Protein	Molecular Mass	Oligomeric status ^(b)	Putative activity	Organism	Solubility ^(c)
		CpxA kinase			
ClpP1	22.5	tetradecamer	peptidase	M. tuberculosis	soluble
ClpP2	22.9	tetradecamer	peptidase	M. tuberculosis	partly soluble
GFP	27.4	monomer	Green	Aequorea victoria	partly soluble
			Fluorescence		
			Protein		
ΡΑ28α	28	monomer and heptamer	Proteasome	Rat	soluble
			activator		
PAN	50	hexamer	ATPase	Methanococcus	soluble
(Proteasome				jannaschii	
Activating					
Nucleotidase)					
Nemo	51.8	dimer and trimer	ubiquitin binding	Mouse	-

TABLE S2. Features of recombinant proteins.

^(a) Molecular masses were calculated according to the amino acid composition of the recombinant protein and are given in kDa.

^(b) The tetradecameric structure of ClpP1 and ClpP2 in solution is deduced from that of their ClpP homolog in *E. coli* (6). The hexameric structure of PAN was determined by size exclusion chromatography (7) and electron microscopy (5). The monomer–heptamer equilibrium self-association of PA28 α was determined by analytical ultracentrifugation (2) and crystallography analysis (3). Nemo was found to self-associate into a trimer by gel filtration and analytical ultracentrifugation, and X-ray crystallography (4).

^(c) The solubility status was followed in the BL21(DE3) cells based on the presence of the protein in the soluble fraction after a centrifugation at 14,000 g.

- 1. Agou, F., F. Ye, S. Goffinont, G. Courtois, S. Yamaoka, A. Israel, and M. Veron. 2002. NEMO trimerizes through its coiled-coil C-terminal domain. J Biol Chem **277**:17464-75.
- 2. Johnston, S. C., F. G. Whitby, C. Realini, M. Rechsteiner, and C. P. Hill. 1997. The proteasome 11S regulator subunit REG alpha (PA28 alpha) is a heptamer. Protein Sci 6:2469-73.
- 3. Knowlton, J. R., S. C. Johnston, F. G. Whitby, C. Realini, Z. Zhang, M. Rechsteiner, and C. P. Hill. 1997. Structure of the proteasome activator REGalpha (PA28alpha). Nature **390**:639-43.
- 4. Rushe, M., L. Silvian, S. Bixler, L. L. Chen, A. Cheung, S. Bowes, H. Cuervo, S. Berkowitz, T. Zheng, K. Guckian, M. Pellegrini, and A. Lugovskoy. 2008. Structure of a NEMO/IKK-Associating Domain Reveals Architecture of the Interaction Site. Structure 16:798-808.
- 5. Smith, D. M., G. Kafri, Y. Cheng, D. Ng, T. Walz, and A. L. Goldberg. 2005. ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins. Mol Cell **20**:687-98.
- 6. **Wang, J., J. A. Hartling, and J. M. Flanagan.** 1997. The structure of ClpP at 2.3 A resolution suggests a model for ATP-dependent proteolysis. Cell **91:**447-56.
- 7. Zwickl, P., D. Ng, K. M. Woo, H. P. Klenk, and A. L. Goldberg. 1999. An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26 S proteasome, activates protein breakdown by 20 S proteasomes. J Biol Chem 274:26008-14.