolar ATPase V0 domain subunit c', involved in proton transport activity; hydrophobic integral membrane protein (proteolipid) containing four transmembrane segments; N and C termini are in the vacuolar lumen; protein coding1.961.52YPL134CODC1Mitochondrial inner membrane transporter, exports 2-oxoadipate and1.961.52			anaerobiosis, inhibited by oxygen.		
YMR169CALD3Ald3p Cytoplasmic aldehyde dehydrogenase, involved in beta- alanine synthesis; uses NAD+ as the preferred coenzyme; very similar to Ald2p; expression is induced by stress and repressed by glucose; protein coding41.512.68YGR088WCTT1Ctt1p Cytosolic catalase T, has a role in protection from oxidative damage by hydrogen peroxide; protein coding26.811.63YORFGeneDescriptionFold change myo1\DeltaFold change chs2ATransportTfp3p Vacuolar ATPase V0 domain subunit c', involved in proton transport activity; hydrophobic integral membrane protein (proteolipid) containing four transmembrane segments; N and C termini are in the vacuolar lumen; protein coding-1.411.70YPL134CODC1Mitochondrial inner membrane transport 2-oxoadipate and1.961.52			repressed by hemelPau7p: protein		
YMR169CALD3Ald3p Cytoplasmic aldehyde dehydrogenase, involved in beta- alanine synthesis; uses NAD+ as the preferred coenzyme; very similar to Ald2p; expression is induced by stress and repressed by glucose; protein coding41.512.68YGR088WCTT1Ctt1p Cytosolic catalase T, has a role in protection from oxidative damage by hydrogen peroxide; protein coding26.811.63YORFGeneDescriptionFold change myo1ΔFold change chs2ΔTransportTfp3p Vacuolar ATPase V0 domain subunit c', involved in proton transport activity; hydrophobic integral membrane protein (proteolipid) containing four transmembrane segments; N and C termini are in the vacuolar lumen; protein coding-1.411.70YPL134CODC1Mitochondrial inner membrane transporte, exports 2-oxoadipate and1.961.52			coding		
MiltoreInterpropriorInterpropriorInterpropriordehydrogenase, involved in beta- alanine synthesis; uses NAD+ as the preferred coenzyme; very similar to Ald2p; expression is induced by stress and repressed by glucose; protein coding1.63YGR088WCTT1Ctt1p Cytosolic catalase T, has a role in protection from oxidative damage by hydrogen peroxide; protein coding26.81YORFGeneDescriptionFold change myo1\DeltaFold change chs2∆TransportTfp3p Vacuolar ATPase V0 domain subunit c', involved in proton transport activity; hydrophobic integral membrane protein (proteolipid) containing four transmembrane segments; N and C termini are in the vacuolar lumen; protein coding-1.411.70YPL134CODC1Mitochondrial inner membrane transporte, exports 2-oxoadipate and1.961.52	YMR169C	ALD3	Ald3p Cytoplasmic aldehyde	41 51	2 68
alanine synthesis; uses NAD+ as the preferred coenzyme; very similar to Ald2p; expression is induced by stress and repressed by glucose; protein coding26.811.63YGR088WCTT1Ctt1p Cytosolic catalase T, has a role in protection from oxidative damage by hydrogen peroxide; protein coding26.811.63YORFGeneDescriptionFold change myo1\triangletaFold change chs2\triangletaFold change chs2\triangletaYPL234CTFP3Tfp3p Vacuolar ATPase V0 domain subunit c', involved in proton transport activity; hydrophobic integral membrane protein (proteolipid) containing four transmembrane segments; N and C termini are in the vacuolar lumen; protein coding1.961.52YPL134CODC1Mitochondrial inner membrane transport, exports 2-oxoadipate and1.961.52		11220	dehydrogenase, involved in beta-	12.02	2.00
YGR088WCTT1Ctt1p Cytosolic catalase T, has a role in protein coding26.811.63YGR088WCTT1Ctt1p Cytosolic catalase T, has a role in protection from oxidative damage by hydrogen peroxide; protein coding26.811.63YORFGeneDescriptionFold change myo1∆Fold change chs2∆TransportTfp3p Vacuolar ATPase V0 domain subunit c', involved in proton transport activity; hydrophobic integral membrane protein (proteolipid) containing four transmembrane segments; N and C termini are in the vacuolar lumen; protein coding-1.411.70YPL134CODC1Mitochondrial inner membrane transporter, exports 2-oxoadipate and1.961.52			alanine synthesis: uses NAD+ as the		
YGR088WCTT1Ctt1p Cytosolic catalase T, has a role in protein coding26.811.63YGR088WCTT1Ctt1p Cytosolic catalase T, has a role in protection from oxidative damage by hydrogen peroxide; protein codingFold change myo1\DeltaFold change chs2∆YORFGeneDescriptionFold change myo1∆Fold change chs2∆TransportImage: State St			preferred coenzyme: very similar to		
YGR088WCTT1Ctt1p Cytosolic catalase T, has a role in protection from oxidative damage by hydrogen peroxide; protein coding26.811.63YORFGeneDescriptionFold change myo1\DeltaFold change chs2∆TransportTfp3p Vacuolar ATPase V0 domain subunit c', involved in proton transport activity; hydrophobic integral membrane protein (proteolipid) containing four transmembrane segments; N and C termini are in the vacuolar lumen; protein coding-1.411.70YPL134CODC1Mitochondrial inner membrane transporter, exports 2-oxoadipate and1.961.52			Ald2p: expression is induced by		
YGR088WCTT1Ctt1p Cytosolic catalase T, has a role in protection from oxidative damage by hydrogen peroxide; protein coding26.811.63YORFGeneDescriptionFold change myo1AFold change chs2ATransportTfp3p Vacuolar ATPase V0 domain subunit c', involved in proton transport activity; hydrophobic integral membrane protein (proteolipid) containing four transmembrane segments; N and C termini are in the vacuolar lumen; protein coding-1.411.70YPL134CODC1Mitochondrial inner membrane transporter, exports 2-oxoadipate and1.961.52			stress and repressed by glucose:		
YGR088WCTT1Ctt1p Cytosolic catalase T, has a role in protection from oxidative damage by hydrogen peroxide; protein coding26.811.63YORFGeneDescriptionFold change myo1\DeltaFold change chs2\DeltaTransportTfp3p Vacuolar ATPase V0 domain subunit c', involved in proton transport activity; hydrophobic integral membrane protein (proteolipid) containing four transmembrane segments; N and C termini are in the vacuolar lumen; protein coding-1.411.70YPL134CODC1Mitochondrial inner membrane transporter, exports 2-oxoadipate and1.961.52			protein coding		
YORFGeneDescriptionFold change myo1\DeltaFold change chs2\DeltaYORFGeneDescriptionFold change myo1\DeltaFold change chs2\DeltaTransportImage respectiveImage respectiveFold change respectiveYPL234CTFP3Tfp3p Vacuolar ATPase V0 domain subunit c', involved in proton transport activity; hydrophobic integral membrane protein (proteolipid) containing four transmembrane segments; N and C termini are in the vacuolar lumen; protein coding-1.41YPL134CODC1Mitochondrial inner membrane transporter, exports 2-oxoadipate and1.96	YGR088W	CTT1	Ctt1p/Cytosolic catalase T, has a role	26.81	1.63
YORFGeneDescriptionFold change myo1\triangleYORFGeneDescriptionFold change myo1\triangleTransportTfp3p Vacuolar ATPase V0 domain subunit c', involved in proton transport activity; hydrophobic integral membrane protein (proteolipid) containing four transmembrane segments; N and C termini are in the vacuolar lumen; protein coding-1.41YPL134CODC1Mitochondrial inner membrane transporter, exports 2-oxoadipate and1.96		0111	in protection from oxidative damage	20.01	1.00
YORFGeneDescriptionFold change myo1\DeltaFold change chs2\DeltaTransportYPL234CTFP3Tfp3p Vacuolar ATPase V0 domain subunit c', involved in proton transport activity; hydrophobic integral membrane protein (proteolipid) containing four transmembrane segments; N and C termini are in the vacuolar lumen; protein coding-1.411.70YPL134CODC1Mitochondrial inner membrane transporter, exports 2-oxoadipate and1.961.52			by hydrogen peroxide: protein coding		
TotalDescriptionFourFourImage change myo1\DeltaChange chs2ATransportImage myo1AChange chs2AYPL234CTFP3Tfp3p Vacuolar ATPase V0 domain subunit c', involved in proton transport activity; hydrophobic integral membrane protein (proteolipid) containing four transmembrane segments; N and C termini are in the vacuolar lumen; protein coding-1.41YPL134CODC1Mitochondrial inner membrane transporter, exports 2-oxoadipate and1.96	VORF	Gene	Description	Fold	Fold
Transportmyo1AchangeYPL234CTFP3Tfp3p Vacuolar ATPase V0 domain subunit c', involved in proton transport activity; hydrophobic integral membrane protein (proteolipid) containing four transmembrane segments; N and C termini are in the vacuolar lumen; protein coding-1.411.70YPL134CODC1Mitochondrial inner membrane transporter, exports 2-oxoadipate and1.961.52	1 OIG	Gene		change	change
TransportImportYPL234CTFP3Tfp3p Vacuolar ATPase V0 domain subunit c', involved in proton transport activity; hydrophobic integral membrane protein (proteolipid) containing four transmembrane segments; N and C termini are in the vacuolar lumen; protein coding-1.411.70YPL134CODC1Mitochondrial inner membrane transporter, exports 2-oxoadipate and1.961.52				mvo1	$chs2\Lambda$
YPL234CTFP3Tfp3p Vacuolar ATPase V0 domain subunit c', involved in proton transport activity; hydrophobic integral membrane protein (proteolipid) containing four transmembrane segments; N and C termini are in the vacuolar lumen; protein coding-1.411.70YPL134CODC1Mitochondrial inner membrane transporter, exports 2-oxoadipate and1.961.52	Transport				••••==
YPL134CODC1Mitochondrial inner membrane1.96YPL134CODC1Mitochondrial inner membrane1.961.52	YPL234C	TFP3	Tfp3p Vacuolar ATPase V0 domain	-1.41	1.70
YPL134CODC1Mitochondrial inner membrane transporter, exports 2-oxoadipate and1.961.52			subunit c', involved in proton		
integral membrane protein (proteolipid) containing four transmembrane segments; N and C termini are in the vacuolar lumen; protein codingYPL134CODC1Mitochondrial inner membrane transporter, exports 2-oxoadipate and1.96			transport activity: hydrophobic		
(proteolipid) containing four transmembrane segments; N and C termini are in the vacuolar lumen; protein coding         YPL134C       ODC1         Mitochondrial inner membrane transporter, exports 2-oxoadipate and			integral membrane protein		
YPL134CODC1Mitochondrial inner membrane transporter, exports 2-oxoadipate and1.961.52			(proteolipid) containing four		
YPL134C     ODC1     Mitochondrial inner membrane transporter, exports 2-oxoadipate and     1.96     1.52			transmembrane segments: N and C		
YPL134C     ODC1     Mitochondrial inner membrane transporter, exports 2-oxoadipate and     1.96     1.52			termini are in the vacuolar lumen.		
YPL134CODC1Mitochondrial inner membrane transporter, exports 2-oxoadipate and1.961.52			protein coding		
transporter, exports 2-oxoadipate and	YPL134C	ODC1	Mitochondrial inner membrane	1 96	1 5 2
		0201	transporter, exports 2-oxoadipate and	1.50	1.02

		2-oxoglutarate from the		
		mitochondrial matrix to the cytosol		
		for lysine and glutamate biosynthesis		
		and lysine catabolism: suppresses, in		
		multicopy, an fmc1 null		
		mutation Odc1p: protein coding		
YKL188C	PXA2	Pxa2p Subunit of a heterodimeric	2 4 5	2 08
	1 1	peroxisomal ATP-binding cassette	2.13	2.00
		transporter complex (Pxa1n-Pxa2n)		
		required for import of long-chain		
		fatty acids into peroxisomes:		
		similarity to human		
		adrenoleukodystrophy transporter and		
		AI D-related proteins: protein coding		
YML 054C	CYB2	Cyb2p Cytochrome b2 (L_lactate	5 11	2 / 7
1 ML03+C	CIDZ	cytochrome-c oxidoreductase)	3.77	2.47
		component of the mitochondrial		
		intermembrane space, required for		
		lactate utilization: expression is		
		repressed by glucose and anaerobic		
		conditions: protein coding		
VDD276C		Dmp2p/Small plasma mambrana	2 6 2	1 5 2
IDK2/0C	F MIF S	rinpspisinal plasma memorale	2.02	1.52
		protein related to a family of plant		
		polypepildes that are overexpressed		
		under nign san concentration or low		
		temperature, not essential for		
		viability, deletion causes		
		nyperpolarization of the plasma		
NOLOGIN	DIAGI	membrane potential; protein coding		
YGL006W	PMCI	Pmc1p Vacuolar Ca2+ A1Pase	2.29	1.54
		involved in depleting cytosol of Ca2+		
		ions; prevents growth inhibition by		
		activation of calcineurin in the		
		presence of elevated concentrations		
		of calcium; similar to mammalian		
		PMCA1a; protein coding		
YFR053C	HXK1	Hexokinase isoenzyme 1, a cytosolic	14.16	9.38
		protein that catalyzes		
		phosphorylation of glucose during		
		glucose metabolism; expression is		
		highest during growth on non-glucose		
		carbon sources; glucose-induced		
		repression involves the hexokinase		
		Hxk2p Hxk1p; protein coding		
YFR033C	QCR6	Qcr6p Subunit 6 of the ubiquinol	2.34	2.29
		cytochrome-c reductase complex,		

		which is a component of the		
		mitochondrial inner membrane		
		electron transport chain: highly acidic		
		protein: required for maturation of		
		cytochrome c1: protein coding		
YOR317W	FAA1	Faa1plL ong chain fatty acyl-CoA	2 81	2 4 3
10101710	11111	synthetase with a preference for	2.01	2.43
		C12:0-C16:0 fatty acids: involved in		
		the activation of imported fatty acids:		
		localized to both linid particles and		
		mitochondrial outer membrane:		
		essential for stationary phase: protein		
		coding		
VNI 142W	MED2	Ammonium permease involved in	2 16	1 7 2
1111142.00		regulation of pseudohyphal growth:	-3.10	-1.72
		belongs to a ubiquitous family of		
		cytoplasmic membrane proteins that		
		transport only ammonium (NH4+):		
		expression is under the nitrogen		
		expression is under the introgen		
		regulation Man2n; protein coding		
VDD042C	0002	Multidaya transportan of the major	2.00	1 22
I DK045C	QDR5	facilitator superfomily, required for	2.09	1.22
		registered to quiniding, herbor		
		resistance to quintume, barban,		
		cispiann, and bleomycin Qdr5p;		
VODALCO		protein coding	2.42	4 = 4
YUR216C	RUD3	Golgi matrix protein involved in the	-2.43	-1.54
		Structural organization of the cis-		
		Golgi; interacts genetically with		
		COGS and USOT Rudsp; protein		
	CVD7	Coding	1.02	4 7 4
YDL234C	GIP/	G Pase-activating protein for yeast	1.93	1.74
		Rab family members including:		
		Ypt/p (most effective), Ypt/p,		
		Ypt31p, and Ypt32p (in vitro);		
		involved in vesicle mediated protein		
	CODI	trafficking Gyp/p; protein coding		
YBL045C	CORI	Corlp Core subunit of the ubiquinol-	2.67	2.60
		cytochrome c reductase complex (bc1		
		complex), which is a component of		
		the mitochondrial inner membrane		
		electron transport chain; protein		
	0.077.0	coding		
YJL166W	QCR8	Qcr8p Subunit 8 of ubiquinol	2.69	1.23
		cytochrome-c reductase complex,		
		which is a component of the		

		mitochondrial inner membrane		
		electron transport chain; oriented		
		facing the intermembrane space;		
		expression is regulated by Abf1p and		
		Cpf1p: protein coding		
YGR172C	YIP1	Integral membrane protein required	-1 63	-1 69
1011/20		for the biogenesis of ER-derived	1.00	1.05
		COPII transport vesicles: interacts		
		with Yif1n and Yos1n: localizes to		
		the Golgi the ER and COPII		
		vesicles/Yin1p: protein coding		
YEL 039C	CYC7	Cvc7p Cvtochrome c isoform 2	5 5 2	1 1 7
TLL037C	010/	expressed under hypoxic conditions:	5.52	1.17
		electron carrier of the mitochondrial		
		intermembrane space that transfers		
		electrons from ubiquinone-		
		cytochrome c oxidoreductase to		
		cytochrome c oxidore during cellular		
		respiration: protein coding		
VEL 031W	SPE1	P-type ATPase ion transporter of the	-2.33	_1 73
I LL031 W	5111	FR membrane involved in FR	-2.55	-1.75
		function and Ca2+ homeostasis:		
		required for regulating Hmg2n		
		degradation: confers sensitivity to a		
		killer toxin (SMKT) produced by		
		Dichie forinese KK1/Spf1p: protein		
		coding		
YAL022C	EUN26	Fun26n Nucleoside transporter with	-1.67	_1 1/
TAL022C	1 01120	broad nucleoside selectivity:	1.07	1.14
		localized to intracellular membranes:		
		protein coding		
VDP534C		Fit1p Mannoprotein that is	1.60	1 1 7
IDRJJ4C	1111	incorporated into the cell wall via a	-4.00	1.1/
		glycosylphosphatidylinositol (GPI)		
		anchor, involved in the retention of		
		siderophore_iron in the cell wall:		
		protein coding		
VII 043W		Ensin/Disma membrane glycerol	2 70	1.0/
ILL04JW	1151	channel member of the major	2.75	1.94
		intrinsic protein (MIP) family of		
		channel proteins: involved in offlux		
		of glucorol and in untake of the		
		trivalent metalloids arconits and		
		antimonite: protein coding		
VDD512W		Cytoplasmia glutaradovin	1 7 /	1 20
IDK313W	11K1	cytopiasinic giutaredoxin,	1.74	1.39
		unouransierase, giutatnione-		

		dependent disulfide oxidoreductase		
		involved in maintaining redox state		
		of target proteins, also exhibits		
		glutathione peroxidase activity,		
		expression induced in response to		
		stress Grx2p: protein coding		
YORF	Gene	Description	Fold	Fold
		- ·····	change	change
			$mvo1\Lambda$	$chs2\Lambda$
Carbohydrate			ing or =	••••==
metabolism				
YIL155C	GUT2	Gut2p Mitochondrial glycerol-3-	3.77	11.97
		phosphate dehvdrogenase: expression	_	_
		is repressed by both glucose and		
		cAMP and derepressed by non-		
		fermentable carbon sources in a		
		Snf1p Rsf1p Hap2/3/4/5 complex		
		dependent manner: protein coding		
YKR058W	GLG1	Glg1plSelf-glucosylating initiator of	4 55	1 93
	0L01	glycogen synthesis, also glucosylates		1.55
		n-dodecyl-beta-D-maltoside: similar		
		to mammalian glycogenin [•] protein		
		coding		
YNR034W	SOL1	Protein with a possible role in tRNA	2 09	1 22
111103410	SOLI	export: shows similarity to 6-	2.05	1.22
		phosphogluconolactonase non-		
		catalytic domains but does not exhibit		
		this enzymatic activity: homologous		
		to Sol2n Sol3n and Sol4n Sol1n:		
		protein coding		
VGL156W	4MS1	Ams1p Vacuolar alpha mannosidase	2 77	8 3 8
I GE150W	110151	involved in free oligosaccharide	2.77	0.50
		(fOS) degradation: delivered to the		
		vacuole in a novel nathway separate		
		from the secretory pathway: protein		
		coding		
VCI 040W	CI K1	Glk1plGlucokinase_catalyzes the	6.82	5 5 5
ICL040W	OLKI	phosphorylation of glucose at C6 in	0.02	5.55
		the first irreversible step of glucose		
		metabolism: one of three glucose		
		phosphorylating onzymos: ovprossion		
		regulated by non-formentable carbon		
		sources: protein coding		
VKI 127W	DCM1	Dam1n/Dhognhoglycomytage minor	2 60	1 0 2
	F GIVLI	isoform: catalyzes the conversion	-2.08	-1.92
		from glucose 1 phosphoto to glucose		
		110m glucose-1-phosphate to glucose-		

		6-phosphate, which is a key step in		
		hexose metabolism; protein coding		
YGL028C	SCW11	Cell wall protein with similarity to	-1.89	1.09
		glucanases; may play a role in		
		conjugation during mating based on		
		its regulation by Ste12p Scw11p;		
		protein coding		
YKL035W	UGP1	UDP-glucose pyrophosphorylase	9.13	7.22
		(UGPase), catalyses the reversible		
		formation of UDP-Glc from glucose		
		1-phosphate and UTP, involved in a		
		wide variety of metabolic pathways,		
		expression modulated by Pho85p		
		through Pho4p Ugp1p; protein coding		
YBR126C	TPS1	Synthase subunit of trehalose-6-	5.30	3.78
		phosphate synthase/phosphatase		
		complex, which synthesizes the		
		storage carbohydrate trehalose; also		
		found in a monomeric form;		
		expression is induced by the stress		
		response and repressed by the Ras-		
		cAMP pathway Tps1p; protein		
		coding		
YDR074W	TPS2	Phosphatase subunit of the trehalose-	7.47	2.84
		6-phosphate synthase/phosphatase		
		complex, which synthesizes the		
		storage carbohydrate trehalose;		
		expression is induced by stress		
		conditions and repressed by the Ras-		
		cAMP pathway Tps2p; protein		
		coding		
YGR282C	BGL2	Bgl2p Endo-beta-1,3-glucanase,	2.08	2.74
		major protein of the cell wall,		
		involved in cell wall maintenance;		
		protein coding		
YDR001C	NTH1	Neutral trehalase, degrades trehalose;	5.35	1.69
		required for thermotolerance and may		
		mediate resistance to other cellular		
		stresses; may be phosphorylated by		
		Cdc28p Nth1p; protein coding		
YMR305C	SCW10	Cell wall protein with similarity to	-4.20	-2.27
		glucanases; may play a role in		
		conjugation during mating based on		
		mutant phenotype and its regulation		
		by Ste12p Scw10p; protein coding		

YPR184W	GDB1	Gdb1p Glycogen debranching	7.27	3.56
		enzyme containing glucanotranferase		
		and alpha-1,6-amyloglucosidase		
		activities, required for glycogen		
		degradation; phosphorylated in		
		mitochondria; protein coding		
YER054C	GIP2	Gip2p Putative regulatory subunit of	3.90	2.11
		the protein phosphatase Glc7p.	0.00	
		involved in glycogen metabolism:		
		contains a conserved motif (GVNK		
		motif) that is also found in Gac1p.		
		Pig1p, and Pig2p: protein coding		
YPR160W	GPH1	Gph1plNon-essential glycogen	18 84	29 41
	01111	phosphorylase required for the	10.01	23.11
		mobilization of glycogen activity is		
		regulated by cyclic AMP-mediated		
		phosphorylation, expression is		
		regulated by stress-response elements		
		and by the HOG MAP kinase		
		pathway: protein coding		
YER003C	PMI40	Mannose-6-phosphate isomerase	-2.03	-2 31
TERCOSC	1 1011 / 0	catalyzes the interconversion of	2.05	2.51
		fructose-6-P and mannose-6-P		
		required for early steps in protein		
		mannosylation/Pmi40n: protein		
		coding		
VGR1//3W	SKN1	Protein involved in sphingolinid	2 21	1 08
1011151	SILIVI	biosynthesis: type II membrane	2.51	1.00
		protein with similarity to		
		Kre6n/Skn1p: protein coding		
YFI 040W		Cell wall protein that functions in the	-/ 13	1 0/
I LLOHO W	01112	transfer of chitin to beta(1-6)glucan:	4.15	1.04
		putative chitin transglycosidase:		
		glycosylphosphatidylinositol (GPI)-		
		anchored protein localized to the bud		
		neck: has a role in cell wall		
		maintenancelUtr2p: protein coding		
VEL 011W	CLC3	Glc3p/Glycogen branching enzyme	7 2/	26.62
I LLOIT W	OLCJ	involved in glycogen accumulation:	7.54	30.02
		green fluorescent protein (GEP)-		
		fusion protein localizes to the		
		avtoplasm in a punctate pattern:		
		protein coding		
VAL 017W	DSV1	One of two (see also $DSK2$ ) $DAS$	1 6 1	1 66
	ISKI	domain containing S/T protein	1.01	T.00
		kinasos operdinately recyletes		
		kinases; coordinatery regulates		

		protein synthesis and carbohydrate		
		metabolism and storage in response		
		to a unknown metabolite that reflects		
		nutritional status Psk1p: protein		
		coding		
VORF	Gono	Description	Fold	Fold
IOM	Gene	Description	change	change
			$mvo1\Lambda$	$chs2\Lambda$
Protein				01052
degradation				
YLR120C	YPS1	Aspartic protease attached to the	1.62	1 29
121(1200	11.51	plasma membrane via a	1.02	1.25
		glycosylphosphatidylinositol (GPI)		
		anchor/Vns1n: protein coding		
VMD174C	DA13	Cutoplasmic proteinase A (Pap/n)	1 20	1.64
1 WIK1 / 4C	TAIS	inhibitor dependent on Pho2n and	4.20	1.04
		Handler, dependent on Fos2p and		
		Hog Ip protein kinases for osmotic		
		induction; intrinsically unstructured,		
		N-terminal half becomes ordered in		
		the active site of proteinase A upon		
		contact Pai3p; protein coding		
YEL060C	PRB1	Prb1p Vacuolar proteinase B (yscB),	2.62	4.89
		a serine protease of the subtilisin		
		family; involved in protein		
		degradation in the vacuole and		
		required for full protein degradation		
		during sporulation; protein coding		
YPR191W	QCR2	Qcr2p Subunit 2 of the ubiquinol	3.14	3.81
		cytochrome-c reductase complex,		
		which is a component of the		
		mitochondrial inner membrane		
		electron transport chain:		
		phosphorylated: transcription is		
		regulated by Hap1p, Hap2p/Hap3p.		
		and heme: protein coding		
YMR304W	URP15	Ubiquitin-specific protease that may	1 47	1.06
	0 21 10	play a role in ubiquitin precursor	1.17	1.00
		processing[Libn15n; protein coding		
VOP210C	STE13	Dipentidul aminopentidase. Colgi	1.68	1.07
TORZIJC	SILIS	integral membrane protein that	1.00	1.07
		alagyas on the carboxyl side of		
		reporting V Ale sequences		
		repeating -A-Ala- sequences,		
		required for maturation of alpha		
		factor, transcription is induced by a-		
		1actor Ste13p; protein coding		

YBR105C	VID24	Peripheral membrane protein located	2.41	-1.18
		at Vid (vacuole import and		
		degradation) vesicles; regulates		
		fructose-1,6-bisphosphatase (FBPase)		
		targeting to the vacuole; involved in		
		proteasome-dependent catabolite		
		degradation of FBPase/Vid24p:		
		protein coding		
YKL034W	TUL1	Golgi-localized RING-finger	1.93	1.10
		ubiquitin ligase (E3), involved in		
		ubiquitinating and sorting membrane		
		proteins that contain polar		
		transmembrane domains to		
		multivesicular bodies for delivery to		
		the vacuole for quality control		
		purposes Tul1p; protein coding		
YGL227W	VID30	Protein involved in proteasome-	1.73	1.34
		dependent catabolite degradation of		
		fructose-1,6-bisphosphatase		
		(FBPase); shifts the balance of		
		nitrogen metabolism toward the		
		production of glutamate; localized to		
		the nucleus and the		
		cytoplasm/Vid30p; protein coding		
YORF	Gene	Cytoplasm V1d30p; protein coding	Fold	Fold
YORF	Gene	Cytoplasm V1d30p; protein coding     Description	Fold change	Fold change
YORF	Gene	cytoplasm V1d30p; protein coding       Description	Fold change myo1∆	Fold change chs2∆
YORF Transcription	Gene	Description	Fold change <i>myo1</i> ∆	Fold change chs2∆
YORF Transcription YDL150W	Gene RPC53	Cytoplasm V1d30p; protein coding         Description         RNA polymerase III subunit	Fold change myo1∆ -1.74	Fold change chs2∆ -1.95
YORF Transcription YDL150W	Gene RPC53	Cytoplasm V1d30p; protein coding         Description         RNA polymerase III subunit         C53 Rpc53p; protein coding	Fold change myo1∆ -1.74	Fold change chs2∆ -1.95
YORF Transcription YDL150W YPR187W	Gene RPC53 RPO26	cytoplasm Vid30p; protein coding         Description         RNA polymerase III subunit         C53 Rpc53p; protein coding         RNA polymerase subunit ABC23,	Fold change <i>myo1</i> ∆ -1.74 -2.18	Fold change chs2∆ -1.95 -2.13
YORF Transcription YDL150W YPR187W	Gene RPC53 RPO26	cytoplasm V1d30p; protein coding         Description         RNA polymerase III subunit         C53 Rpc53p; protein coding         RNA polymerase subunit ABC23, common to RNA polymerases I, II,	Fold change <i>myo1</i> ∆ -1.74 -2.18	Fold change <i>chs2</i> ∆ -1.95 -2.13
YORF Transcription YDL150W YPR187W	Gene RPC53 RPO26	cytoplasm V1d30p; protein coding         Description         RNA polymerase III subunit         C53 Rpc53p; protein coding         RNA polymerase subunit ABC23,         common to RNA polymerases I, II,         and III; part of central core; similar to	Fold change myo1∆ -1.74 -2.18	Fold change chs2∆ -1.95 -2.13
YORF Transcription YDL150W YPR187W	Gene RPC53 RPO26	cytoplasm V1d30p; protein coding         Description         RNA polymerase III subunit         C53 Rpc53p; protein coding         RNA polymerase subunit ABC23,         common to RNA polymerases I, II,         and III; part of central core; similar to         bacterial omega subunit Rpo26p;	Fold change myo1∆ -1.74 -2.18	Fold change chs2∆ -1.95 -2.13
YORF Transcription YDL150W YPR187W	Gene RPC53 RPO26	cytoplasm V1d30p; protein coding         Description         RNA polymerase III subunit         C53 Rpc53p; protein coding         RNA polymerase subunit ABC23,         common to RNA polymerases I, II,         and III; part of central core; similar to         bacterial omega subunit Rpo26p;         protein coding	Fold change myo1∆ -1.74 -2.18	Fold change <i>chs2∆</i> -1.95 -2.13
YORF Transcription YDL150W YPR187W YLR228C	<i>Gene RPC53 RPO26 ECM22</i>	Cytoplasm V1d30p; protein codingDescriptionRNA polymerase III subunitC53 Rpc53p; protein codingRNA polymerase subunit ABC23,common to RNA polymerases I, II,and III; part of central core; similar tobacterial omega subunit Rpo26p;protein codingEcm22p Sterol regulatory element	Fold change <i>myo1</i> ∆ -1.74 -2.18 1.68	Fold change <i>chs2</i> ∆ -1.95 -2.13 4.53
YORF Transcription YDL150W YPR187W YLR228C	Gene           RPC53           RPO26           ECM22	cytoplasm Vid30p; protein coding         Description         RNA polymerase III subunit         C53 Rpc53p; protein coding         RNA polymerase subunit ABC23,         common to RNA polymerases I, II,         and III; part of central core; similar to         bacterial omega subunit Rpo26p;         protein coding         Ecm22p Sterol regulatory element         binding protein, regulates	Fold change <i>myo1</i> ∆ -1.74 -2.18 1.68	Fold change chs2∆ -1.95 -2.13 4.53
YORF Transcription YDL150W YPR187W YLR228C	Gene           RPC53           RP026           ECM22	cytoplasm V1d30p; protein coding         Description         RNA polymerase III subunit         C53 Rpc53p; protein coding         RNA polymerase subunit ABC23,         common to RNA polymerases I, II,         and III; part of central core; similar to         bacterial omega subunit Rpo26p;         protein coding         Ecm22p Sterol regulatory element         binding protein, regulates         transcription of the sterol biosynthetic	Fold change <i>myo1</i> ∆ -1.74 -2.18 1.68	Fold change <i>chs2</i> ∆ -1.95 -2.13 4.53
YORF Transcription YDL150W YPR187W YLR228C	Gene RPC53 RPO26 ECM22	cytoplasm Vid30p; protein coding         Description         RNA polymerase III subunit         C53 Rpc53p; protein coding         RNA polymerase subunit ABC23,         common to RNA polymerases I, II,         and III; part of central core; similar to         bacterial omega subunit Rpo26p;         protein coding         Ecm22p Sterol regulatory element         binding protein, regulates         transcription of the sterol biosynthetic         genes ERG2 and ERG3; member of	Fold change <i>myo1</i> ∆ -1.74 -2.18 1.68	Fold change chs2∆ -1.95 -2.13 4.53
YORF Transcription YDL150W YPR187W YLR228C	Gene           RPC53           RPO26           ECM22	cytoplasm Vid30p; protein coding         Description         RNA polymerase III subunit         C53 Rpc53p; protein coding         RNA polymerase subunit ABC23,         common to RNA polymerases I, II,         and III; part of central core; similar to         bacterial omega subunit Rpo26p;         protein coding         Ecm22p Sterol regulatory element         binding protein, regulates         transcription of the sterol biosynthetic         genes ERG2 and ERG3; member of         the fungus-specific Zn[2]-Cys[6]	Fold change <i>myo1∆</i> -1.74 -2.18 1.68	Fold change <i>chs2</i> ∆ -1.95 -2.13 4.53
YORF Transcription YDL150W YPR187W YLR228C	Gene           RPC53           RP026           ECM22	cytoplasm Vid30p; protein coding         Description         RNA polymerase III subunit         C53 Rpc53p; protein coding         RNA polymerase subunit ABC23,         common to RNA polymerases I, II,         and III; part of central core; similar to         bacterial omega subunit Rpo26p;         protein coding         Ecm22p Sterol regulatory element         binding protein, regulates         transcription of the sterol biosynthetic         genes ERG2 and ERG3; member of         the fungus-specific Zn[2]-Cys[6]         binuclear cluster family of	Fold change <i>myo1∆</i> -1.74 -2.18 1.68	Fold change chs2∆ -1.95 -2.13 4.53
YORF Transcription YDL150W YPR187W YLR228C	Gene RPC53 RPO26 ECM22	Cytoplasm V1d30p; protein codingDescriptionRNA polymerase III subunit C53 Rpc53p; protein codingRNA polymerase subunit ABC23, common to RNA polymerases I, II, and III; part of central core; similar to bacterial omega subunit Rpo26p; protein codingEcm22p Sterol regulatory element binding protein, regulates transcription of the sterol biosynthetic genes ERG2 and ERG3; member of the fungus-specific Zn[2]-Cys[6] binuclear cluster family of transcription factors; homologous to	Fold change <i>myo1</i> ∆ -1.74 -2.18 1.68	Fold change chs2∆ -1.95 -2.13 4.53
YORF Transcription YDL150W YPR187W YLR228C	Gene           RPC53           RP026           ECM22	Cytoplasm Vid30p; protein codingDescriptionRNA polymerase III subunitC53 Rpc53p; protein codingRNA polymerase subunit ABC23, common to RNA polymerases I, II, and III; part of central core; similar to bacterial omega subunit Rpo26p; protein codingEcm22p Sterol regulatory element binding protein, regulates transcription of the sterol biosynthetic genes ERG2 and ERG3; member of the fungus-specific Zn[2]-Cys[6] binuclear cluster family of transcription factors; homologous to Upc2p; protein coding	Fold change <i>myo1∆</i> -1.74 -2.18 1.68	Fold change chs2∆ -1.95 -2.13 4.53
YORF Transcription YDL150W YPR187W YLR228C YLR228C	Gene         RPC53         RP026         ECM22         ASH1	Cytoplasm V1d30p; protein codingDescriptionRNA polymerase III subunit C53 Rpc53p; protein codingRNA polymerase subunit ABC23, common to RNA polymerases I, II, and III; part of central core; similar to bacterial omega subunit Rpo26p; protein codingEcm22p Sterol regulatory element binding protein, regulates transcription of the sterol biosynthetic genes ERG2 and ERG3; member of the fungus-specific Zn[2]-Cys[6] binuclear cluster family of transcription factors; homologous to Upc2p; protein codingAsh1p Zinc-finger inhibitor of HO	Fold change myo1∆ -1.74 -2.18 1.68	Fold change chs2∆ -1.95 -2.13 4.53
YORF Transcription YDL150W YPR187W YLR228C YLR228C	Gene         RPC53         RPO26         ECM22         ASH1	Cytoplasm V1d30p; protein codingDescriptionRNA polymerase III subunitC53 Rpc53p; protein codingRNA polymerase subunit ABC23, common to RNA polymerases I, II, and III; part of central core; similar to bacterial omega subunit Rpo26p; protein codingEcm22p Sterol regulatory element binding protein, regulates transcription of the sterol biosynthetic genes ERG2 and ERG3; member of the fungus-specific Zn[2]-Cys[6] binuclear cluster family of transcription factors; homologous to Upc2p; protein codingAsh1p Zinc-finger inhibitor of HO transcription; mRNA is localized and	Fold change <i>myo1</i> ∆ -1.74 -2.18 1.68 -2.05	Fold change chs2∆ -1.95 -2.13 4.53

		cells, resulting in accumulation of Ash1p in daughter cell nuclei and inhibition of HO expression; potential Cdc28p substrate; protein coding		
YOL005C	RPB11	RNA polymerase II subunit B12.5; part of central core; similar to Rpc19p and bacterial alpha subunit Rpb11p; protein coding	-2.02	-1.17
YORF	Gene	Description	Fold change <i>myo1</i> ∆	Fold change chs2∆
DNA metabolism				
YJL080C	SCP160	Essential RNA-binding G protein effector of mating response pathway, mainly associated with nuclear envelope and ER, interacts in mRNA- dependent manner with translating ribosomes via multiple KH domains, similar to vertebrate vigilins Scp160p; protein coding	-2.64	-2.29
YDL227C	НО	Hop Site-specific endonuclease required for gene conversion at the MAT locus (homothallic switching) through the generation of a ds DNA break; expression restricted to mother cells in late G1 as controlled by Swi4p-Swi6p, Swi5p and Ash1p; protein coding	-4.15	-1.80
YER120W	SCS2	Integral ER membrane protein that regulates phospholipid metabolism via an interaction with the FFAT motif of Opi1p, also involved in telomeric silencing, disruption causes inositol auxotrophy above 34 degrees C, VAP homolog Scs2p; protein coding	-1.54	-1.44
YOR191W	RIS1	Member of the SWI/SNF family of DNA-dependent ATPases, plays a role in antagonizing silencing during mating-type switching, contains an N-terminal domain that interacts with Sir4p and a C-terminal SNF2 domain[Ris1p: protein coding	1.49	1.13

YNL030W	HHF2	Hhf2p One of two identical histone	-1.89	-1.24
		H4 proteins (see also HHF1); core		
		histone required for chromatin		
		assembly and chromosome function;		
		contributes to telomeric silencing; N-		
		terminal domain involved in		
		maintaining genomic integrity;		
		protein coding		
YER171W	RAD3	5' to 3' DNA helicase, involved in	-1.75	-1.52
		nucleotide excision repair and		
		transcription; subunit of RNA		
		polymerase II transcription initiation		
		factor TFIIH; subunit of Nucleotide		
		Excision Repair Factor 3 (NEF3);		
		homolog of human XPD		
		protein Rad3p; protein coding		
YDR097C	MSH6	Msh6p Protein required for mismatch	-2.21	-2.03
		repair in mitosis and meiosis, forms a		
		complex with Msh2p to repair both		
		single-base & insertion-deletion		
		mispairs; potentially phosphorylated		
		by Cdc28p; protein coding		
YBR214W	SDS24	One of two S. cerevisiae homologs	2.59	8.02
		(Sds23p and Sds24p) of the		
		Schizosaccharomyces pombe Sds23		
		protein, which genetic studies have		
		implicated in APC/cyclosome		
		regulation; may play an indirect role		
		in fluid-phase endocytosis Sds24p;		
		protein coding		
YBR245C	ISW1	Isw1p Member of the imitation-	-1.65	-1.58
		switch (ISWI) class of ATP-		
		dependent chromatin remodeling		
		complexes; ATPase that forms a		
		complex with Ioc2p and Ioc4p to		
		regulate transcription elongation, and		
		a complex with Ioc3p to repress		
		transcription initiation: protein		
		coding		
YML069W	POB3	Pob3p Subunit of the heterodimeric	-1.79	-2.04
		FACT complex (Spt16p-Pob3p).		
		which facilitates RNA Pol II		
		transcription elongation through		
		nucleosomes by destabilizing and		
		then reassembling nucleosome		
		structure; interacts with DNA		
•	1	,		

		polymerase alpha (Pol1p); protein coding		
YGL213C	SKI8	Protein involved in exosome mediated 3' to 5' mRNA degradation and translation inhibition of non- poly(A) mRNAs as well as double- strand break formation during meiotic recombination; required for repressing propagation of dsRNA viruses Ski8p; protein coding	-1.49	-1.14
YORF	Gene	Description	Fold change <i>myo1</i> ∆	Fold change <i>chs2</i> ∆
Cell cycle				
YDL055C	PSA1	GDP-mannose pyrophosphorylase (mannose-1-phosphate guanyltransferase), synthesizes GDP- mannose from GTP and mannose-1- phosphate in cell wall biosynthesis; required for normal cell wall structure Psa1p; protein coding	-3.51	3.43
YGR041W	BUD9	Bud9p Protein involved in bud-site selection; diploid mutants display a unipolar budding pattern instead of the wild-type bipolar pattern, and bud at the distal pole: protein coding	-3.01	1.21
YMR135C	GID8	Gid8p Protein of unknown function, involved in proteasome-dependent catabolite inactivation of fructose- 1,6-bisphosphatase; contains LisH and CTLH domains, like Vid30p; dosage-dependent regulator of START; protein coding	-2.39	2.17
YAL034W-A	MTW1	Essential component of the MIND kinetochore complex (Mtw1p Including Nnf1p-Nsl1p-Dsn1p) which joins kinetochore subunits contacting DNA to those contacting microtubules; critical to kinetochore assembly Mtw1p; protein coding	-1.68	-1.24
YLR353W	BUD8	Bud8p Protein involved in bud-site selection; diploid mutants display a unipolar budding pattern instead of the wild-type bipolar pattern, and bud at the proximal pole; protein coding	-1.34	-1.20

YNL289W	PCL1	Pcl1p Pho85 cyclin of the Pcl1.2-like	-3.21	2.08
	1 021	subfamily, involved in entry into the	0.21	2.00
		mitotic cell cycle and regulation of		
		morphogenesis localizes to sites of		
		polarized cell growth: protein coding		
YNR027W	BUD17	Bud17p Protein involved in bud-site	-1 85	2.26
1111102711	DODIT	selection: diploid mutants display a	1.05	2.20
		random budding pattern instead of		
		the wild-type bipolar pattern: protein		
		coding		
VORF	Cone	Description	Fold	Fold
	Gene	Description	change	change
			$mvo1\Lambda$	$chs2\Lambda$
Protein				
transport				
YDR358W	GGA1	Gga1p Golgi-localized protein with	3.35	3.93
		homology to gamma-adaptin.		
		interacts with and regulates Arf1p		
		and Arf2p in a GTP-dependent		
		manner in order to facilitate traffic		
		through the late Golgi: protein coding		
YDR202C	RAV2	Rav2p Subunit of RAVE (Rav1p.	2.00	-1.09
		Rav2p, Skp1p), a complex that		
		associates with the V1 domain of the		
		vacuolar membrane (H+)-ATPase		
		(V-ATPase) and promotes assembly		
		and reassembly of the holoenzyme:		
		protein coding		
YDR200C	VPS64	Cytoplasmic protein required for	1.64	1.92
		cytoplasm to vacuole targeting of		
		proteins: forms a complex with		
		Far3p, Far7p, Far10p, and Far11p		
		that is involved in pheromone-		
		induced cell cycle arrest: also		
		localized to the endoplasmic		
		reticulum membrane/Vps64p; protein		
		coding		
YFL045C	SEC53	Phosphomannomutase, involved in	-2.67	-2.68
11 20 10 0	52000	synthesis of GDP-mannose and	2.07	2.00
		dolichol-phosphate-mannose:		
		required for folding and glycosylation		
		of secretory proteins in the ER		
		lumen/Sec53n: protein coding		
YIR135W-A	TIM8	Mitochondrial intermembrane space	-2 50	-1 52
	11110	protein mediating import and	2.50	1.52
		insertion of polytonic inner		
	1	inserviou of polytopic inner	1	1

		membrane proteins: homolog of		
		human DDP1 (deafness dystonia		
		peptide 1) which is mutated in the X-		
		linked Mohr-Tranebiaerg		
		syndrome/Tim8p: protein coding		
YLR259C	HSP60	Hsp60p/Tetradecameric	2.83	-1 69
TERES/C	1151 00	mitochondrial chaperonin required	2.05	1.05
		for ATP-dependent folding of		
		nrecursor polypentides and compley		
		assembly: prevents aggregation and		
		mediates protein refolding after heat		
		shock: role in mtDNA transmission:		
		shock, force in hitDIVA transmission,		
VPL 075C	5543	ATPasa involved in protein folding	2 01 2	1 7 2
I BL075C	SSAS	and the response to stress plays a	5.012	1.25
		role in SPD dependent extremelational		
		note in SKF-dependent cottanistational		
		translocation; member of the heat		
		shock protein 70 (HSD70) family		
		shock protein 70 (HSP70) failing,		
		notatized to the cytoplashipsasp;		
	NCE102	New 102 ml Draste in a frame law array	6.22	0.25
IPR149W	NCE102	Net 102p Protein of unknown	6.22	8.35
		function; contains transmemorane		
		domains; involved in secretion of		
		proteins that lack classical secretory		
		signal sequences; component of the		
		detergent-insoluble glycolipid-		
		enriched complexes (DIGs); protein		
VED000C		coding		
YER008C	SEC3	Non-essential subunit of the exocyst	1.49	-1.31
		complex (Sec3p, Sec5p, Sec6p,		
		Sec8p, Sec10p, Sec15p, Exo70p,		
		Exo84p) which mediates targeting of		
		post-Golgi vesicles to sites of active		
		exocytosis; Sec3p specifically is a		
		spatial landmark for secretion Sec3p;		
		protein coding		
YLR066W	SPC3	Spc3p Subunit of signal peptidase	-2.20	-1.42
		complex (Spc1p, Spc2p, Spc3p,		
		Sec11p), which catalyzes cleavage of		
		N-terminal signal sequences of		
		proteins targeted to the secretory		
		pathway; homologous to mammalian		
		SPC22/23; protein coding		
YGR082W	TOM20	Component of the TOM (translocase	-1.82	-1.29
		of outer membrane) complex		

		responsible for recognition and initial		
		import steps for all mitochondrially		
		directed proteins; acts as a receptor		
		for incoming precursor		
		proteins Tom20p; protein coding		
YORF	Gene	Description	Fold	Fold
Toru	Gene		change	change
			$mvo1\Lambda$	$chs2\Lambda$
<b>RNA</b> processing			myor <u></u>	
YDL051W	LHP1	Lhp1p RNA binding protein required	-2.05	-1.87
		for maturation of tRNA and snRNA		
		precursors: acts as a molecular		
		chaperone for RNAs transcribed by		
		polymerase III: homologous to		
		human La (SS-B) autoantigen:		
		protein coding		
YGR129W	SYF2	Component of the spliceosome	2.06	1.85
		complex involved in pre-mRNA		
		splicing; involved in regulation of		
		cell cvcle progression Svf2p; protein		
		coding		
YLR107W	REX3	RNA exonuclease; required for	1.95	-1.29
		maturation of the RNA component of		
		RNase MRP; functions redundantly		
		with Rnh70p and Rex2p in		
		processing of U5 snRNA and RNase		
		P RNA; member of RNase D family		
		of exonucleases Rex3p; protein		
		coding		
YER032W	FIR1	Fir1p Protein involved in 3' mRNA	-1.74	2.52
		processing, interacts with Ref2p;		
		potential Cdc28p substrate; protein		
		coding		
YFL001W	DEG1	Deg1p Non-essential	-1.36	1.42
		tRNA:pseudouridine synthase,		
		introduces pseudouridines at position		
		38 or 39 in tRNA, important for		
		maintenance of translation efficiency		
		and normal cell growth, localizes to		
		both the nucleus and cytoplasm;		
		protein coding		
YHR163W	SOL3	6-phosphogluconolactonase,	-2.14	-1.27
		catalyzes the second step of the		
		pentose phosphate pathway; weak		
		multicopy suppressor of los1-1		
		mutation; homologous to Sol2p and		

		Sol1p Sol3p; protein coding		
YIL038C	NOT3	Not3p Subunit of the CCR4-NOT	1.58	1.59
		complex, which is a global		
		transcriptional regulator with roles in		
		transcription initiation and elongation		
		and in mRNA degradation; protein		
		coding		
YORF	Gene	Description	Fold change <i>myo1</i> ∆	Fold change <i>chs2</i> ∆
Signal transduction				
YNL173C	MDG1	Mdg1p Plasma membrane protein involved in G-protein mediated pheromone signaling pathway; overproduction suppresses bem1 mutations; protein coding	2.07	1.88
YDR085C	AFR1	Afr1p Alpha-factor pheromone receptor regulator, negatively regulates pheromone receptor signaling; required for normal mating projection (shmoo) formation; required for Spa2p to recruit Mpk1p to shmoo tip during mating; interacts with Cdc12p; protein coding	3.65	1.44
YER118C	SHO1	Sho1p Transmembrane osmosensor, participates in activation of both the Cdc42p- and MAP kinase-dependent filamentous growth pathway and the high-osmolarity glycerol response pathway; protein coding	-1.74	-1.02
YOR134W	BAG7	Bag7p Rho GTPase activating protein (RhoGAP), stimulates the intrinsic GTPase activity of Rho1p, which plays a role in actin cytoskeleton organization and control of cell wall synthesis; structurally and functionally related to Sac7p; protein coding	1.89	2.59
YOR101W	RAS1	GTPase involved in G-protein signaling in the adenylate cyclase activating pathway, plays a role in cell proliferation; localized to the plasma membrane; homolog of mammalian RAS proto- oncogenes Ras1p; protein coding	-2.29	-2.60

YJL005W	CYR15	Adenylate cyclase, required for	2.58	3.71
		cAMP production and cAMP-		
		dependent protein kinase signaling:		
		the cAMP pathway controls a variety		
		of cellular processes including		
		metabolism cell cycle stress		
		response stationary phase and		
		sporulation/Cyr1p: protein coding		
VORF	Cone	Description	Fold	Fold
IUM	Gene	Description	change	change
			$m_{vo}1\Lambda$	chs2A
DNA replication			my01	CIISZA
YDR054C	CDC34	Cdc34plUbiauitin-conjugating	1.64	1 95
I DR034C	CDC54	enzyme (F2) and catalytic subunit of	1.04	1.55
		SCE ubiquitin_protein ligase complex		
		(together with Skn1n Rhy1n		
		Cdc53n and an E-box protein) that		
		regulates cell cycle progression by		
		targeting key substrates for		
		degradation: protein coding		
VOP074C	CDC21	Cdc21p Thymidylate synthese	2.46	1.40
10K0/4C	CDC21	required for de nove biosynthesis of	-2.40	-1.40
		nurimidina daevurihonualaatidaa		
		expression is induced at C1/S:		
		expression is induced at G1/S,		
		protain adding		
VODE	G	protein coding	T.L.	E.U
YORF	Gene	protein coding Description	Fold	Fold
YORF	Gene	protein coding Description	Fold change	Fold change
YORF	Gene	protein coding Description	Fold change <i>myo1</i> ∆	Fold change chs2∆
YORF Sporulation VNI 202W	Gene	Perceriscomal 2.4 diaport Co.4	Fold change <i>myo1</i> ∆	Fold change <i>chs2</i> ∆
YORF Sporulation YNL202W	Gene SPS19	protein coding Description Peroxisomal 2,4-dienoyl-CoA reductees auxiliary engune of fetty	Fold change myo1∆	Fold change <i>chs2∆</i> 3.29 1.24
YORF Sporulation YNL202W	Gene SPS19	Peroxisomal 2,4-dienoyl-CoA reductase, auxiliary enzyme of fatty	Fold change <i>myo1</i> ∆	Fold change <i>chs2∆</i> 3.29 1.24
YORF Sporulation YNL202W	Gene SPS19	Peroxisomal 2,4-dienoyl-CoA reductase, auxiliary enzyme of fatty acid beta-oxidation; homodimeric	Fold change myo1∆	Fold change <i>chs2∆</i> 3.29 1.24
YORF Sporulation YNL202W	Gene SPS19	Peroxisomal 2,4-dienoyl-CoA reductase, auxiliary enzyme of fatty acid beta-oxidation; homodimeric enzyme required for growth and anomulation on petropolineate	Fold change myo1∆	Fold change <i>chs2∆</i> 3.29 1.24
YORF Sporulation YNL202W	Gene SPS19	Peroxisomal 2,4-dienoyl-CoA reductase, auxiliary enzyme of fatty acid beta-oxidation; homodimeric enzyme required for growth and sporulation on petroselineate modium: currence induced during	Fold change myo1∆	Fold change <i>chs2∆</i> 3.29 1.24
YORF Sporulation YNL202W	Gene SPS19	Peroxisomal 2,4-dienoyl-CoA reductase, auxiliary enzyme of fatty acid beta-oxidation; homodimeric enzyme required for growth and sporulation on petroselineate medium; expression induced during late anomalation and in the presence of	Fold change myo1∆	Fold change chs2∆ 3.29 1.24
YORF Sporulation YNL202W	Gene SPS19	Peroxisomal 2,4-dienoyl-CoA reductase, auxiliary enzyme of fatty acid beta-oxidation; homodimeric enzyme required for growth and sporulation on petroselineate medium; expression induced during late sporulation and in the presence of	Fold change myo1∆	Fold change chs2∆ 3.29 1.24
YORF Sporulation YNL202W	Gene SPS19	Peroxisomal 2,4-dienoyl-CoA reductase, auxiliary enzyme of fatty acid beta-oxidation; homodimeric enzyme required for growth and sporulation on petroselineate medium; expression induced during late sporulation and in the presence of oleate Sps19p; protein coding	Fold change myo1∆	Fold change chs2∆ 3.29 1.24
YORF Sporulation YNL202W YORF	Gene SPS19 Gene	protein coding         Description         Peroxisomal 2,4-dienoyl-CoA         reductase, auxiliary enzyme of fatty         acid beta-oxidation; homodimeric         enzyme required for growth and         sporulation on petroselineate         medium; expression induced during         late sporulation and in the presence of         oleate Sps19p; protein coding         Description	Fold change myo1∆	Fold change chs2∆ 3.29 1.24 Fold
YORF Sporulation YNL202W YORF	Gene SPS19 Gene	protein coding         Description         Peroxisomal 2,4-dienoyl-CoA         reductase, auxiliary enzyme of fatty         acid beta-oxidation; homodimeric         enzyme required for growth and         sporulation on petroselineate         medium; expression induced during         late sporulation and in the presence of         oleate Sps19p; protein coding         Description	Fold change myo1∆ Fold change	Fold change chs2∆ 3.29 1.24 Fold change chs2∆
YORF Sporulation YNL202W YORF DNA damage	Gene SPS19 Gene	protein coding         Description         Peroxisomal 2,4-dienoyl-CoA         reductase, auxiliary enzyme of fatty         acid beta-oxidation; homodimeric         enzyme required for growth and         sporulation on petroselineate         medium; expression induced during         late sporulation and in the presence of         oleate Sps19p; protein coding         Description	Fold change myo1∆ Fold change myo1∆	Fold change chs2∆ 3.29 1.24 Fold change chs2∆
YORF Sporulation YNL202W YORF DNA damage response	Gene SPS19 Gene	protein coding         Description         Peroxisomal 2,4-dienoyl-CoA         reductase, auxiliary enzyme of fatty         acid beta-oxidation; homodimeric         enzyme required for growth and         sporulation on petroselineate         medium; expression induced during         late sporulation and in the presence of         oleate Sps19p; protein coding         Description	Fold change myo1∆ Fold change myo1∆	Fold change chs2∆ 3.29 1.24 Fold change chs2∆
YORF Sporulation YNL202W YORF DNA damage response YNL178W	Gene SPS19 Gene RPS3	Peroxisomal 2,4-dienoyl-CoA reductase, auxiliary enzyme of fatty acid beta-oxidation; homodimeric enzyme required for growth and sporulation on petroselineate medium; expression induced during late sporulation and in the presence of oleate Sps19p; protein coding <b>Description</b>	Fold change myo1∆ Fold change myo1∆	Fold change chs2∆ 3.29 1.24 Fold change chs2∆
YORF Sporulation YNL202W YORF DNA damage response YNL178W	Gene SPS19 Gene RPS3	protein coding         Description         Peroxisomal 2,4-dienoyl-CoA         reductase, auxiliary enzyme of fatty         acid beta-oxidation; homodimeric         enzyme required for growth and         sporulation on petroselineate         medium; expression induced during         late sporulation and in the presence of         oleate Sps19p; protein coding         Description         Protein component of the small (40S)         ribosomal subunit bas	Fold change myo1∆ Fold change myo1∆	Fold change chs2∆ 3.29 1.24 3.29 1.24 Fold change chs2∆ -2.81
YORF Sporulation YNL202W YORF DNA damage response YNL178W	Gene SPS19 Gene RPS3	Peroxisomal 2,4-dienoyl-CoA reductase, auxiliary enzyme of fatty acid beta-oxidation; homodimeric enzyme required for growth and sporulation on petroselineate medium; expression induced during late sporulation and in the presence of oleate Sps19p; protein coding <b>Description</b> Protein component of the small (40S) ribosomal subunit, has anurinic/anvrimidinic (AP)	Fold change myo1∆ Fold change myo1∆	Fold change chs2∆ 3.29 1.24 3.29 1.24 Fold change chs2∆ -2.81
YORF Sporulation YNL202W YORF DNA damage response YNL178W	Gene SPS19 Gene RPS3	protein coding         Description         Peroxisomal 2,4-dienoyl-CoA         reductase, auxiliary enzyme of fatty         acid beta-oxidation; homodimeric         enzyme required for growth and         sporulation on petroselineate         medium; expression induced during         late sporulation and in the presence of         oleate Sps19p; protein coding         Description         Protein component of the small (40S)         ribosomal subunit, has         apurinic/apyrimidinic (AP)         andonuclease activity assential for	Fold change myo1∆ Fold change myo1∆ -3.21	Fold change chs2∆ 3.29 1.24 Fold change chs2∆ -2.81

		viability; has similarity to E. coli S3 and rat S3 ribosomal proteins Rps3p; protein coding		
Autophagy				
YPL154C	PEP4	Pep4p Vacuolar aspartyl protease (proteinase A), required for the posttranslational precursor maturation of vacuolar proteinases; important for protein turnover after oxidative damage; synthesized as a zymogen, self-activates; protein coding	3.16	5.40
YDL149W	ATG9	Transmembrane protein involved in forming Cvt and autophagic vesicles; cycles between the phagophore assembly site (PAS) and other cytosolic punctate structures, not found in autophagosomes; may be involved in membrane delivery to the PAS.	1.40	1.66
DNA				
recombination	_			
YML128C	MSC1	Msc1p Protein of unknown function; mutant is defective in directing meiotic recombination events to homologous chromatids; the authentic, non-tagged protein is detected in highly purified mitochondria and is phosphorylated; protein coding	21.10	10.66
Ribosome				
biogenesis				
YOL040C	RPS15	Protein component of the small (40S) ribosomal subunit; has similarity to E. coli S19 and rat S15 ribosomal proteins Rps15p; protein coding	-2.47	-2.64
YORF	Gene	Description	Fold change <i>myo1</i> ∆	Fold change <i>chs2</i> ∆
DNA repair				
YIR002C	MPH1	Member of the DEAH family of helicases, functions in an error-free DNA damage bypass pathway that involves homologous recombination, mutations confer a mutator phenotype Mph1p; protein coding	1.97	1.71

YHRI54W	RTT107	Protein implicated in Mms22-	-2.13	-1.21
		dependent DNA repair during S		
		phase, DNA damage induces		
		phosphorylation by Mec1p at one or		
		more SQ/TQ motifs; interacts with		
		Mms22p and Slx4p; has four BRCT		
		domains; has a role in regulation of		
		Ty1 transposition Rtt107p; protein		
		coding		
YMR173W	DDR48	DNA damage-responsive protein,	4.10	2.67
		expression is increased in response to		
		heat-shock stress or treatments that		
		produce DNA lesions; contains		
		multiple repeats of the amino acid		
		sequence NNNDSYGS Ddr48p;		
		protein coding		
YORF	Gene	Description	Fold	Fold
		-	change	change
			$myoI\Delta$	$chs2\Delta$
Protein			, č	
aminoacid				
phosphorylation				
YLL019C	KNS1	Kns1p Nonessential putative protein	2.24	1.79
		kinase of unknown cellular role;		
		member of the LAMMER family of		
		protein kinases, which are		
		serine/threonine kinases also capable		
		of phosphorylating tyrosine residues:		
		protein coding		
YJR059W	PTK2	Ptk2p Putative serine/threonine	2.88	1.76
		protein kinase involved in regulation		
		of ion transport across plasma		
		membrane: enhances spermine		
		uptake: protein coding		
YJL164C	TPK1	Tpk1plcAMP-dependent protein	2.35	2.25
1021010		kinase catalytic subunit: promotes	2.00	2.20
		vegetative growth in response to		
		nutrients via the Ras-cAMP signaling		
		nathway: inhibited by regulatory		
		subunit Bcv1p in the absence of		
		cAMP: partially redundant with		
		The $2n$ and The $3n$ protein coding		
<b>YII</b> 141C	YAK1	Serine-threenine protein kingse that is	216	1 71
		nart of a glucose-sensing system	2.40	1.21
		involved in growth control in		
		response to glucose availability:		
		response to gracose availability,	1	1

		translocates from the cytoplasm to		
		the nucleus and phosphorylates		
		Pop2p in response to a glucose		
		signal Yak1p; protein coding		
YDR507C	GIN4	Gin4p Protein kinase involved in bud	-1.94	-1.27
		growth and assembly of the septin		
		ring, proposed to have kinase-		
		dependent and kinase-independent		
		activities; undergoes		
		autophosphorylation; similar to		
		Kcc4p and Hsl1p; protein coding		
YORF	Gene	Description	Fold	Fold
		-	change	change
			$myo1\Delta$	$chs2\Delta$
Unknown				
YOL154W	ZPS1	Putative GPI-anchored protein;	-5.09	-3.74
		transcription is induced under low-		
		zinc conditions, as mediated by the		
		Zap1p transcription factor, and at		
		alkaline pH Zps1p; protein coding		
ORF:YPR118W	user defi	user defined node	-3.61	-2.24
	ned			
ORF:YPR045C	user_defi	user_defined_node	2.52	1.52
	ned			
ORF:YPL282C	user_defi	user_defined_node	2.00	2.12
	ned			
ORF:YPL247C	user_defi	user_defined_node	5.51	1.42
	ned			
ORF:YPL230W	user_defi	user_defined_node	10.66	3.01
	ned			
ORF:YPL222W	user_defi	user_defined_node	4.34	2.33
	ned			
ORF:YPL208W	user_defi	user_defined_node	-1.91	-1.62
	ned			
ORF:YPL183C	user_defi	user_defined_node	-1.82	-2.20
	ned			
ORF:YPL004C	user_defi	user_defined_node	5.26	1.56
	ned			
ORF:YOR394W	user_defi	user_defined_node	1.88	2.28
	ned			
ORF:YOR285W	user_defi	user_defined_node	2.73	2.25
	ned			
ORF:YOR220W	user_defi	user_defined_node	3.05	4.70
	ned			
ORF:YOR173W	user_defi	user_defined_node	10.14	3.38
	ned			

ORF:YOR147W	user_defi ned	user_defined_node	1.89	2.37
ORF:YOR054C	user_defi ned	user_defined_node	2.88	2.22
ORF:YOR052C	user_defi ned	user_defined_node	1.49	1.35
YBR158W	AMNI	Amn1p Protein required for daughter cell separation, multiple mitotic checkpoints, and chromosome stability; contains 12 degenerate leucine-rich repeat motifs; expression is induced by the Mitotic Exit Network (MEN); protein coding	41.50	2.68
YFR040W	SAP155	Protein that forms a complex with the Sit4p protein phosphatase and is required for its function; member of a family of similar proteins including Sap4p, Sap185p, and Sap190p Sap155p; protein coding	2.46	-1.20
YBR302C	COS2	Cos2p Protein of unknown function, member of the DUP380 subfamily of conserved, often subtelomerically- encoded proteins; protein coding	2.77	1.56
YNL336W	COS1	Cos1p Protein of unknown function, member of the DUP380 subfamily of conserved, often subtelomerically- encoded proteins; protein coding	2.07	2.11
YML132W	COS3	Cos3p Protein involved in salt resistance; interacts with sodium:hydrogen antiporter Nha1p; member of the DUP380 subfamily of conserved, often subtelomerically- encoded proteins; protein coding	2.97	1.59
YIL136W	OM45	Om45p Protein of unknown function, major constituent of the mitochondrial outer membrane; located on the outer (cytosolic) face of the outer membrane; protein coding	9.36	4.09
YDR436W	PPZ2	Ppz2p Serine/threonine protein phosphatase Z, isoform of Ppz1p; involved in regulation of potassium transport, which affects osmotic stability, cell cycle progression, and halotolerance; protein coding	1.69	1.06

YOL030W	GAS5	1,3-beta-glucanosyltransferase, has	1.32	-1.27
		similarity to Gas1p; localizes to the		
		cell wall Gas5p; protein coding		
YDR451C	YHP1	One of two homeobox transcriptional	-2.81	1.02
		repressors (see also Yox1p), that bind		
		to Mcm1p and to early cell cycle box		
		(ECB) elements of cell cycle		
		regulated genes, thereby restricting		
		ECB-mediated transcription to the		
		M/G1 interval Yhp1p; protein coding		
YOL084W	PHM7	Phm7p Protein of unknown function,	24.22	1.74
		expression is regulated by phosphate		
		levels; green fluorescent protein		
		(GFP)-fusion protein localizes to the		
		cell periphery and vacuole; protein		
		coding		
YHR076W	PTC7	Mitochondrially localized type 2C	-1.83	-1.31
		protein phosphatase; expression		
		induced by growth on ethanol and by		
		sustained osmotic stress; possible role		
		in carbon source utilization in low		
		oxygen environments Ptc7p; protein		
		coding		
YFL062W	COS4	Cos4p Protein of unknown function,	2.51	1.76
		member of the DUP380 subfamily of		
		conserved, often subtelomerically-		
		encoded proteins; protein coding		
YJR127C	ZMS1	Rsf2p Zinc-finger protein involved in	2.08	1.82
		transcriptional control of both nuclear		
		and mitochondrial genes, many of		
		which specify products required for		
		glycerol-based growth, respiration,		
		and other functions; protein coding		
YOR276W	CAF20	Caf20p Phosphoprotein of the mRNA	-1.95	-2.29
		cap-binding complex involved in		
		translational control, repressor of		
		cap-dependent translation initiation,		
		competes with eIF4G for binding to		
		eIF4E; protein coding		
YNL074C	MLF3	Mlf3p Serine-rich protein of	1.60	3.17
		unknown function; overproduction		
		suppresses the growth inhibition		
		caused by exposure to the		
		immunosuppressant leflunomide;		
		protein coding		

YER150W	SPI1	GPI-anchored, serine/threonine rich	10.46	1.79
		cell wall protein of unknown		
		function; basal expression requires		
		Msn2p/Msn4p; expression is induced		
		under conditions of stress and during		
		the diauxic shift; similar to		
		Sed1p Spi1p; protein coding		
YGR295C	COS6	Cos6p Protein of unknown function,	2.01	2.76
		member of the DUP380 subfamily of		
		conserved, often subtelomerically-		
		encoded proteins; protein coding		
YLR183C	TOS4	Tos4p Transcription factor that binds	-2.48	-1.26
		to a number of promoter regions,		
		particularly promoters of some genes		
		involved in pheromone response and		
		cell cycle; potential Cdc28p		
		substrate; expression is induced in G1		
		by bound SBF; protein coding		
BUD28	user defi	user defined node	-2.05	-1.29
	ned			
IMD1	user defi	user defined node	-2.88	-3.23
	ned			0.20
ORF:YAL061W	user defi	user defined node	8.92	10.34
	ned		0.52	10101
ORF:YBL009W	user defi	user defined node	-2.12	1.27
	ned			
ORF:YBL029C-	user defi	user defined node	1.69	1.24
A	ned			
ORF:YBL064C	user defi	user defined node	7.09	3.08
	ned			
ORF:YBL108C-	user defi	user defined node	1.58	2.48
А	ned			_
ORF:YBL112C	user defi	user defined node	1.74	3.95
	ned			
ORF:YBR052C	user defi	user defined node	2.53	1.91
	ned			
ORF:YBR116C	user defi	user defined node	34.48	1.61
	ned			_
ORF:YBR187W	user defi	user defined node	-2.04	-2.35
	ned			
ORF:YBR261C	user defi	user defined node	-2.47	-1.38
010112102010	ned		,	1.00
ORF:YCL021W-	user defi	user defined node	2.86	-1.16
A	ned		2.00	1.10
ORF·YCR099C	user defi	user defined node	1.63	1 39
	ned		1.00	1.00
			1	1

ORF:YDL025C	user_defi ned	user_defined_node	3.07	4.15
ORF:YDL124W	user_defi ned	user_defined_node	2.54	2.61
ORF:YDL187C	user_defi ned	user_defined_node	-2.05	1.35
ORF:YDL204W	user_defi ned	user_defined_node	18.67	2.80
ORF:YDR070C	user_defi ned	user_defined_node	6.50	3.35
ORF:YDR117C	user_defi ned	user_defined_node	-1.68	1.88
ORF:YDR479C	user_defi ned	user_defined_node	1.83	-1.21
YGR236C	SPG1	Protein required for survival at high temperature during stationary phase; not required for growth on nonfermentable carbon sources; the authentic, non-tagged protein is detected in highly purified mitochondria in high-throughput studies Spg1p; protein coding	5.34	1.18
ORF:YDR533C	user_defi ned	user_defined_node	6.99	1.59
YDL223C	HBT1	Hbt1p Substrate of the Hub1p ubiquitin-like protein that localizes to the shmoo tip (mating projection); mutants are defective for mating projection formation, thereby implicating Hbt1p in polarized cell morphogenesis; protein coding	7.30	2.07
ORF:YEL067C	user_defi ned	user_defined_node	-3.02	1.64
ORF:YER030W	user_defi ned	user_defined_node	-1.69	1.20
ORF:YFL030W	user_defi ned	user_defined_node	2.33	1.57
ORF:YFR017C	user_defi ned	user_defined_node	6.03	1.49
ORF:YGL039W	user_defi ned	user_defined_node	-2.62	-1.29
ORF:YGL045W	user_defi ned	user_defined_node	1.83	2.81
ORF:YGL088W	user_defi ned	user_defined_node	1.88	4.68

ORF:YGL102C	user_defi ned	user_defined_node	-3.21	-1.77
ORF:YGR043C	user_defi ned	user_defined_node	10.55	4.48
ORF:YGR086C	user_defi ned	user_defined_node	4.02	10.06
ORF:YGR111W	user_defi ned	user_defined_node	2.48	1.24
ORF:YGR130C	user_defi ned	user_defined_node	2.37	1.84
ORF:YGR151C	user_defi ned	user_defined_node	-2.03	-1.44
ORF:YGR201C	user_defi ned	user_defined_node	3.50	1.27
ORF:YHL008C	user_defi ned	user_defined_node	3.05	1.62
ORF:YHL035C	user_defi ned	user_defined_node	2.04	2.02
ORF:YHL046C	user_defi ned	user_defined_node	2.06	2.73
ORF:YHR003C	user_defi ned	user_defined_node	-1.97	-1.85
ORF:YHR080C	user_defi ned	user_defined_node	2.00	1.17
ORF:YHR087W	user_defi ned	user_defined_node	12.35	1.69
ORF:YHR097C	user_defi ned	user_defined_node	3.32	2.08
ORF:YHR121W	user_defi ned	user_defined_node	-2.84	-1.61
ORF:YHR138C	user_defi ned	user_defined_node	3.01	2.45
ORF:YHR149C	user_defi ned	user_defined_node	-1.97	-1.70
ORF:YIL077C	user_defi ned	user_defined_node	2.63	2.69
ORF:YIL158W	user_defi ned	user_defined_node	-2.40	-1.32
ORF:YIL176C	user_defi ned	user_defined_node	1.86	2.48
ORF:YIR041W	user_defi ned	user_defined_node	1.75	2.23
ORF:YJL016W	user_defi ned	user_defined_node	3.15	1.58
ORF:YJL048C	user_defi ned	user_defined_node	2.09	1.40

ORF:YJL122W	user_defi ned	user_defined_node	-1.99	-1.42
ORF:YJL142C	user_defi ned	user_defined_node	4.95	1.77
ORF:YJL144W	user_defi ned	user_defined_node	5.79	1.44
ORF:YJR039W	user_defi ned	user_defined_node	2.03	2.84
ORF:YKL027W	user_defi ned	user_defined_node	-1.61	-1.55
ORF:YKL091C	user_defi ned	user_defined_node	3.84	1.71
ORF:YKL151C	user_defi ned	user_defined_node	5.32	3.72
ORF:YKL224C	user_defi ned	user_defined_node	1.79	2.67
ORF:YKR049C	user_defi ned	user_defined_node	2.99	1.82
ORF:YLL020C	user_defi ned	user_defined_node	3.29	2.09
ORF:YLL029W	user_defi ned	user_defined_node	3.05	2.25
ORF:YLR040C	user_defi ned	user_defined_node	-1.95	-1.48
ORF:YLR126C	user_defi ned	user_defined_node	-2.35	1.43
ORF:YLR149C	user_defi ned	user_defined_node	6.56	1.99
ORF:YLR270W	user_defi ned	user_defined_node	4.29	3.13
ORF:YLR312C	user_defi ned	user_defined_node	6.35	19.21
ORF:YLR324W	user_defi ned	user_defined_node	1.64	1.21
ORF:YLR345W	user_defi ned	user_defined_node	4.21	2.19
ORF:YLR454W	user_defi ned	user_defined_node	2.58	1.76
ORF:YML117W	user_defi ned	user_defined_node	2.16	2.04
ORF:YML125C	user_defi ned	user_defined_node	-2.09	-2.03
ORF:YMR009W	user_defi ned	user_defined_node	1.89	4.00
ORF:YMR031C	user_defi ned	user_defined_node	3.06	1.59

ORF:YMR041C	user_defi ned	user_defined_node	1.98	7.89
ORF:YMR090W	user_defi ned	user_defined_node	8.00	7.29
ORF:YMR103C	user_defi ned	user_defined_node	3.95	4.30
ORF:YMR110C	user_defi ned	user_defined_node	3.03	1.43
ORF:YMR130W	user_defi ned	user_defined_node	-1.83	-1.51
ORF:YMR140W	user_defi ned	user_defined_node	1.90	1.43
ORF:YMR158C- B	user_defi ned	user_defined_node	3.18	1.13
ORF:YMR173W -A	user_defi ned	user_defined_node	3.01	1.82
ORF:YMR181C	user_defi ned	user_defined_node	1.92	3.63
ORF:YMR188C	user_defi ned	user_defined_node	2.31	1.26
ORF:YMR196W	user_defi ned	user_defined_node	6.29	5.04
ORF:YMR262W	user_defi ned	user_defined_node	1.88	1.58
ORF:YMR304C- A	user_defi ned	user_defined_node	-4.73	-1.99
ORF:YNL080C	user_defi ned	user_defined_node	1.43	3.26
ORF:YNL115C	user_defi ned	user_defined_node	3.02	1.90
ORF:YNL134C	user_defi ned	user_defined_node	4.30	2.43
ORF:YNL156C	user_defi ned	user_defined_node	2.48	1.21
ORF:YNL195C	user_defi ned	user_defined_node	11.68	1.19
ORF:YNR047W	user_defi ned	user_defined_node	2.78	1.23
ORF:YOL019W	user_defi ned	user_defined_node	-2.33	2.55
YLR093C	NYV1	Nyv1p v-SNARE component of the vacuolar SNARE complex involved in vesicle fusion; inhibits ATP- dependent Ca(2+) transport activity of Pmc1p in the vacuolar membrane; protein coding	1.71	2.72

ORF:YOL083W	user_defi	user_defined_node	2.09	1.43
	ned			
ORF:YOL087C	user_defi	user_defined_node	2.09	1.61
	ned			
YMR215W	GAS3	Gas3p Putative 1,3-beta-	-2.25	-1.50
		glucanosyltransferase, has similarity		
		to Gas1p; localizes to the cell wall;		
		protein coding		
ORF:YOR019W	user_defi	user_defined_node	5.11	4.73
	ned			
ORF:YOR051C	user_defi	user_defined_node	-1.88	-2.16
	ned			
YDL024C	DIA3	Dia3p Protein of unknown function,	3.91	1.86
		involved in invasive and		
		pseudohyphal growth; protein coding		