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Additional Files

ADDITIONAL DOCUMENTATION

A1. CUMULATIVE DISTRIBUTIONS FOR THE INTERNAL USAGE OF DOMAINS

This section briefly discusses the cumulative histograms of domain usage for data and models. Figure

A1.1 confirms the markedly power-law behavior observed for the histograms and predicted by the model.

Comparison with the predictions of the CRP model (figure A1.2) shows faster decay for α = 0. While in

good agreement with the observed number of domain classes with increasing size (figure 1B), this parameter

choice is unsatisfactory on the quantitative side for the domain distribution in classes. This feature, already

visible in figure 2B of the main text, is even more marked from the cumulative histograms. Better-fitting

values are in the range α = 0.5 − 0.7. The CRP with specific domain classes (figure A1.3) has the same

qualitative behavior as the standard model for the distributions, while fitting well the scaling of the classes

of higher values of α (figure 1B and section A4 below).
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Additional Figure A1.1 Empirical cumulative distributions of domain usage for domain classes of the SUPERFAM-

ILY database. The x-axis reports domain class sizes in number of domains D while the y-axis refers to the histogram

of the number of domain classes containing more than D domains. The left panel is based on the same data on the

327 prokaryotes of figure 2A in the main text. The right panel refers to the 75 eukaryotes in the data set. The genome

sizes are not color-coded to show individual plots.

A2. RESULTS FOR FOLD DOMAIN CLASSES

All data shown in the main text refer to the superfamily taxonomy level, and come from the SUPER-

FAMILY database. In this section, we report the results of the same analysis in terms of SCOP folds,

which show that this category has essentially the same behavior as the previous one (figure A2.4). While

by definition there are more superfamilies than folds, the number of domain classes versus genome size has

very similar scaling in the two cases. The two plots collapse almost exactly, when folds are rescaled by the
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Additional Figure A1.2 Cumulative histograms of domain usage for 50 realizations of the CRP at genome sizes

between 500 and 8000. Increasing values of α are plotted in lexicographic order.
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Additional Figure A1.3 Cumulative histograms of domain usage for 100 realizations of the CRP with specific classes

at genome sizes between 1000 and 8000. In this size range the model variant produces essentially identical distribu-

tions to the conventional CRP, with better agreement on the growth in terms of domain classes (see section A4). The

left panel is color-coded as figure 2B of the main text.

ratio (1443/884) of superfamilies per folds (A2.5). Furthermore, power-law fits of the experimental data for

prokaryotes yield an exponent α between 0.3 and 0.4 for both categories, and logarithmic fits are also in

agreement.
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Additional Figure A2.4 Top: Number of fold classes versus genome size measured by number of proteins and as

number of distinct domains. The plot in the left panel is equivalent to figure 1A, except that the x-axis reports number

of proteins scored in the genome, rather than genome size in domains. Since these two quantities are quite markedly

linearly related (right panel), using either parameter does not affect the observed trends. Bottom: histogram (left panel)

and cumulative histogram (right panel) of domain classes for all genomes in the data set (eukaryotes, prokaryotes and

archaea).
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Additional Figure A2.5 Comparison of the scaling of folds and superfamilies plot as a function of genome size. The

plots refer to all genomes in the SUPERFAMILY database. The plot for folds (blue small circles) overlaps quite well

with the plot for superfamily (large grey circles) when multiplied by the ratio of the total number of domain classes in

the two taxonomies (1443/884).

A3. DOMAIN CLASSES VERSUS GENOME SIZE IN EUKARYOTES, LONGEST TRANSCRIPT PER

GENE.

The most recent version (1.73) of the SUPERFAMILY genome assignments, provides domain associa-

tions by scoring the longest transcript per gene. Figure A3.6 reports the behavior of the number of domain
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classes in these data. While proteome sizes are overestimated roughly by a factor of two due to alternative

splicing, the collective behavior and the sublinear trend of F (n) do not change.
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Additional Figure A3.6 Plot of the number of domain classes versus genome size, for eukaryotic genomes where

scored sequences correspond to the longest non-overlapping transcript per gene. This avoids double counting of

domains due to splicing variants of the same protein with overlapping sequences.

A4. CRP MODEL WITH SPECIFIC DOMAIN CLASSES AND ANALITYCAL MEAN FIELD EQUATIONS

In this section we discuss the variant of the CRP model introduced in the main text and its analyt-

ical treatment. We first give some more details on the definition of the model. Generically, we con-

sider the following genetic algorithm. For each genome size n, the configuration is a set of M genomes

{g1(n), ..., gM (n)}, where each genome is a set of D domain classes populated by some domains. An

iteration is divided into two steps. A first “proliferation” step generates qM genomes, where q is a pos-

itive integer, {g′
1(n), ..., g

′
qM (n)}, using the standard CRP move. A second “selection” step discards the

(q − 1)M individuals with higher cost.

Additional Figure A4.7 Scheme of the CRP variant with domain specificity. At size n, multiple (two in the figure)

“virtual” moves are generated with a standard CRP model, at fixed parameters. Subsequently, the moves with lowest

cost (one in this case) are selected. In our case, the cost function is chosen by comparing the domain usage of the

model genome with the empirical usage of specific domain families

The cost function, for a generic model genome g, can be a function F(g), that takes into account some

phenomenological features observed in the data. We choose to include in F a minimal amount of empirical
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information on the occurrence of each domain class contained in figure 1C. In other words, we distinguish

between “universal” domain classes, used in most of the genomes, and “contextual” ones, occurring only

in a few examples. As discussed in the main text, this is sufficient to obtain quantitative agreement with the

observed domain distributions (figures 1B and 2B), which are not given to the model as an input. If domain

classes are indexed by i = 1..D (D = 1443 for Superfamilies), we define the variable σgi as follows

σli =

 1 if domain class i is present in genome g

−1 if domain class i is absent in genome g
.

The cost function of that genome is then defined as

F(g) = exp

(
D∑
i=1

σgi 〈σ
EMP
i 〉

)
,

where 〈σEMP
i 〉 is the empirical average of the same observable:

〈σEMP
i 〉 =

1
G

G∑
g=1

σg,EMP
i .

In the above formula G is the number of observed genomes in the data set. For example, in the case of

prokaryotes in the SUPERFAMILY database, G = 327 and, calling Ξi the function plotted in figure 1C, we

have simply 〈σEMP
i 〉 = 2Ξ− 1.

For the analitycal treatment, we considered the case M = 1, q = 2, where at each iteration, one genome

is selected from a population of two. Starting from configuration g(n), in the proliferation step genomes

g
′
, g

′′
are generated with CRP rules, and the selection step chooses g(n+ 1) = argmax(F(g

′
),F(g

′′
)). In

this case, since the selection rule chooses strictly the maximum, it is able to distinguish the sign of 〈σEMP
i 〉

only. For this reason, it is sufficient to account for the positivity (which we label by “+”) and negativity

(“-”) of this function for a given domain index i. Note that this reduces the effective parameters to one only:

the fraction of universal domain classes. The genomes g
′

and g
′′

proposed by the CRP proliferation step

can have the same (labeled by “1”), lower (“1+”) or higher (“1−”) cost than their parent, depending on pO,

pN and by the probabilities to draw a universal or contextual domain family, p+ and p− respectively. Using

these labels, the scheme of the possible states and their outcome in the selection step is given by the table

below.
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proliferation (g
′
, g

′′
) probability selection

(1, 1) p2
O old

(1, 1−) 2 pO pN p− old

(1, 1+) 2 pO pN p+ new+

(1+, 1+) p2
N p2

+) new+

(1+, 1−) 2 p2
N p− p+ new+

(1−, 1−) p2
N p2
− new−

From this table, it is straightforward to derive the modified probabilities p̂O and p̂N of the complete

iteration:

p̂O = pO (pO + 2 pNp−)

p̂N = pN (pN + 2 pOp+) = pN+ + pN− ,

where pN+ = pNp+(2 − pNp+) and pN− = p2
N (1 − p+)2 are the probabilities that the new domain is

drawn from the universal or contextual families respectively.

We now write the macroscopic evolution equation for the number of domain families using the same

procedure as in the main text. Calling k+(n) and k−(n) the number of domain classes that have positive or

negative 〈σEMP
i 〉 and are not represented in g(n),

∂nF (n) = p̂N

∂nk
+(n) = −p̂N+

∂nk
−(n) = −p̂N−

.

Now, p+ = k+/(k− + k+) = k+/(D − F (n), so that we can rewrite


∂nF (n) = (αF (n)+θ

n+θ )
[
αF (n)+θ
n+θ + 2k+(n)

D−F (n)(
n−αF (n)
n+θ )

]
∂nk

+(n) = −(αF (n)+θ
n+θ ) k+(t)

D−F (n)

[
2− (αF (n)+θ

n+θ ) k+(n)
D−F (n)

]
∂nk

−(n) = −(αF (n)+θ
n+θ )2 ( k+(n)

D−F (n))
2

(1)

The above equations have the following consistency properties

• ∂n
(
k+ + k− + F

)
= 0, hence k+ + k− + F = D ∀n.

• ∂nF ≤ 1, hence F (n) ≤ n.
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Additional Figure A4.8 Numerical solutions of the mean-field equations of the CRP model with selection of specific

domain classes. Left panel: cost function F(n) for different values of α. Right panel: F(n) plotted in linear and

logarithmic (inset) scales.

• ∂nF ≥ 0, ∂nk+ ≥ 0 and ∂n(F + k+) ≥ 0 so that F grows faster than k+ decreases.

Choosing the initial conditions from empirical data n0, F (n0) size and number of domain classes of the

smallest genome, we have, since F (n0) < n0 and α ≤ 1,

αF (n0) + θ

n0 + θ
< 1 .

It is simple to verify that under this condition the system always has solutions that relax to a finite value

F∞ < D. Indeed, after the time n∗ where k+(n∗) = 0, the equations reduce to ∂nk+ = 0, k− = D − F

and

∂nF (n) =
(
αF (n) + θ

n+ θ

)2

immediately giving our result.

Numerical solutions of Eq. (1) give the same behavior for F (n) as the direct simulations (figures A4.8A,

and figure 1B of the main text). In particular, while this function grows as a power law for small genome

sizes, it saturates at the relevant scale, giving good agreement with the data. This behavior is connected

to the finite size of the pool of universal domain families, which we can interpret as the effect of a certain

optimality in the core functions of the different organisms. The internal laws of domain usage of this model

were obtained from direct simulations only, and, as discussed in the main text, give a more quantitative

agreement with the data (figure 2B of the main text). Finally, one interesting point can be made about the

dynamics of the cost function. Figure A4.8B, shows that, for large values of α (above 0.7) this function

reaches a maximum at sizes between 2000 and 4000. This is also where most of the genomes in the data

set are found, indicating that this range of genome sizes may allow the optimal usage of universal and

contextual domain families.
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A5. OTHER VARIANTS OF THE CRP

We discuss here mean-field arguments for the robustness of our results on the asymptotics of F (n) for

two variants of the original model, including a small domain loss rate and global duplications.

a. Global Duplications. One can consider the presence of global duplication moves. At each time step, if

duplication is chosen, a number of domains selected with q > 1 trials from a binomial distribution with

parameter piO is duplicated in the same time step. The innovation step remains the same. In this case, it

is not possible to measure time with the size n of the genome, but this observable follows the evolution

equation

ṅ = qpO + pN , (2)

where ˙ indicates the derivative with respect to time t. In terms of t, our mean field equations are worked

out simply as Ḟ (t) = pN and K̇i(t) = qpiO. Using Eq. (2), they can be simply converted in terms of n,

yielding

∂nF (n) =
αF (n) + θ

qn+ (q − 1)αF (n) + θ
,

and

∂nKi(n) =
Ki − α
n+ θ

q

.

The first equation gives as leading scaling F (n) ∼ n(α/q), showing that the growth of F is pushed towards

effectively lower values of α by global duplications, as a consequence of the rescaling of time by the

global moves. The dynamics for Ki, instead, is affected only by a renormalization of the parameter θ. The

qualitative results of the model are therefore stable to the introduction of a global duplication rate, in the

hypothesis that the extent of these duplications does not scale with n.

b. Domain Loss. A second interesting variant of the model considers the introduction of a homogeneous

domain deletion, or loss rate. Domain loss is known to occur in genomes. However, it is not considered in

our basic model for simplicity and economy of parameters. In order to introduce it in the CRP, we define

a loss probability pL = δ. This is equally distributed among domains, so that the per class loss probability

is piL = δKi
n . Consequently, the duplication and innovation probability pO and pN are rescaled by a factor

(1− δ). The mean-field evolution equation for the number of domain classes becomes

Ḟ (t) = (1− δ)αF + θ

n+ θ
− δF (1, n)

n
,
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where the sink term for F derives from domain loss in classes with a single element, quantified by F (1, n).

In order to solve this equation, one needs an expression for F (1, n). Here, we report an argument based

on the fact that in direct simulation of the model, for large n, F (1, n) = γF (n), with 0 < γ < 1 (data

not shown). This trend is also confirmed by the empirical data. Using this experimentally motivated ansatz,

we can show that for small δ, the scaling of F (n) is subject only to a small correction. In the model

including domain deletions, more genomes of the same history can have the same size. Again, since model

time t (which should be regarded as a fictitious variable, with a complex relation with evolutionary time in

generations) does not correspond genome size, one has to consider the evolution of n with t, given in this

model simply by ṅ = 1 − 2δ. Using this equation it is possible to obtain the evolution equation for F (n).

Considering an expansion in small δ and large n, this reads to first order

∂nF (n)
F (n)

=
α

n

[
1 + δ

(
α− γ
α

)]
.

The above equation gives the conventional scaling for F (n), with the aforementioned correction. Note that

the correction could be positive or negative, depending on the relative values of α and γ. An analogous

argument holds for α = 0.


