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1. Metrics. Let the model pattern of interest be m(x) and the
corresponding observed pattern be o(x). The mean squared
error (MSE) in m(x) is defined as

MSE�m , o� �
1
N�

k�1

N

�mk � ok�
2 [S1]

where there are N spatial points. We transform this performance
measure to a (dimensionless) spatial skill score (SS) by normal-
izing:

SS�1 �
MSE�m , o�

MSE�o� , o�
. [S2]

A model field identical to observations has a skill score of 1. Our
metrics are based on variables with different units; using this skill
score allows us to compare them. We normalize by MSE(o� , o),
where the overbar indicates the spatial mean; as a result, a global
model that predicts the correct mean in a limited region, but only
as a completely featureless, uniform pattern, yields a spatial skill
score of 0. Temporal variability is evaluated by using spatial
patterns of temporal behavior.

The skill score can be decomposed as (1):

SS � rm,o
2 � �rm,o � �sm/so��

2 � ��m� � o� � /so�
2 [S3]

where rm,o is the product moment spatial correlation coefficient
between the model and observations, and sm and so indicate the
sample standard deviation of the model and observations,
respectively. The first term on the right hand side (RHS) of Eq.
S3 is just the square of the pattern correlation between the model
and observations. The second term is the ‘‘conditional bias,’’ and
expresses the degree to which a spatial regression between the
model and observed patterns has a slope that differs from unity
(1). The third term is the ‘‘unconditional bias,’’ and proportional
to the square of the mean error normalized by the standard
deviation of the observations. The sense of the decomposition is
such that the SS has a starting value of the correlation squared,
with deductions taken for any conditional or unconditional
biases.

We form metrics for seasonal December-January-February
(DJF), March-April-May (MAM), June-July-August (JJA), and
September-October-November (SON) averages of tas and pr,
the amplitude and phase of the annual harmonic, and the
temporal standard deviation of the seasonal data averaged into
1-, 5-, and 10-year blocks. To avoid any possible influence of an
anthropogenic climate signal on the standard deviations, we
detrended the time series before computing the standard devi-
ations. This process gives 32 seasonal metrics (4 per season for
tas and pr), plus 4 seasonal cycle metrics (phase and amplitude
for tas and pr).

The western U.S. is strongly affected by the El Nino/Southern
Oscillation (ENSO) and Pacific Decadal Oscillation (PDO)
modes of natural climate variability. Model PDO indices were
computed as the standardized principal component (PC) of the
leading empirical orthogonal functions (EOF) of cold season
November through March surface temperature anomalies. To
obtain the ‘‘PDO pattern’’ for each model, we correlated the
model’s PDO index with ts (limited to the freezing point of
seawater) at each point over the North Pacific. We did the same
for observations. The metric for the PDO pattern was then

obtained by applying the method described in section Metrics of
the main text to the observed and model PDO patterns. Tele-
connections between the PDO and tas and pr in our region of
interest (the western U.S.) were evaluated by correlating the
PDO index to those variables over the western U.S. This process
results in 3 metrics for the PDO. The ENSO index was computed
as the standardized PC of the leading EOF of ts in a box from
110o E to the coast of South America, 23o S to 23o N. The ‘‘ENSO
pattern’’ and western U.S. teleconnection patterns in tas and pr
were calculated as done for the PDO, yielding another 3 metrics
for ENSO. All told, we used 42 metrics.

2. Construction of Fig. 3. Fig. 3 in the main text shows �SS as
progressively more realizations from either the same model
(blue) or randomly selected different models (red) are added to
the ensemble average. The blue whiskers are computed as in Fig.
1. I.e., if a model has 4 realizations available, 3 estimates of �SS
for n � 3 were computed: the average of runs (1, 2, 3), (1, 2, 4),
and (2, 3, 4).

The red whiskers are calculated with different models in-
cluded in the ensemble average, however, the first (and only the
first) realization included is always taken from the model
indicated in the title. Consider again the case where a model has
4 realizations available and we are estimating �SS for n � 3. The
first model added to the ensemble average is a randomly selected
realization from the model indicated in the title. The second
model added to the ensemble average is randomly chosen from
the available models, but must be different from the model
indicated in the title. A random realization is chosen to use from
this model. The third model chosen is randomly selected from
the available models, subject to the constraint that it be different
from both the first and second models. And again, a random
realization from this model is selected to be used. This procedure
is repeated 500 times for each N and the results used to construct
the red whisker.

3. Subsets of metrics. The model metrics were constructed without
any attempt to avoid over-counting similar aspects of model
performance. For example, consider DJF pentadal standard
deviation of tas, DJF decadal standard deviation of tas, and JJA
mean pr. One would imagine that the first 2 of these are
considerably more similar to each other than to the last one. If
so, �SS would be overly influenced by DJF tas variability.

One way to address this problem is to construct EOFs of the
skill score array shown in Fig. S2. Retaining only the leading
modes accounts for most of the variance between the model
metrics, while reducing the number of model skill measures from
the 42 original, co-varying metrics to a few retained (and
orthogonal) EOFs.

A drawback of this approach is that EOF-based techniques
work on anomalies. Up to now, our evaluation has been in terms
of absolute model errors with respect to the observations.
Switching to an anomalous analysis means that results will
instead be relative to the average model error. In other words,
the EOFs will give the most compact and orthogonal set of
metrics for differentiating the models from each other, rather
than for describing absolute model skill.

As illustrated in Fig. S7 for an idealized case with only 2
metrics, the total model error is the multimodel mean error
(shown by the ‘‘X’’) plus deviations from the mean as described
in direction by the EOFs and in magnitude by the associated PCs.
Worst case, if an EOF (plus mean) is perpendicular to the
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direction toward the perfect skill point (e.g., EOF ‘‘A’’ in Fig.
S7), that mode would say little about model skill in simulating the
observations. In fact, the best model skill would be at PC � 0,
and both positive and negative PC values would indicate worse
models. In general, if the angle between the EOF and the perfect
skill point is not 90 ° (e.g., EOF ‘‘B’’ in Fig. S7), travel along the
direction indicated by the EOF will initially result in travel
toward the perfect skill point, indicating increasing model skill.
It is also possible that continued travel in this direction will result
in approaching the perfect skill point as closely as possible, and
then in travel away from the perfect skill point. In theory then,
no simple mapping exists between results of model skill from an
EOF analysis (or any analysis based on relative model errors)
and absolute model skill.

The EOFs and associated PCs of our metrics array are shown
in Fig. S8. The Top Left shows the mean model skill score. Two
particular problem areas across the models are the representa-
tion of low-frequency temperature variability in spring and the
seasonal amplitude of precipitation. As expected, the EOFs
reflect these mean errors. The eigenspectrum is shown in the
Bottom Left, along with the sampling uncertainties (2). Asterisks
denote modes that are nondegenerate with the subsequent
mode. The first and second modes are distinct, whereas the third,
fourth, and fifth modes are degenerate with each other, but
separate from the noise tail. Between them, the first 5 modes
capture just under 90% of the variance (Fig. S8, Bottom Right),
consistent with the suggestion that 42 metrics overstates the
number of independent measures of model quality.

The leading EOF shows greatest expression in the springtime
temperature variability (particularly on the annual and 5-year
timescales) and amplitude of the seasonal cycle of precipitation,
which suggests that those problems may be causally linked in the
models. As noted above, one of the potential problems with the
EOF analysis is that the scatter of model errors might be
perpendicular (in metrics space) to the direction toward perfect
skill. This angle is shown in the title of each EOF. For the first
EOF, the angle is nearly 45 °, which indicates model differences

contribute significantly toward movement toward or away from
perfect skill. The associated PC (Fig. S8 Right) shows many
models do well on this skill measure, but there are 5 or so models
with very poor performance that cause this mode to have the
largest variance. The gray contours shown on the PC plot
indicate distance to the perfect skill point. Between the best and
worst models, the distance varies by 18 units (nondimensional
because this is a distance in metrics space), much more than any
of the higher modes.

The worst-simulated metric, low-frequency (10-year aver-
aged) springtime temperature variability, is described by EOF 2
(Fig. S8). However, the angle between this EOF and the
direction toward perfect skill is nearly 90 ° (87.2 o), so model
differences along this EOF have little effect on overall model
skill. The PC plot shows that the best skills are associated with
a PC value of nearly 0, and model skill worsens in both directions
away from the model mean. The distance varies by less than 3
units between the best and worst models.

Modes 3, 4, and 5 are degenerate with each other, so cannot
sensibly be interpreted individually. As a group they involve
low-frequency temperature variability throughout the year, the
amplitude of the precipitation and phase of the temperature
seasonal cycles, and the temperature teleconnection of the PDO.
ENSO, other aspects of precipitation, and annual temperature
variability have uniformly weak loadings.

Overall, the EOF analysis indicates that 5 independent mea-
sures of model quality capture the majority of the differences
between models, given the strong covariances between the
original 42 metrics. The strongest mode that makes a difference
to model quality links annual and 5-year averaged springtime
temperature variability to the amplitude of precipitation’s sea-
sonal cycle. The least-well simulated metric is 10-yr averaged
springtime temperature variability; the EOF analysis shows that
the spread of errors across models is perpendicular to the
direction of increasing model skill, which suggests that some new
physics or formulation will be required to make progress in
better simulating this phenomenon rather than simple model
tuning.

1. Murphy AH (1988) Skill scores based on the mean square error and their relationships
to the correlation coefficient. Mon Wea Rev 116:2417–2424.

2. North GR, Bell TL, Cahalan RF (1982) Sampling errors in the estimation of Empirical
Orthogonal Functions. Mon Wea Rev 110:699–706.
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Fig. S1. Our western U.S. domain. Symbols indicate centers of the 1 o � 1 o blocks grouped into the 9 mountainous regions analyzed.
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Fig. S2. Portrait plot of model skill scores for each metric. The models are ordered by �, the Euclidian distance from perfect skill, point (1, 1, 1, . . . , 1); � is noted
in the parenthesis (lower values are better). Columns are ordered as described in the text; briefly, the seasonal metrics show skill scores for temperature (T) and
precipitation (P), for the climatological mean pattern (x�), and the standard deviations for the data averaged into 1, 5, and 10-year blocks (�1, �5, and �10,
respectively). The seasonal cycle metrics show the amplitude (A) and phase (�) of the annual harmonic. The ENSO and PDO metrics show the pattern (x�) and the
correlation map of the index with temperature (T) and precipitation (P) over the western U.S.
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Fig. S3. As in Fig. S2, but for the correlation-squared component of the skill score.
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Fig. S4. As in Fig. S2, but for the conditional bias part of the skill score.
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Unconditional Bias
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Fig. S5. As in Fig. S2, but for the unconditional bias (mean error) part of the skill score.
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Fig. S6. The fraction of the time the indicated model is the best when different numbers of metrics are included in the evaluation, from Ninc � 2 to 42 (x axis).
For each value of Ninc, 10,000 random picks of Ninc metrics were made, and the models evaluated on those metrics.
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Fig. S7. Schematic illustrating the behavior of the EOFs of the metrics array, for a simplified case with 2 metrics. EOFs are relative to the multimodel mean
(indicated by the ‘X’). Travel along an EOF that is perpendicular in direction to the perfect skill point (EOF ‘‘A’’) has relatively little effect on overall model skill.
Moving the same distance along EOF ‘‘B’’ has a much larger effect on absolute model skill.
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Fig. S8. Leading EOFs (Left) and PCs (Right) of the model skill score array. EOFs are plotted with the metrics ordered the same way as in Figs. S2–S5, where plus
symbols indicate temperature metrics and triangles indicate precipitation metrics. Contours on the PC plots indicate distance from perfect skill. The angle
between each EOF and the direction to the perfect skill point is shown in the titles (see also Fig. S7).
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Table S1. Models used in this study, a brief indication of their origin (only first institute shown in the case of multiple institutions),
the number of ensemble members with ts/pr and tasmin data (respectively), and the ensemble mean JFM tasmin trend in C/year

Name Origin No. w/ts & pr No. w/tasmin JFM tasmin trend, C/yr

bccr_bcm2_0 Bjerknes Centre Clim. Res., Bergen, Norway 1 1 �0.020
cccma_cgcm3_1 Canadian Centre, Victoria, B.C., Canada 5 5 0.171
cnrm_cm3 Meteo-France, Toulouse, France 1 1 0.124
csiro_mk3_0 CSIRO Atmos. Res., Melbourne, Australia 3 3 0.043
csiro_mk3_5 CSIRO Atmos. Res., Melbourne, Australia 3 3 0.090
gfdl_cm2_0 Geophys. Fluid Dyn. Lab, Princeton, NJ 3 1 �0.051
gfdl_cm2_1 Geophys. Fluid Dyn. Lab, Princeton, NJ 3 3 0.024
giss_aom NASA/Goddard Inst. Space Studies, NY 2 2 0.036
giss_model_e_h NASA/Goddard Inst. Space Studies, NY 5 1 0.037
giss_model_e_r NASA/Goddard Inst. Space Studies, NY 9 1 �0.013
iap_fgoals1_0_g Inst. Atmos. Physics, Beijing, People’s Republic China 3 3 0.103
ingv_echam4 Inst. Geophys. Volcanol., Bologna, Italy 1 1 �0.041
inmcm3_0 Inst. Num. Mathematics, Moscow, Russia 1 1 0.213
ipsl_cm4 Inst. Pierre Simon Laplace, Paris, France 2 2 0.039
miroc3_2_medres Center Climate Sys. Res., Tokyo, Japan 12 12 0.036
miub_echo_g Meteor. Inst. U. Bonn, Bonn, Germany 5 3 0.023
mpi_echam5 Max Planck Inst. Meteor., Hamburg, Germany 4 2 0.086
mri_cgcm2_3_2a Meteor. Res. Inst., Tsukuba, Ibaraki, Japan 5 5 0.008
ncar_ccsm3_0 Nat. Center Atmos. Res., Boulder, CO 8 6 0.070
ncar_pcm1 Nat. Center Atmos. Res., Boulder, CO 4 6 0.068
ukmo_hadgem1 UK Met Office, Exeter, Devon, UK 2 1 �0.009
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