Supporting Information

Reno et al. 10.1073/pnas.0808945106

SI Materials and Methods

Preparation of Genomic DNA. Cultures were inoculated in 2-mL vials containing basal media with 1% dextrin (Fluka) and tryptone (EZmix N-Z-Amine A; Sigma) at pH 3 and 80 °C from frozen stocks of single-colony isolates as reported by Whitaker et al. (1). After 5 days, cultures were transferred to 50 mL of media in 150-mL flasks. After 5 additional days, 15-mL cultures were split evenly into four 500 mL flasks with 250 mL of media and grown to an OD of 0.2 (approximately 7 days). At that time, the majority of cultures was pelleted, resuspended in 10 mM Tris-HCl, 1 mM EDTA, pH 8 (TE) and frozen at -20 °C. The remaining cells were used to start 4 additional 250-mL cultures following the same procedure. For DNA extraction, 10 mL of GES (60 g of guanidine thiocyanate, 4.16 g of EDTA, 0.5 g of N-lauroylsarcosine) and 7.5 mL of ammonium acetate (7.5 M, pH 7.5) were added to the combined resuspended cell pellet in TE. This was inverted to lyse cells and centrifuged at 14,000 imesg for 10 min. The aqueous layer was removed and combined with 10 mL of phenol:chloroform:iso-amyl alcohol at 25:24:1. This was inverted and centrifuged again at 14,000 $\times g$ for 10 min. The remaining aqueous layer was removed, precipitated with isopropyl alcohol, and washed twice with 70% vol/vol EtOH. DNA pellets were resuspended in TE, treated with RNase A, quantified by spectrophotometry, and imaged in an agarose gel.

Genome Sequencing. To ensure accurate identity of isolates, multilocus sequence typing for variable markers, as described by Whitaker et al. (1), was performed on all extracted DNA and compared with previous sequences. All genomes were sequenced at the Joint Genome Institute (JGI) using a combination of 3-, 8-, and 40-kbp libraries. Draft assemblies were made for all genomes, and 6 genomes (excluding L.D.8.5) were finished and annotated by the Los Alamos National Lab and Oak Ridge National Lab using their standard methods.

Closing Assembly of L.D.8.5. The L.D.8.5 draft assembly was closed at the University of Illinois. A draft scaffold of 48 contigs was ordered using a combination of MUMmer3 (2), OSLay (3), and BLAST (4) relative to the L.S.2.15 genome, and an independent assembly was constructed with phred/phrap/consed using minmatch = 30, maxmatch = 55, minscore = 55, and vector_bound = 20, whereas other parameters were left at default (5, 6). Gaps between contigs were closed by editing in consed and by PCR. Possible misassemblies were corrected with Dupfinisher (7) and PCR amplification of duplicated regions.

Clustering Homologous Sequences and Genome Dynamics. All putative ORFs were translated to their respective amino acid sequence and subjected to an all-against-all BLASTp (4) with an expected score of 1×10^{-5} with no filter for high-complexity regions. ORFs were grouped into homologous clusters based on sequence similarity using MCL v1.006 (8) with a cutoff criterion of a normalized bit score of 1 and an inflationary index of 1. To check for ORFs missed by automated tools, the longest representative from each cluster was used as a query for a tBLASTn (4) search against the assembled genome contig. Syntenous matches were detected using a MySQL genome database and BioPerl (9). Matches with >70% identity that maintained synteny were manually annotated as additional ORFs. Nucleotide sequences for each cluster were aligned with T-Coffee v5.65 (10) and manually inspected in MacClade (11). Paralogs clustered by a lenient cutoff in MCL were manually split into independent clusters. Seventy clusters (40 transposon and 30 nonalignable fragments) were excluded from subsequent analyses because the clustering method could not reliably resolve the homologous sequences, the majority of which were transposons and their fragments. Pseudogenes were assigned by comparison to other cluster members. For this analysis, we are unable to distinguish between horizontal gene transfer of highly similar genes among *S. islandicus* individuals and duplications. Therefore, all additional copies of genes found in each cluster are classified as gains of genetic material.

bANI and Phylogenetic Analyses. bANI was calculated using core gene clusters from all 7 *S. islandicus* genomes and *S. solfataricus*. A total of 1,958 alignments for each pseudoreplicate were concatenated, and ANI was calculated as the average of the pairwise number of identities between strains, with gaps treated as missing characters.

For each cluster alignment of 4 or more sequences as well as concatenated alignment of all syntenous core sequences, maximum parsimony and maximum likelihood under the GTR + I + Γ model, were inferred through heuristic searches of 100 random addition sequence replicates in PAUP* v4b10 (12). The robustness of each alignment was determined through nonparametric bootstrap analyses (13) consisting of 1,000 replicates of 10 random addition sequence replicates. The number of individual gene trees that support each node was determined from a consensus phylogeny constructed from the 50% bootstrap consensus trees for each individual gene in PAUP* v4b10 (12).

Divergence Dating. The strict molecular clock was rejected for the concatenated core genome by likelihood ratio tests (P < 0.001). Divergence dates were estimated using the concatenated core alignment and topology from the strain phylogeny. Parameters for the F84 + $\hat{\Gamma}$ model were estimated using *baseml* from Phylogenetic Analysis by Maximum Likelihood (PAML) v4 (14). The branch variance-covariance matrix was calculated with estbranches from Multidistribute v9/25/03 (15) using S. solfataricus as the outgroup. Divergence date estimation was conducted with multidivtime from Multidistribute. Priors for expected ingroup root to tip time, median rate of change, variation on rate, and branch attraction were set to be flat, because little a priori information for S. islandicus is available. Upper bound constraints for each population were based on the onset of geothermal activity for each region: 600 kya for LNP (16) and 640 kya for YNP (17). Burn-in for the Markov-chain Monte Carlo analysis was 5 million generations, with the analysis consisting of an additional 10 million generations sampled every 1,000 generations. The divergence dating analysis was run 10 times with each converging on highly similar results. Errors on dates and rates were calculated by simple error propagation assuming the uncertainty in the dates as shown in Fig. S2.

Geologic dates. Geologic activity in and around the Tehema volcano forms the majority of the geothermal features within LNP, and the volcano became active after a period of dormancy around 600,000 years ago (16). Although the YNP hot spot traces its history across the continent, dating back to 2 million years ago, the upper bound for its current activity in YNP is around 640,000 years ago when the last major caldera-forming eruption began (17). Geological dating of the Kamchatka peninsula suggests that the region has undergone geological activity for ≈ 2.65 million years (18). Attempting to calibrate the Mutnovsky

clade with the proposed age of Mutnovsky Volcano is problematic because it is a composite of 4 coalescing volcanoes with dating limited to the currently active Mutnovsky Volcano (18).

Discussion

Grogan et al. (19) recently used microarrays from *S. solfataricus* to compare gene content among a group of 8 *S. islandicus* strains and found that 1 strain from LNP grouped with strains from Kamchatka. We saw no such relationship. Although comparisons of the data set are difficult because different strains were used, we identified the majority of loci linking LNP to Kam-

- Whitaker RJ, Grogan DW, Taylor JW (2003) Geographic barriers isolate endemic populations of hyperthermophilic Archaea. Science 301:976–978.
- Kurtz S, et al. (1998) Versatile and open software for comparing large genomes. Genome Biol 5:R12.
- Richter DC, Schister SC, Hudson DH (2007) OSLay: Optimal syntenic layout of unfinished assemblies. *Bioinformatics* 23:1573–1579.
- Altschul SF, et al. (1997) Gapped BLAST and psi-BLAST: A new generation of protein database search programs. *Nucleic Acids Res* 25:3389–3402.
- Ewing B, Green P (1998) Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res 8:186–194.
- Gordon D, Abajian C, Green P (1998) Consed: A graphical tool for sequence finishing. Genome Res 8:195–202.
- Han CS, Chain P (2006) Finishing repetitive regions automatically with Dupfinisher. Proceedings of the 2006 International Conference on Bioinformatics and Computational Biology, eds HR A, Valafar H (CSREA Press) Las Vegas, NV, pp 142–147.
- Enright AJ, Van Dongen S, Ouzounis CA (2002) An efficient algorithm for large-scale detection of protein families. *Nucleic Acids Res* 30:1575–1584.
- Stajich JE, et al. (2002) The Bioperl Toolkit: Perl modules for the life sciences. Genome Res 12:1611–1618
- Notredame C, Higgins DG, Heringa J (2000) T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217.

chatka in their analysis as resulting from chance grouping based on strain-specific gene loss. For example, of the 23 genes that link the LNP strain to the Mutnovsky strains in the analysis of Grogan et al. (19), we identified a linked set of 8 genes absent from their LNP strain but present in both of our LNP strains. In our analysis, we assigned this set of 8 genes as strain-specific losses in Y.G.57.14, and M-sub. We therefore conclude that these loci are unlikely to represent genome changes that are locally adaptive to regional populations, as suggested by Grogan et al. (19). Because microarray techniques are limited to analysis of gene loss or divergence relative to a single reference strain, the complete history of genome dynamics is not fully reconstructed.

- 11. Maddison WP, Maddison DR (2005) MacClade: Analysis of Phylogeny and Character Evolution (Sinauer Associates, Sunderland, MA).
- Swofford DL (2003) PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods) (Sinauer Associates, Sunderland, MA), Version 4.
- Felsenstein J (1985) Confidence limits on phylogenies: An approach using bootstrap. Evolution 39:783–791.
- Yang Z (2007) PAML 4: Phylogenetic analysis by maximum likelihood. *Mol Biol Evol* 24:1586–1591.
- Thorne JL, Kishino H (2002) Divergence time and evolutionary rate estimation with multilocus data. Syst Biol 51:689–702.
- Clynne MA, Christiansen RL, Miller CD, Stauffer PH, Hendley JW (2000) Volcano hazards of the Lassen National Park Area, California. U.S. Geological Survey Fact Sheet 022–00.
- Lanphere MA, Champion DE, Christiansen RL, Izett GA, Obradovich JD (2002) Revised ages for tuffs of the Yellowstone Plateau volcanic field: Assignment of the Huckleberry Ridge Tuff to a new geomagnetic polarity event. *Geol Soc Am Bull* 114:559–568.
- Braitseva OA, Melekestsev IV, Ponomareva VV, Sulerzhitsky LD (1995) Ages of calderas, large explosive craters and active volcanoes in the Kuril-Kamchatka region, Russia. *Bulletin of Volcanology* 57:383–402.
- Grogan DW, Ozarzak MA, Bernander R (2008) Variation in gene content among geographically diverse Sulfolobus isolates. Environ Microbiol 10:137–146.

Fig. S1. Physical maps of genome dynamics for 6 *S. islandicus* genomes; L.D.8.5, M.14.25, M.16.27, M.16.4., Y.G.57.14, and Y.N.15.51 and its episomal plasmid. Rings are numbered beginning with the outer ring. Ring 1 shows the location of *S. islandicus* core (light gray) and noncore (dark gray) clusters. Ring 2 shows the locations of viral and plasmid homologs. Ring 3 shows the location of clusters whose distribution cannot be determined by parsimony criteria. Colors represent average pairwise nucleotide identity within each cluster, ranging from less than 70% to greater than 95%, as shown in legend to the left. Ring 4 shows designations of gene gain by each genome (red), gene loss by any other strain or group of strains (blue), and multiple events (orange). Innermost arcs denote the location of the variable region.

Fig. S1 (continued).

Fig. S1 (continued).

Fig. S2. Chronogram for the 7 S. islandicus genomes. Branch length corresponds to time according to the scale. Dashed lines at each node indicate the 95% confidence interval for placements of that node.

DN A S

Table S1. Annotation of gained genes shared within each population

PNAS PNAS

Location	Predicted function	Number/Example			
LNP					
	Hypothetical	6			
	Conserved hypothetical	10			
	Helicase	L.D.8.5_gene1596			
	Ubiquitin-like protein-like	L.D.8.5_gene2079			
	Amine oxidase (copper-containing)	L.D.8.5_gene2664			
	Major facilitator superfamily MFS.1	L.D.8.5_gene808			
	Putative ATPase	L.D.8.5_glimmer00309			
YNP					
	Hypothetical	32			
	Conserved hypothetical	4			
	Xanthine dehydrogenase subunit XdhB	Y.G.57.14_glimmer0057			
	Protein kinase	Y.G.57.14_gene631			
	ATPase	Y.G.57.14_gene2176			
	ATPase	Y.G.57.14_gene370			
	Carbon-monoxide dehydrogenase	Y.G.57.14_gene369			
	Beta-lactamase domain protein	Y.G.57.14_gene275			
	Conserved conjugative plasmid protein	Y.G.57.14_gene2572			
	Amino acid permease-associated region	Y.G.57.14_gene2536			
	Regulatory protein	Y.G.57.14_gene2521			
	Blue (type 1) copper domain protein	Y.G.57.14_gene2212			
	Metallophosphoesterase	Y.G.57.14_gene2172			
Mutnovsky subpopulation					
	Hypothetical	15			
	Conserved hypothetical	9			
	Acetyl-CoA synthetase (acs-1)	M.16.27_gene108			
	Major facilitator superfamily MFS.1	M.16.27_gene109			
	Nitrate reductase alpha subunit	M.16.27_gene110			
	Nitrate reductase beta subunit	M.16.27_gene111			
	Nitrate reductase molybdenum cofactor assembly chaperone	M.16.27_gene112			
	Respiratory nitrate reductase gamma subunit	M.16.27_gene113			
	CRISPR-associated protein Cas6	M.16.27_gene1683			
	Regulatory protein	M.16.27_gene1684			
	Metal-dependent phosphohydrolase: HD subdomain	M.16.27_gene1689			
	CRISPR-associated protein Cas1	M.16.27_gene1694			
	CRISPR-associated protein Cas4	M.16.27_gene1695			
	CRISPR-associated protein Cas6	M.16.27_gene1701			
	CRISPR-associated HD domain protein	M.16.27_gene1704			
	CRISPR-associated helicase Cas3	M.16.27_gene1705			
	CRISPR-associated protein Cas5 family	M.16.27 gene1707			
	CRISPR-associated regulatory protein: Csa2 family	M.16.27 gene1708			
	Aminoacyl-transfer RNA synthetase: class II	M.16.27 gene2641			
North America	· ····································	·····			
	Hypothetical	6			
	Conserved hypothetical	5			
	PilT protein domain protein	Y.N.15.51_gene2563			
	PilT protein domain protein	L.D.8.5_gene1718			
	Membrane protein-like	L.D.8.5 gene1890			
	Transcriptional regulator	L.D.8.5 gene2874			
	PilT protein domain protein	L.D.8.5 gene2875			
	PilT protein domain protein	L D 8 5 gene2877			
	NUDIX hvdrolase	L.D.8.5 gene1854			
Mutnovskv	······································	g=			
	Hypothetical	7			
	Conserved hypothetical	5			
	CopG domain protein. DNA-binding domain protein	M.16.27 gene1673			
	Putative CRISPR-associated protein	M.16.27 gene1677			
	Transcriptional regulator	M.16.27 gene2			
	Conserved conjugative plasmid protein	M.16.27 gene2461			
	PilT protein domain protein	M 16 27 gene2547			
	Death-on-curing family protein	M 16 27 appa2551			
	Hypothetical protein gain	M 16 27 appo2719			
	PilT protoin domain protoin	M 16 27 appa2			
	Pint protein domain protein BilT protein domain protein	N 16 27 anno 450			
	Mothultransforase tune 11	N 16 27 appa 461			
	wennyn ransierase type i i Wydrolocos of tho olinho type	IVI. 10.27_gene461			
	Hydrolases of the alpha type	IVI. 16.27_gene823			

Table S2. Annotation of lost genes shared within each population

PNAS PNAS

Location	Predicted function	Example		
LNP				
	Conserved hypothetical protein	M.16.4_gene2551		
	Squalene phytoene synthase	M.16.4_gene2552		
	Carotene hydroxylase	M.16.4_gene2553		
	Phytoene dehydrogenase-related protein	M.16.4_gene2554		
	PaREP1 domain-containing protein	M.16.4_gene165		
	ABC transporter related	M.16.4_gene1788		
	Binding protein-dependent transport systems	M.16.4_gene1789		
YNP				
	Hypothetical protein	M.16.4_gene945		
	Conserved hypothetical protein	L.D.8.5_gene1879		
	ATPase	M.16.4_gene2583		
	Transcriptional regulator: AbrB family	M.16.4_gene1629		
	Mg2 ⁺ transporter protein: CorA family protein	M.16.4_gene310		
	Hydrogenase expression: HypA	L.S.2.15_gene495		
	ATPase	M.16.4_gene2583		
	DNA-binding 7-kDa protein	Y.N.15.51_gene196		
	PilT protein domain protein	M.16.4_gene1630		
Mutnovsky subpopulation		<u> </u>		
	Hypothetical protein	M.16.4_gene2723		
North America		-		
	Conserved hypothetical protein	M.16.4_gene325		
	Hypothetical protein	M.16.4_gene1665p		
	DNA polymerase: beta domain protein region	M.16.4_gene2596		
	Transposase: IS200-family protein	M.16.4_gene2695		
	Transposase: IS605 OrfB family	M.16.4_gene2693		
	DNA-directed RNA polymerase subunit M	M.16.4_gene70		
	Metallophosphoesterase	M.16.4_gene164		
	Beta-lactamase domain protein	M.16.4_gene408		
	ATPase	M.16.4_gene359		
	Carboxylesterase	M.16.4_gene2432p		
Mutnovsky		<u> </u>		
-	Hypothetical protein	Y.N.15.51_gene374		
	Conserved hypothetical protein	Y.N.15.51_gene2772		
	Conserved hypothetical protein	Y.N.15.51_gene2732		
	Cyclase family protein	Y.N.15.51_gene1734		
	PaREP1 domain-containing protein	Y.N.15.51_gene2555		
	PilT protein domain protein	Y.N.15.51_gene2700		
	PaREP1 domain-containing protein	L.D.8.5_gene1798		
	Metallophosphoesterase	L.D.8.5_gene1866		
	Transcriptional regulator: AbrB family	Y.N.15.51_gene2140		

Table S3. Identified sources of horizontal gene transfer

PNAS PNAS

										M	North	
	L.D.8.5	L.S.2.15	Y.G.57.14	Y.N.15.51	M.14.25	M.16.27	M.16.4	LNP	YNP	subpopulation	America	Mutnovsky
S solfataricus*	40	1/1	27	30	12	22	10	7	10	2	29	15
S. tokodaji*	31	26	17	20	6	16	8	11	13	2	19	10
S. cokodali S. acidocaldarius*	21	20	5	0	2	10	2	6	1	2	1	2
S. actuocatuarius Acidianus*	1	0	J	3	2	4	2	1	1	2	1	2
Motallosphaora*	10	7	2	2	1	2	1	י כ	2	2	5	1
Methanothermehacter	10	2	2	0	1	2	1	2	2	5	J	1
Purobaculum	r	1		1	1	2	1				1	
Thermonlesme	2	I		1	I	2	1			1	I	
Caldivire				1		1		1		I	2	
Caldivirga				1		I		I			Z	
ThermoodilderODdCler	1			I				1				
Thermonium Stevenie	I							I	4			
<i>Stappia</i>									1	4		
Archaeoglobus										1		
Bacillus										1		
Desulfitobacterium										2		
Thermoproteus	1		1	1					1			
Staphylothermus	1											
Pyrococcus	2			1								
Picrophilus	1			1						1		
Anaeromyxobacter		1										
Aeropyrum					1				1			
Opitutaceae						1						
Azoarcus				1								
Burkholderia				1					1			
Hydrogenivirga				1								
Streptococcus				1								
Geobacillus										1		
Clostridium				1								
Methanocaldococcus												1
Mycrocystis											1	
Korarchaeum	1											
pNOB8 ⁺	13	12	9	6		3	15	1	1			
pARN3 ⁺	17	6	5	6		4	1		2		1	
pKEF9 [†]		4	1									1
pHEN7 [†]	1	5			1							2
pKEF9 ⁺							5					
pSSVx ⁺	1	1										
pHVE14 [†]	9	1	4	6	1	3	3		1			1
pSOG1 ⁺	3	2	5	6		3	3					
pSOG2 ⁺		1					2	1	1			
pING1 ⁺	2	2	1	2		1	1		1			
pRN2 [†]					1							
pTC⁺			2				2					
pXZ1 [†]					1							
SSV1 ⁺	2	4	2	2	3		3					
SSV2 [†]	1	2	2	2	2					2		
SSV4 [†]		1			4							
SSV-RH [†]		14	8		4		1					
SSV-Kam1 ⁺		5	2		15		•					
SIRV1 [†]		-	-									
STSV1 [†]				1	•							
ΔΤV				1	2	1						
No hit	87	48	54	77	12	52	46	10	13	9	16	17
ito int	57	-10	57	, ,	14	52	-10	10		5	10	17

*Member of the Sulfolobales.

[†]Genetic elements isolated from Sulfolobus.

Table S4. Rates of gene gain and loss

	Strains								
	L.D.8.5	L.S.2.15	Y.G.57.14	Y.N.15.51	M.14.25	M.16.27	M.16.4		
Substitution rate*	$3.43 imes 10^{-9} \pm 20\%$	$2.86 imes 10^{-9} \pm 20\%$	$2.90 imes 10^{-9} \pm 23\%$	$3.55 imes 10^{-9} \pm 23\%$	$7.86 imes 10^{-9} \pm 18\%$	$9.29 imes 10^{-9} \pm 18\%$	$2.76 imes 10^{-9} \pm 16\%$		
Gain ⁺	0.62 ± 0.13	$\textbf{0.47}\pm\textbf{0.10}$	0.46 ± 0.11	$\textbf{0.56} \pm \textbf{0.13}$	$\textbf{0.50}\pm\textbf{0.09}$	0.82 ± 0.15	0.39 ± 0.06		
Loss [†]	0.25 ± 0.05	0.09 ± 0.02	$\textbf{0.38} \pm \textbf{0.09}$	$\textbf{0.18} \pm \textbf{0.04}$	0.31 ± 0.05	0.34 ± 0.06	0.17 ± 0.03		
Net [†]	0.38 ± 0.08	0.38 ± 0.08	0.08 ± 0.02	0.38 ± 0.09	$\textbf{0.19}\pm\textbf{0.03}$	0.48 ± 0.09	0.22 ± 0.03		
			Рори	llations					
	LNP	YNP	M _{sub}	NA	Mutnovsky				
Substitution rate*	$4.00\times10^{-9}\pm48\%$	$3.72\times10^{-9}\pm39\%$	$4.67\times10^{-9}\pm35\%$	$9.09 imes10^{-9}\pm26\%$	$\textbf{6.77} \times \textbf{10}^{-9} \pm \textbf{16\%}$				
Gain [†]	0.24 ± 0.11	0.23 ± 0.09	0.19 ± 0.06	0.20 ± 0.06	0.08 ± 0.01				
Loss [†]	0.17 ± 0.08	0.13 ± 0.05	0.15 ± 0.05	0.05 ± 0.01	0.018 ± 0.003				
Net [†]	0.07 ± 0.04	0.10 ± 0.04	0.04 ± 0.01	0.14 ± 0.04	0.06 ± 0.01				
			Line	eages [‡]					
	L.D.8.5	L.S.2.15	Y.G.57.14	Y.N.15.51	M.14.25	M.16.27	M.16.4		
Gain [†]	0.37 ± 0.04	0.31 ± 0.03	0.29 ± 0.03	0.33 ± 0.03	0.16 ± 0.02	0.21 ± 0.002	0.18 ± 0.02		
Loss [†]	0.15 ± 0.02	0.09 ± 0.01	$\textbf{0.18} \pm \textbf{0.02}$	0.12 ± 0.01	0.08 ± 0.01	0.09 ± 0.01	0.07 ± 0.01		
Net [†]	0.24 ± 0.02	0.22 ± 0.02	0.11 ± 0.01	0.21 ± 0.02	0.08 ± 0.01	0.12 ± 0.01	0.11 ± 0.01		

PNAS PNAS

*Rates are in substitution per site per year. [†]Rates are in genes per 1,000 years. [‡]Calculated to the point of divergence of the *S. islandicus* populations.