Supplementary Material for:

An endonuclease-generated DNA break induces antigenic switching in *Trypanosoma brucei*

Catharine E. Boothroyd¹*, Oliver Dreesen²*, Tatyana Leonova¹, K. Ina Ly¹, Luisa M. Figueiredo², George A.M. Cross², and F. Nina Papavasiliou¹

¹Laboratory of Lymphocyte Biology and ²Laboratory of Molecular Parasitology, The Rockefeller University, New York, NY 10065, USA *These authors contributed equally to this work.

Supplementary Figure Legends

Supplementary Figure S1 Supplementary Figure S2 Supplementary Figure S3 Supplementary Table S1

Supplementary Figure Legends

Supplementary Figure S1: Processing of the I-Scel-induced DSB. a,

Sequences of the 70-bp repeat regions from the 70.II (*VSG* 221 ES) cell line (top, black) and *VSG* 224 ES (bottom, red). The I-Scel RS is underlined. Regions homologous to the primer used for sequencing (in b) are indicated in bold. Sequencing results from the five clones that switched to *VSG* 224 (shown in b) indicate loss of the I-Scel RS, exonucleolytic degradation of ~500 bp of the *VSG* 221 ES (recipient, to the region highlighted in blue), and invasion of the first homologous region in the *VSG* 224 ES proximal to the *VSG* (donor, region highlighted in gray). **b**, Sequencing results of the five clones that switched to *VSG* 224 ES are shown in black and red, respectively. There are several regions with polymorphisms (blue), such as the one shown to the right.

Supplementary Figure S2: Loss of the VSG 221 sub-telomeric region in the switched clones. The sub-telomeric region from the switched clones was amplified with primers specific to the VSG 221 sub-telomeric region (shown in Fig. 3a). Only the parental line (PA) retains this region. Amplification of *tubulin* is shown as a control.

Supplementary Figure S3: Correct integration of the I-Scel RS. a, Schematic representation of restriction sites and expected fragments used to verify integration of the I-Scel RS. **b**, Southern blot analyses showing clones in which the integration of the I-Scel RS was verified by digestion with *Xho*I and I-Scel and probing with Puromycin (circled bands). Up to 21 clones were screened for each cell line.

Supplementary Table S1: Summary table of VSG donors in 18 independent switching events. The VSG genes expressed in the switched clones were duplicated from silent ESs and mini-chromosomes. Like-colored boxes represent clones expressing the same VSGs.

Supplementary Figure S1

a Primer: ggagagtgttgtgagtgtg

70.II (VSG 221 ES)

VSG 224 ES

b	VSG 221	TGTTGTGA<mark>GTGTGTGTATATACGAATATTATAATAA</mark>gagcagtaataataataataatga	[]	
	VSG 224	tgttgtaa <mark>gtgtgtgtatatacgaatattataataa</mark> GTAATGATAGTAATAGTAAAAAATA	[]	AAATAACACACCA
	CI. 2	TGTTGGTGAGTGTGTGTATATACGAATATTATAATAAGAGCAGTAATGATAGTAATAGTAAAAA.	[]	AAATAACACACCA
	CI. 3	TGTTGTGAGTGTGTGTATATACGAATATTATAATAA <mark>GTAATGATAGTAATAGTAAAAAATA</mark>	[]	AAAATACACACCA
	Cl. 4	TGTTGTGAGTGTGTGTATATACGAATATTATAATAAGAGCA <mark>GTAATGATAGTAATAGTAAAAAT</mark> i	[]	AAATAACACACCA
	Cl. 22	TGTTGTGAGTGTGTGTATATACGAATATTATAATAA <mark>GTAATGATAGTAATAGTAAAAATA</mark>	11	AAA-TACCCACCA
	Cl. 25	TGTTGTGAGTGTGTGTATATACGAATATTATAATAA <mark>GTAATGATAGTAATAGTAAAAAATA</mark>	[]	AAAATAACACACCA

Clone #	Donor VSG					
	MITat	Hertz-Fowler ⁶	Lab-Specific Name	Location	GenBank	
					Number	
2	1.3	427-3	224	BES7/TAR153	AY935575	
3	1.3	427-3	224	BES7/TAR153	AY935575	
4	1.3	427-3	224	BES7/TAR153	AY935575	
7	1.8	427-8	1.8	BES12/TAR29	AY935574	
10	1.1	427-1	060	Chr.5	X56761	
11	1.9	427-9	V02	BES2/TAR129	AY935573	
12	1.6	427-6	121	BES3/TAR15	X56764	
16				Chr.11	XM_824682	
18				Chr.11	XM_824682	
19	1.11	427-11	bR-2	BES15/TAR126	AY935571	
22	1.3	427-3	224	BES7/TAR153	AY935575	
25	1.3	427-3	224	BES7/TAR153	AY935575	
28		427-23		Mini-chromosome	FJ98214	
30	1.9	427-9	V02	BES2/TAR129	AY935573	
31		427-24		Mini-chromosome	FJ98212	
32	1.8	427-8	1.8	BES12/TAR29	AY935574	
34	1.1	427-1	060	Chr.5	X56761	
42		427-25		Mini-chromosome	FJ98213	