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This document includes three figures about possible learning procedure for fine parameter tuning, 

numerical proof of Weber’s law and the temporal integration performance of our network model 

with realistic calcium dynamics. The mathematical details of this network model are also described. 

 

 

    
 

Figure S1: Temporal integration in a model with realistic intracellular calcium dynamics 

Calcium dynamics was included into this neuron model to achieve a bistable state in a realistic 

manner. The details of the network model are shown in the final page of Supplementary Information. 

a, Spike raster of 50 neurons in a single trial (upper) and the time evolution of the fraction of 

active-state neurons (lower) are shown. The latter was plotted for several values of the probability of 

spike coincidence, with each averaged across 100 trials The rates of excitatory and inhibitory 

synaptic inputs, which has no spike coincidence at 0t < , were elevated in a stepwise manner at 

0t = . Thus, the synaptic inputs exhibited a constant probability of spike coincidences. Note that the 

spike raster replicated background neuronal firing at t < 0 (upper), for which the fraction of 

active-state neurons remains at a small value (lower) b, The growth rate was plotted as a function of 

the fraction of active-state neurons (upper) or the probability of spike coincidence (lower). In the 

latter, the plots were fitted by the least square method (grey line). 



 
 

Figure S2: Tuning the strength of recurrent connection in temporal bisection task 

Temporal bisection is a psychophysical task widely used to elaborate the percept of interval timing 

by humans and animals (Church and Deluty 1977; Warden 1991; Allan and Gibbon 1999). In the 

typical temporal bisection task, two reference intervals, one short (S) and one long (L), are 

familiarized with by the subject at the beginning of each block of trials. Then, in each test trial, a 

temporal interval T  ( S T T≤ ≤ ) is presented, and the subject is required to judge which interval, 

S or L, T  is closer to. Since humans and animals can solve this task, they are considered to be 

capable of recognizing the arithmetic mean of two intervals. Noting this fact, we demonstrate how 

temporal bisection may be used for training the present network, namely, for adjusting the strength 
of recurrent connection, Rg , in the following simplified version of the bisection task. We trained 

the network to reproduce the half of the presented interval. Each block of trials consists of a 
reference trial and a test trial. In the reference trial, a target interval, RT , was randomly chosen from 

[0.4 s, 0.8 s]. At 0t = , the network started to integrate synaptic inputs of constant intensity with the 
initial number of active-state neurons being zero. At Rt T= , the integration was terminated and the 

number of active-state neurons, say Rn , was registered. We assumed that the neural system 

engaging in temporal bisection is pre-programmed to calculate the half of Rn . In the test trial, the 

network again integrates the same synaptic inputs, and the time point at which the number of 
active-state neurons reached 2Rn  was employed as the subjective bisection time point subjectivet . 

Note that if the temporal integration performed by the network is perfect, subjective 2Rt T= . After 

the test trial, the strength of recurrent connection was modified as R R gg g ε→ + Δ , where 1ε = +  

if subjective 2Rt T>  or 1ε = −  if  subjective 2Rt T< . A similar block is repeated sufficiently many 

times until Rg  converges to a value at which the network accurately perform temporal bisection 

(grey line). In the present simulations, 0.25gΔ =  (arbitrary unit) and the initial value (before 

learning) was 30Rg =  (arbitrary unit). 
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Figure S3: Weber’s law obeyed by the network model 

(a) Schematic illustration of Weber’s law. In reality, the rate of temporal integration varies from trial 

to trial, so does the judgement of a time interval. In the simulations shown here, the probability of 
spike coincidences γ  in each trial was variable and was determined according to a Gaussian 

distribution, 
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with 0 0.3γ =  and 0.1γσ = , and the average μ  and variance σ  of the time needed to 

activate a given number of neurons were measured. The simulations were repeated for different 

target numbers of neurons. (b) The coefficient of variation σ μ  obtained by the simulations is 

shown. The constancy of the plot implies Weber’s law. 

 



Neuron model with realistic calcium dynamics 

ADP current was modelled as ( )ADP ADP ADP ADPI G P V E= − , where ADPP  is the activation 

probability of the current: 
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Intracellular calcium density [Ca2+] obeys 
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where the second term describes the spike-triggered calcium entry to cell body. Parameter values 

were set as 0.07Caτ = sec, 0.5CaΔ =  (scaled unit); 96 10ADPG −= × S, 0.035ADPE = − V, 

0.001onk =  sec, 0.3offk = sec, 1CaK =  (scaled unit). Since 0 1ADPP≤ ≤  and ADPP  is 

close to unity in an actively firing neuron, the number of active-state neurons was defined as 
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