


Supplemental Data

Supplemental Figure 1. Rosiglitazone-induced *in vitro* adipocyte differentiation of cultured SVCs. Inguinal adipose tissue stromal vascular cells were isolated from the wild type and *Lepr*^{db/db} male and female mice and cultured for 7-8 days as described in Materials and Methods. Confluent SVCs cultures were treated with a differentiation medium containing rosiglitazone, insulin and FBS for 3 days and followed by incubation in the same differentiation medium without rosiglitazone for additional 9 days. The differentiated cells were then fixed and stained for cellular lipids with oil-red-O. The overall oil-red-O staining in SVCs from the different donor mice were similar.

Supplemental Figure 2. Correlation of the Image-Pro-Plus (IPP) readouts with the metric values of the cross-sectional areas of isolated adipocytes. Cross-sectional areas of individual adipocytes were measured using the IPP program (IPP-area, X axis). Diameters of the same set of cells were also measured using 100x magnified micrometer ruler. The cross-sectional areas in metric units were then calculated based on the measured diameters (Y axis). The mathematical relationship between the metric values and the IPP values is: area (μm^2) = 0.565 x IPP-area + 449. The correlation coefficient of the two sets of data is r=0.999, p<0.0001.

Supplemental Figure 3. Inguinal adipose tissue morphology of the wild type and $Lepr^{db/db}$ male and female mice Hematoxylin-eosin staining of typical inguinal adipose tissues of 16 week-old wild type and $Lepr^{db/db}$ male and female mice.

Supplemental Table 1: Metabolic and endocrine profiles of 12-week-old male

	Ncr nude	C57BL/6	p (t-test)
Body weight (gm)	25.1±1.9	25.2±1.6	0.87
Body length (cm)	9.1±0.2	9.4±0.2	0.043*
WAT ^a (gm)	$1.4{\pm}0.4$	1.2±0.3	0.31
BAT (mg)	150±39	115±50	0.21
Glucose ^b (mg/dl)	147±16	129±9	0.046*
Insulin ^b (ng/ml)	$2.4{\pm}0.8$	1.5±1.1	0.18
Leptin ^b (ng/ml)	4.9±1.1	5.37±3.3	0.79
Corticosteron ^b (ng/ml)	94±39	25.8±18.8	0.013*
TSH ^b (ng/ml)	1.37±0.34	1.69±0.18	0.085

	Ncr nude and	C57BL/6 mice	(Mean ± SD)
--	--------------	--------------	-------------

^aWAT= total white adipose tissue mass, which is the sum of inguinal, epididymal, retroperitoneal and mesenteric fat mass..

^bBlood samples were collected by cardiac puncture in the basal state (after 5-hr food deprivation).

* indicates p < 0.05, Ncr nude mice vs. C57BL/6 mice in two tailed t-test, n=5.