
METHODS
Recording. Multi-electrode extracellular recordings were obtained in vitro from

a segment of isolated, peripheral macaque monkey retina, using preparation and

recording methods described previously15,26. Analysis was restricted to two

physiologically defined classes of cells; on the basis of light response properties

and density, these were identified as ON and OFF parasol cells27. The cells shown

were recorded in a square region of retina covered by 76 electrodes. A standard

clustering-based spike-sorting procedure (see refs 15, 26) was used to estimate

the number of units, and least-squares regression of the estimated spike times

against multi-electrode voltage signal was used to estimate multi-electrode spike
waveforms for each unit. Although this approach correctly and efficiently iden-

tifies isolated spikes, when two cells fire within a 1–2-ms window, the clustering

approach can fail to identify the presence of both spikes. We solved this problem

by using estimates of the elementary waveforms to detect the superposition of

spikes. We performed maximum a posteriori estimation under the model that the

multi-electrode voltage signal was the linear superposition of Gaussian white

noise and the spike trains convolved with their associated spike waveforms, with

a sparse (exponential) prior distribution on the spike trains. This corresponds to

a tractable quadratic optimization problem under linear inequality constraints,

which can be solved efficiently using existing methods. The real-valued solution

vector was then binarized by greedily inserting spikes whenever the reduction in

mean-squared error between predicted and actual voltage exceeded a thresh-

old28. This procedure correctly identified simultaneous spikes in simulated data

sets and corrected obvious cross-correlation artefacts appearing in real data

sorted with standard clustering techniques.

Stimuli. The retina was stimulated with a photopic, achromatic image of a

cathode ray tube display, refreshing at 120 Hz. The stimulus was a spatio-tem-

poral pseudo-random binary sequence, where the intensity of each pixel was
drawn independently from one of two values on each frame. The stimulus pixel

size was 120 3 120mm on the retina, and contrast (standard deviation divided by

mean) was 96%.

Fitting. Model parameters were fitted by maximizing likelihood5 using 7 min of

spiking data recorded during presentation of a non-repeating stimulus. The

parameters for each cell consisted of a stimulus filter k, a spike-history filter h,

a set of incoming coupling filters {li} and a constant (specifying the log of the

baseline firing rate) m. The filter k was a 750-dimensional vector (5 3 5 spatial

pixels 3 30 time bins), parametrized using a lower-dimensional representation

as a rank-2 matrix: k(x, y, t) 5 ks,1(x, y)kt,1(t) 2 ks,2(x, y)kt,2(t), with ks,i(x, y)

denoting a spatial filter (25 parameters) and kt,i(t) a temporal filter (10 para-

meters), giving 2 3 35 5 70 parameters. A rank-3 representation did not

improve performance. These filters closely resembled a time-varying differ-

ence-of-Gaussians30; spatial filters were well-approximated (in a least-squares

sense) by Gaussians, which were used to plot spatial ellipses shown in Fig. 1 and

to summarize receptive field properties (Supplementary Figs 2 and 3). Gaussians

fit to receptive field centres and surrounds had average standard deviations of

0.25 pixels and 0.7 pixels (1.0 pixels for the uncoupled model), respectively.
Temporal filters h and {li} and the temporal components of k were represented

using a basis of raised cosine ‘bumps’ of the form bj(t) 5

(1/2)cos(alog[t 1 c] 2 wj) 1 (1/2) for t such that alog(t 1 c) g [wj 2 p, wj 1 p]

and 0 elsewhere, with constants a and c set by hand to watch the structure

observed in auto- and cross-correlation functions, and p/2 spacing between

the wj (see Supplementary Information). This basis allows for the representation

of fine temporal structure near the time of a spike and coarser/smoother depend-

ency at later times (see ref. 22). The h filter was represented with ten such basis

vectors, and the li coupling filters were represented with four. The ‘uncoupled

model’ was fitted independently without coupling filters {li}, and the inhomo-

geneous Poisson model (Fig. 4) was fitted without {li} or h.

Conditional intensity (spike rate) is given by l tð Þ~exp k:xzh:yzðP
ili
:yi

� �
zmÞ, where x is the stimulus, y the cell’s own spike-train history, m

is the cell’s baseline log-firing rate, and {yi} the spike-train histories of

other cells at time t. The population log-likelihood is the sum over single-cell

log-likelihoods, each given by L~
P

log l tsp

� �
{l tð Þdt , where tsp denotes the

set of spike times and the integral is taken over the length of the experiment4,5.

We added a penalty of the form {a
Ð P

i li tð Þ2
�� ��1=2

dt to eliminate unnecessary

coupling filters (using a constrained Newton–Raphson algorithm to maximize

the penalized log-likelihood), which regularizes and prevents overfitting. The

regularization parameter a was selected by means of cross-validation on a novel

5-min data set, but results were robust with respect to both a and the choice of

basis. (This reduced the number of coupling filters from 702 to 243 and reco-

vered a roughly pairwise-adjacent structure; see Supplementary Information.)

Correlations. Spike responses of full and uncoupled models were simulated

with the same 20-min stimulus (144,000 samples) presented experimentally.

Pairwise cross-correlations were computed in 1-ms bins, according to

C(t) 5 [Æy1(t)y2(t 1 t)æ 2 Æy1(t)æ Æy2(t)æ]/(Æy2(t)ædt), where y1(t) denotes the

spike response of the first neuron in bins of width dt, and Æ?æ denotes averaging

over t. Triplet correlations were computed in 5-ms bins according to

C(t1, t2) 5 [Æy1(t)y2(t 1 t1) y3(t 1 t2)æ 2 Æy1(t)æ Æy2(t)æ Æy3(t)æ]/(Æy2(t)æ Æy3(t)ædt).

Encoding. Spike-train prediction was validated using the log-likelihood of novel

spike trains under both models, computed on 5 min of data not used for fitting or

setting a. The difference of log-likelihood under the model and log-likelihood

under a homogeneous Poisson process,
P

log �ll tsp

� �
{
Ð

�ll tð Þdt (where
�ll~nsp

�
T is the mean spike rate), divided by nsp, gives prediction accuracy in

bits per spike for each cell25. Repeat rasters were obtained using 200 presentations

of a novel 10-s stimulus, and the time-varying average response (PSTH) was

computed in 1-ms bins, smoothed with a Gaussian kernel of width s 5 2 ms.

Conditional rasters were obtained from the coupled model by holding the res-

ponses of all but one neuron fixed, and sampling from the model-induced

probability distribution on the remaining neuron’s response. Samples were

obtained by the Metropolis–Hastings algorithm, with spike ‘proposals’ drawn

from a point process model as described in ref. 29. We kept only every 100th

output sample of the algorithm to ensure independent samples.

Decoding. We decoded the population response using the Bayes’ least-squares

estimator, computed under each model (fully coupled, uncoupled with spike-

history terms, and inhomogeneous Poisson) using 6,000 different 18-sample

single-pixel stimulus segments (validation data that were not used for fitting).

Each stimulus xi (an 18-dimensional binary vector, given by the time series of

light intensities for a centrally located stimulus pixel) was decoded by first

extracting yi, the multi-neuronal spike response portion that was causally influ-

enced by this stimulus. For each model, and for every one of the 218 possible

binary xj, we then computed pj 5 p(yijxj), the likelihood of the observed popu-

lation response given that it was generated by stimulus xj. By Bayes’ rule, the

posterior is p(xjjyi) / p(yijxj)p(xj), and the prior p(xj) here is constant across

binary stimuli. Thus, the posterior is proportional to pj, and the Bayes’ least-

squares estimate is given by x̂xi~
P

pj xj

� �� P
pj

� �
. We also performed decoding

on longer (30-sample) stimulus segments, where exhaustive evaluation of these

sums is no longer tractable: in this case we used Gibbs sampling from p(xjjyi) to

approximately evaluate the sum. The results obtained using both methods were

similar.

Linear decoding was performed using the optimal linear estimator6, with the

same training data as for model fitting. Decoding performance was quantified

using the log SNR of each technique: log xix
T
i

� ��� ��. rir
T
j

D E� �
, where ri~x̂xi{xi

denotes the residual error for decoding stimulus vector xi, and jÆ?æj denotes

averaging over i followed by matrix determinant. Breakdown by temporal

frequency was obtained by computing the Fourier power spectra of the stimuli

~xxi vð Þ2 and residuals ~rri vð Þ2, and computing log SNR according to

log ~xxi vð Þ2
� ��

~rr vð Þ2
� �� �

. Integrating this log SNR across frequency,

(1/2)#log SNR(v)dv, gives a commonly used estimate of the mutual informa-

tion between the stimulus and the spike-train response6, which is equivalent to

the quantity shown in Fig. 4b.
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