Supplemental Data. Endo et al. (2009). Identifying new components participating in the secondary cell wall Formation of vessel elements in *Zinnia* and *Arabidopsis*.

Α	Ze Ze Zo	TED7-1 TED7-2 TED6	MASPLSQSVFPHFPPPSPAATPPPAPTTPSTPPPHFISPPPHSVPPPSPPHSVPPPLHPV MASHLSQSLFPHFPPPSPAATPPPAPTTPSTPPPHFISPPPHSVPPPSPPHSVPPPLHPV
	26		
	Ze	TED7-1	PPPSPPHPVSPPPHTVPPPSPPHPVSPPPHTVPPPSPPHPVFPPPHTVPPPSP-HFVPPP
	Ze	TED7-2	PPPLPPHSVPPPSHTVPPPSPPHPVSPPPHTVPPPSPPHTVPPPSPPHHVSPP
	Ze	TED6	
	Ze	TED7-1	PNMVPPPSPPHANPPPPPPHSVPPPPHTVPPPPPPHIIPPPAHALSPPPPH <u>IIPPPP</u>
	Ze	TED7-2	PHTVPPPSPPPPYIIPPPPNTVPPPPAPHFVPPPPPPYIIPPPPP
	Ze	TED6	
	Ze	TED7-1	SPSNHSTTIVVIFVSCGGVFFLAFAMAALWCFLKKKKK-KMVQKAENIHFDEHRKVTERI
	Ze	TED7-2	SPSNHSTTIVVIFVSCGGVFFLAFAMAALWCFLKKKKK-KMVRKAENIHFDEHRKVTERI
	Ze	TED6	MATIFIVFVSFGCVFVLGIAAFVLCCLIKKWKCSKAIEKNEMVHVDQHLQVHENI
			:**.::** * **.*.:* .* *::** * * :.* * :.** * :*.*:*
	Ze	TED7-1	EQGPHGTETAILSVEDDIHIEEDIKKSELENFRKGLHLNYGNTYNIDTGKPSSSFGHHYL
	Ze	TED7-2	${\tt EQGPHGTETAILSVEDDIHIEEDIKKSEIEDFRKGLHLNYGNTYNIDTGKPSSSFGHHYL}$
	Ze	TED6	LQGPNGMKTVAITVDDDLHVHDEEECVKNEKLGTASTSKA
			***:* :*. ::*:*:::: . * . * . **:* .
	Ze	TED7-1	HG
	Ze	TED7-2	HG
	Ze	TED6	

Supplemental Figure 1. Comparison of Ze *TED6*, Ze *TED7-1* and Ze *TED7-2*. (A) Amino acid sequences deduced from Ze *TED6*, Ze *TED7-1*, and Ze *TED7-2* cDNAs. Underlines indicate sequences corresponding to Z1943 and Z16653 EST clones. (B) Genotyping of eight individual *Zinnia* plants. Primers were designed to be able to amplify both Ze *TED7-1* and Ze *TED7-2*.

Δ

В

С

Supplemental Figure 2. Comparison of Ze TED6 and Ze TED7 and Counterparts in *Arabidopsis*, *Populus*, and *Oryza*. (A) Full-length amino acid sequences. Bold letters, transmembrane domains by SOSUI prediction; red letters, prolines at N-terminus sides; blue letters, sequences used in the overexpression experiment in Figure 3; underlines, Z1943 and Z16653 clone sequences. Conserved amino acids in C-terminus domains are shown at the bottom (note that Os08g0108300 has two repeats of the C-terminus domains). (B) Comparison of conserved regions on MEGA4 (Tamura et al., 2007) by the neighbor-joining method, bootstrapped (1000), and shown as a rooted tree (midpoint rooting). The duplicated domains of Os08g0108300 were divided (Os08g0108300_1st and _2nd). (C) Sequences used for (B). Reference

Tamura, K., Dudley, J., Nei, M., and Kumar, S. (2007). MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596–1599.

Supplemental Figure 3. Expression Pattern of At *TED6* and At *TED7*. (A) and (B) Promoter activities in seedlings at 3 d after imbibition. GUS reporter expression was examined by X-Gluc staining of At $TED6_{Pro}$:GUS (A) and At $TED7_{Pro}$:GUS (B) lines.

(C) to (H) Expression of YFP fusions under the control of native promoters in roots. YFP signals were observed in differentiating vessel elements in the protoxylem ([C] and [D]) and metaxylem ([E] to [H]) by At TED6_{Pro}:At TED6-YFP ([C], [E], and [G]) or At TED7_{Pro}:At TED7-YFP ([D], [F], and [H]). Bars in (C) for (C) to (H) = 50 μ m.

Supplemental Figure 4. Transient RNAi Analysis on At TED6 and At TED7 in

Arabidopsis Roots. Abnormality represents frequencies of abnormal metaxylem vessel element-forming roots in an average of 20 lateral roots of individual lines (a, b). Lines a and b of At *TED6*, At *TED7*, and At *TED6–TED7* chimera RNAi are T2 plants that have been analyzed by RT-PCR. *YFP* RNAi is a control construct that expresses an inverted repeat of a partial *YFP* nucleotide sequence. Each data point represents the mean of three independent RNAi inductions \pm SD.

- (A) Scalariform (ladder-shaped) metaxylem vessel elements as shown in Figure 5C.
- (B) Gaps in metaxylem vessel strands as shown in Figure 5D.
- (C) Metaxylem vessel elements with large pits as shown in Figure 5E.

Supplemental Figure 5. Transmission Electron Micrographs of the At *TED6–TED7* chimera RNAi Line. Cross sections of transgenic *Arabidopsis* roots of At *TED6–TED7* chimera RNAi ([A] and [C]) and YFP RNAi (B) lines. The plants had been treated to induce RNAi in the same way used in the experiments shown in Figure 5 and Supplemental Figure 4 online. Note that the chimera RNAi plant showed a metaxylem vessel element with extremely thin SCW but no cellular content (asterisks). Bars in (A) and (B) = 10 μ m, in (C) = 2 μ m.

Supplemental Figure 6. Affinity Purification of Anti-At TED6 Antibody.

Characterization of Protein A-purified and affinity-purified anti-At TED6 antibody. The specificity was examined on glutathione-*S*-transferase (GST)-fusion protein and crude extracts of At TED6 RNAi, wild type, and plants showing ectopic TE differentiation by *VND7* overexpression. Numbers on the left indicate size markers (kDa).

Supplemental Table 1. Summary of Single YFP and BiFC Signals in Wild Type and SCW-forming *Arabidopsis* Cells. YFP signals were observed at 18 h and 48 h after the induction of *VND7* expression in leaves biolistically bombarded with the indicated constructs.

Signal: +++, strong intensity and high frequency; ++, moderate intensity and high frequency; +, weak intensity and some frequency; ±, occasionally detected; –, not detected

Construct	Signal		
	Wild type	SCW-forming	
	18 h	18 h	48 h
YFP	+++	+++	+++
At TED6-YFP	++	++	++
YFP-IRX1	_	±	_
YFP-IRX3	_	+	_
YFP-IRX5	_	±	_
At TED6-cYFP, nYFP-IRX1	_	_	_
At TED6-cYFP, nYFP-IRX3	_	+	_
At TED6-cYFP, nYFP-IRX5	_	_	

Supplemental Table 2. Primers Used in This Study.

Target	Forward primer sequence in 5'-3' orientation	Reverse primer sequence in 5'-3' orientation
Zinnia ESTs subcloned in pGEM-T Easy plasmid vector (Promega, http://www.promega.com/) for templates of <i>in vitro</i> RNA transcription.	TGTAAAACGACGGCCAGTGAATTGTAATAC	GAAACAGCTATGACCATGATTACGCCAAG
Ze <i>TED7-1</i> and <i>TED7-2</i> genomic DNA for genotyping.	TTCCCTCATTTTCCACCGCCATC	TGTTGTGGAATGGTTGCTTGGAGA
Ze <i>TED6</i> full-length coding region for protein localization.	CACCATGGCCACCATATTCATTGTTTTCGTGTCA	AGCTTTTGAAGTTGAAGCTGTCCCAAGCTT
Ze <i>TED7</i> full-length coding region for protein localization.	CACCATGGCTTCTCCTCTTTCTCAATCCGTGTTC	GCCATGCAGGTAGTGATGGCCAAAACTGGA
Ze <i>TED6</i> full-length coding region for overexpression.	CACCATGGCCACCATATTCATTGTTTTCGTGTCA	TCAAGCTTTTGAAGTTGAAGCTGTCCCAAG
Ze <i>TED7</i> full-length coding region for overexpression.	CACCATGGCTTCTCCTCTTTCTCAATCCGTGTTC	TTAGCCATGCAGGTAGTGATGGCCAAAACT
Ze <i>TED6</i> C-terminal coding region for overexpression.	CACCATGTTGATCAAGAAATGGAAATGCAG	TCAAGCTTTTGAAGTTGAAGCTGTCCCAAG
Ze <i>TED7</i> C-terminal coding region for overexpression.	CACCATGTGGTGCTTCCTCAAGAAGAAG	TTAGCCATGCAGGTAGTGATGGCCAAAACT
At <i>TED6</i> 5' upstream	CACCGATTGATTCAATAGCCTCACGCTCTGATAC	GGAGGCCATTACTTGTGTTTGATGTGTGAG
At <i>TED7</i> 5' upstream	CACCTGAGAATCAACAAAGATTCCTACGTGTGGC	GGCAGCCATTTTGGGAGTATGTATGTACTT
At <i>TED6</i> promoter and coding region for protein localization.	CACCGATTGATTCAATAGCCTCACGCTCTGATAC	CGAACGGGAAACGACTGATGATCCAACTCC
At <i>TED7</i> promoter and coding region for protein localization.	CACCTGAGAATCAACAAAGATTCCTACGTGTGGC	GGACTTTTGCTCAGTAAAATGATGATTGGG
At <i>TED6</i> full-length coding region for inverted repeat production and BiFC assay.	CACCATGGCCTCCACGGATTCAGTTTACCGTCCC	CGAACGGGAAACGACTGATGATCCAACTCC
At <i>TED7</i> full-length coding region for inverted repeat production.	CACCATGGCTGCCTCTGTGGAATACTTTCCCTAT	GGACTTTTGCTCAGTAAAATGATGATTGGG
<i>IRX1/CesA8</i> coding region for BiFC assay.	CACCATGATGGAGTCTAGGTCTCCCATCTG	TTAGCAATCGATCAAAAGACAGTTCAGAGA
<i>IRX3/CesA7</i> coding region for BiFC assay.	CACCATGGAAGCTAGCGCCGGTCTTGTCGC	TCAGCAGTTGATGCCACACTTGGAAGTGTC
<i>IRX5/CesA4</i> coding region for BiFC assay.	CACCATGGAACCAAACACCATGGCCAGCTT	TTAACAGTCGACGCCACATTGCTTCAGT
At <i>TED6</i> partial cDNA for RT-PCR	AGAGCCTCACACATCAAACACAAG	GGTAACATTATGAATGAAGAAAGCTC
<i>actin2</i> partial cDNA for RT-PCR.	CCGTTTTGAATCTTCCTCAATC	ATACCGGTACCATTGTCACACA
At <i>TED7</i> partial cDNA for RT-PCR.	AACCATTTAAGTACATACATACTCCC	ATGATTGTTTACATTTTGAGCCTTTTG
<i>ubiquitin</i> partial cDNA for RT-PCR.	TCCAATGTGATCCAACAGAGAC	TTCAAAGTCAAAGCCACAACTG
At <i>TED6</i> C-terminal region into <i>Sma</i> I site of pGEX6P-1 plasmid vector for antigen production.	CACCATGTTGATCAAGAAGAGATCCAGGAAGCACCGT	TCACGAACGGGAAACGACTGATGATCCAACTCC