

Supplemental Figure 1 | Pathways explored downstream of AKT. Light boxes, pathways altered by T-Ag or t-Ag expressed in TtH cells used in the cellmixing assay of tumour maintenance. Black boxes, pathways altered using the indicated (red lettering) molecules (see reference 4).

Supplemental Figure 2 | Confirmation of disruption of pathways downstream of AKT. (*Left*) Protein levels assessed by immunoblot of the indicated proteins in PI3K-TtH^{LacZ} cells expressing the indicated proteins or shRNA. *non-specific bands. (*Right*) Subcellular localization and protein analysis by immunofluorescence. The indicated transgenes were expressed in PI3K-TtH^{LacZ} cells. Mutant HA-FOXO3a-A3 demonstrates appropriate localization to the nucleus, and expression of mutant IKKα^{K44A} results in exclusion of p65 from the nucleus.

Supplemental Figure 3 | Confirmation of eNOS knockdown and complementation by eNOS^R proteins. mRNA levels assessed by RT-PCR of eNOS in PI3K-TtH^{LacZ} expressing scramble control or eNOS shRNA and complemented with either vector or shRNA-resistant eNOS (eNOS^R) in the wildtype (WT) or S₁₁₇₇A mutant configuration. GAPDH: RT-PCR control.

Supplemental Figure 4 | Confirmation of HRas knockdown and complementation by HRas^R proteins. Protein levels assessed by immunoblot of endogenous HRas and NRas, total or GTP-bound wildtype (WT) or C₁₁₈S shRNA-resistant FLAG-HRas^R in PI3K-TtH^{LacZ} cells expressing a scramble control sequence of HRas shRNA and the indicated trangenes. Tubulin serves as a loading control.

Supplemental Figure 5 | Confirmation of eNOS knockdown and complementation by eNOS^R proteins. Protein levels assessed by immunoblot of ectopic (ect) and endogenous (end) S1177phosphorylated eNOS (p-eNOS) in Ras^{G12V}-TtH cells expressing a scramble control sequence or eNOS shRNA with vector, wildtype, or S₁₁₇₇A RNAi-resistant eNOS (eNOS^R). Tubulin: loading control.

Supplemental Figure 6 | Tumour growth depends upon S_{1177} of eNOS. Tumour volume versus time of Ras^{G12V}-TtH cells expressing scramble (\Box) or eNOS shRNA with vector (\blacksquare), wildtype (\blacktriangle) or $S_{1177}A$ (\bullet) RNAi-resistant eNOS. n=4, error bars = s.e.m., *p<0.001: (\Box) versus (\bullet).

Supplemental Figure 7 | $eNOS^{4}$ mice have fewer tumours induced by DMBA/TPA. Mean number of tumors per $eNOS^{+/+}$ (\Box) versus $eNOS^{-/-}$ (\blacksquare) mouse versus time after initial application of DMBA. n=15, *p<0.01.

Supplemental Figure 9 | Knockdown of eNOS inhibits tumour growth of MIAPaCa-2 cells. Left, Protein levels assessed by immunoblot of GTP-bound endogenous HRas, KRas, and NRas, and phosphorylated eNOS (p-eNOS) in , and as loading controls,total HRas, NRas, and HRas, and tubulin (*left*) and excised tumours or tumour growth versus time (*right*) of MIAPaCa-2 cells expressing a scramble control sequence (□) or eNOS shRNA (■). n=4, error bars=s.e.m *p<0.05.

Supplemental Figure 10 | Oncogenic KRas with a C₁₁₈S mutation remains tumorigenic. Excised tumours of TtH cells expressing KRas^{G12V} or KRas^{G12V,C118S}.

Supplemental Figure 11 | Tumour growth of CFPac-1 cells depends upon C₁₁₈ of HRas. Tumour volume versus time of CFPac-1 cells expressing scramble (\Box) or HRas shRNA with vector (\blacksquare), wildtype (\blacktriangle) or C₁₁₈S (\bullet) RNAi-resistant HRas. n=4, error bars=s.e.m., *p<0.001: (\Box) versus (\bullet).

Supplemental Figure 12 | Tumour growth of CFPac-1 cells depends partly upon C₁₁₈ of NRas. Tumour volume versus time of CFPac-1 cells expressing scramble (\Box) or NRas shRNA with vector (\blacksquare), wildtype (\blacktriangle) or C₁₁₈S (\bullet) RNAi-resistant NRas. n=4, error bars=s.e.m., *p<0.001: (\Box) versus (\bullet).

Supplemental Figure 13 | Tumour growth of MIAPaCa-2 cells depends upon C₁₁₈ of HRas. Protein levels assessed by immunoblot of HRas, or tubulin as a loading control (*left*), and excised tumours and tumour growth versus time (*right*) of MIAPaCa-2 cells expressing a scramble control (scram, \Box) or HRas shRNA in conjunction with vector control (vector, \blacksquare) or FLAG-HRas engineered to be resistant to RNAi (HRas^R) in the wildtype (WT, \blacktriangle) or C₁₁₈S mutant (C₁₁₈S, •) configuration. n=5, error bars=s.e.m. *p<0.05: (\Box) versus (•).

Supplemental Figure 14 | HRas is required for anchorage independent growth of CFPac-1 cells. CFPac-1 cells expressing a scramble control or HRas shRNA in conjunction with vector control or HRas engineered to be resistant to RNAi (HRas^R) in the wildtype (WT) or C₁₁₈S mutant configuration were assayed for growth in soft agar (% of scramble control colonies±s.e.m.,from duplicate experiments in triplicate).

HRas^{G12V}

