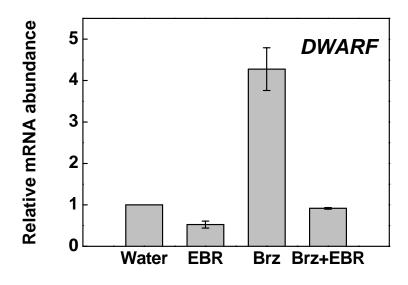
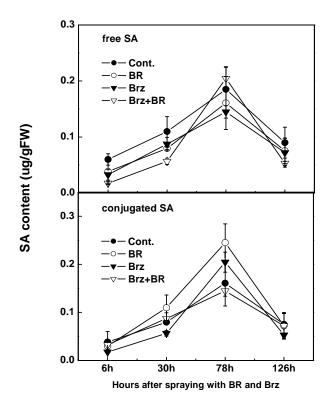


Supplemental Figure 1 Phenotypes of four types of plants with different BR level Cucumber seedlings were treated with 0.1 μ M 24-epibrassinolide (EBR) or 4 μ M brassinazole (Brz) when the cotyledons fully expanded. EBR was applied every 5 days while Brz was applied every two days. To test whether Brz cause any non-specific effects, the seedlings were co-applied with Brz and EBR (Brz+EBR) to see whether the phenotype could be restored.



Supplemental Figure 2. Oxidative symptoms of the PQ-challenged leaves after different treatments. Plants were pretreated with 100 μ M DPI or 5 mM DMTU for 8 h and then plants were treated with 0.1 μ M EBR or 10 mM H₂O₂. After one day plants were challenged with 10 μ M PQ. Single treatment of DPI or DMTU was included as negative control.



Supplemental Figure 3. Images of the maximum PSII quantum yield (Fv/Fm) of PQ-challenged leaves after different time of EBR treatment (A) and different duration of Brz treatment (B).

- (A) PQ (10 μ M) was applied at 3, 6, 12, 24 or 72 h after water, 0.1 μ M EBR or 10 mM H₂O₂ treatment. Time zero points indicate PQ treatment only. Fv/Fm was determined after one day at 600 μ mol m⁻² s⁻¹ and 25 °C.
- (B) Brz (4 μM) treatment started at 7 d, 5 d, 3 d, 1 d, 12 h or 3 h before 10 μM PQ challenge. Brz treatment was repeated on alternative days until PQ challenge. Time zero points indicate PQ treatment only. Fv/Fm was determined after one day at 600 μmol m⁻² s⁻¹ and 25 °C.

Supplemental Figure 4. *DWRF* gene expression in four types of plants with different BR level. The steady-state mRNA levels of *DWARF*, which encodes a BR-6-oxidase, were determined in plant treated with water, EBR, Brz or Brz+EBR

Supplemental Figure 5. SA accumulation after EBR, Brz or Brz+EBR treatment

Gene	Primer pairs
RBOH	F: AAGGTTGCTGTTTATCC
	R: AATGGTCTTGAGTTGGG
MAPK1	F: ATTGATGTGTGGTCTGTAGG
	R:GGAGAGTATGGAAGGGATTT
MAPK3	F: GGAACAGATACGAAGGGGT
	R:TTCAGCAGCAGAAGGACGG
WRKY30	F: CATCTTCACCCTTCTTCAT
	R:CGCATCTCTGCTTCTACTG
WRKY6	F: GAGGAGTTGATAGTGGTGG
	R:TTCTTGCTCTGATTTGGTT
МҮВ	F: AGTGTTAGGCGTGGGAATA
	R:AGAGGTGGGTGTGGTGGTT
МҮС	F: CGAAAAAGAGGGGGGAAAG
	R:AGATAGCATCACCAAGGA
HSP70	F: GTTATTGGGATAGATTTG
	R:GAAGGTGTGATACGGTTT
Dnaj	F: CAAGGAAGGAATGGGAGGT
	R:TGCTGAATCATAGAGGGGC
PR-1	F: AACTCTGGCGGACCTTAC
	R:GACTTCCTCCACACTACT
PAL	F: ACGGTTTGCCTTCTAAT
	R:CATCCTGGTTGTGTGTGC
HPL	F: CTCCTTTCTCGCTTCTCACC
	R:TCAAACGACACGGCATCACT
GST	F: TTTGAGGAGGTGAAGGTAA
	R:ACGCACAAGAAATGTAGAT

 Table I.
 Primers used for real time RT-PCR assays

GPX	F: GTCAAGGATGCTAAAGG
	R: TTGTCAAAAATGGGGTA
POD	F: AGTGCTTGTCCAGGAGTTGA
	R:AGGGATGAAGTGGGATAAAG
CAT	F: ATGCTGGAAGAGGAGGCTAT
	R:ATGGTGAGGACATTTGGGAG
cAPX	F: ATGGGAAAGTGCTACCCTGTT
	R:ACAATGTCCTGGTCCGAAAG
MDAR	F: CTCCTTATGAGCGTCCAG
	R:GTGAAGCCTACAGCGACT
Dwarf	F: ATGAGAGGTGCTCTGCTTGC
	R: TAGATGAGCGGAGAGCCATC
actin	F: TGGACTCTGGTGATGGTGTTA
	R:CAATGAGGGATGGCTGGAAAA

F indicates forward and R indicates reverse.