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Thermodynamic basis for the governing equations

A distribution of states represented by ρ(x, t) is considered to evolve
over time within a one-dimensional energy landscape expressed as a time-

dependent spatial profile U(x, t). The states are noninteracting and, micro-
scopically, each state evolves as a random walk. The extent of the distribu-

tion is x1 < x < x2 and evolution begins at t = 0. The entropy per state
of the “ideal gas” distribution is kT ln[ρ(x, t)/ρ0] where ρ0 is a reference

density at which entropy is zero; the actual value of this parameter is incon-
sequential in the present context. Adoption of the continuum description

presumes that, typically, many steps are required before any particular state
escapes from the bond well. The total free energy of the system is then

E(t) = kT

∫ x2

x1

ρ(x, t)

[

U(x, t) + ln
ρ(x, t)

ρ0

]

dx (1)

at constant temperature T , where k is the Boltzmann constant. As this

expression implies, the interaction energy U is expressed in multiples of kT .
In order to determine the forces at play in driving evolution of this

distribution, form the total time derivative of system free energy. Assuming

the endpoints to be independent of time, this rate is

Ė(t) = kT

∫ x2

x1

{

∂tρ(x, t)

[

U(x, t) + ln
ρ(x, t)

ρ0
+ 1

]

+ ρ(x, t)∂tU(x, t)

}

dx.

(2)
It should be noted that if there would be a flux of states, say j(x2, t) through

the boundary at x = x2, then the energy rate would be augmented by an
additional term of the form

−j(x2, t)kT

[

U(x2, t) + ln
ρ(x2, t)

ρ0
+ 1

]

(3)

to account for loss of energy from within x1 < x < x2 associated with the
flux through the boundary. The same would be true of the boundary at

x = x1.
Suppose that the time dependence of the energy landscape derives from

the fact that an external constraint imposes a deterministic translation in
some way. This translation is represented by x = y(t). A specific case
of this type is treated in the accompanying paper. The landscape is then

time-dependent only through the time dependence of y(t) so that

∂tU(x, t) = ẏ(t)∂y(t)U(x, t) . (4)
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The energy rate expression then takes the form

Ė(t) = kT

∫ x2

x1

[µ(x, t)∂tρ(x, t) dx + ẏ(t)f(t)] dx (5)

where µ(x, t) = U(x, t) + ln[ρ(x, t)/ρ0] + 1 is the chemical potential for the
distribution in units of kT per state and

f(t) = −kT

∫ x2

x1

ρ(x, t)∂y(t)U(x, t) dx (6)

is the external applied force acting on the distribution that is work conjugate

to y(t). The local gradient in chemical potential drives the evolution of the
distribution within the energy landscape, and the landscape itself is time-

dependent due to the external force.
Suppose the local flux of states during evolution is represented by j(x, t)

with physical dimensions of number per unit depth (perpendicular to the

plane of view) per unit time. Then, local conservation requires that

∂tρ(x, t) + ∂xj(x, t) = 0 , x1 < x < x2 . (7)

A common linear constitutive equation for the flux presumes that it is pro-

portional to the local gradient in chemical potential,

j(x, t) = −Dρ(x, t)∂xµ(x, t) (8)

where the system constant D, the diffusivity, has physical dimensions of
length2/time. In the present instance, this transport equation reduces to

j(x, t) = −D [∂xρ(x, t) + ρ(x, t)∂xU(x, t)] . (9)

Combination of (7) and (9) through elimination of j(x, t) leads to a partial
differential equation for the density, commonly known as the Smoluchowski
equation.

The transport equation (9) is next inverted to express the distribution
ρ(x, t) in terms of the flux and the energy landscape profile. To effect

this inversion, write the density in terms of an auxiliary function r(x, t)
as ρ(x, t) = r(x, t)e−U(x,t). Following substitution and some manipulation,

(9) then becomes

j(x, t) = −De−U(x,t)∂xr(x, t) .
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The result is readily integrated to find r(x, t) in terms of j(x, t) and U(x, t),

from which it follows that

ρ(x, t) = D−1e−U(x,t)

∫ x2

x

j(ξ, t)eU(ξ,t) dξ + C2e
−U(x,t) (10)

where C2 is a constant of integration to be determined from the physics of

the configuration. For example, if | U(x2, t)| < ∞ and ρ(x2, t) = 0 (as at a
“sink”) then C2 = 0.

Asymptotic analysis

The survival probability of the bond R(t) is the fraction of all bonds
in the ensemble which remain intact after elapsed time t. In terms of the

density of states,

R(t) =

∫ x+

x1

ρ(x, t) dx . (11)

If the above expression (10) for density of states is integrated over the range
indicated in (11), then

R(t) = D−1

∫ x+

x1

e−U(x,t)

∫ x2

x

j(ξ, t)eU(ξ,t) dξ dx . (12)

The integrand of the integral over x1 < x < x+ has a distinct peak at
ξ = x− so that the integral is well suited for approximate evaluation by the

Laplace method. The result of doing so is

R(t) ≈ D−1

√

2π

U11(x−, t)

∫ x2

x
−

j(ξ, t)eU(ξ,t)dξ (13)

where U11 represents the second derivative of U with respect to its first
argument. Likewise, the integrand of the remaining integral over x− < ξ <

x2 has an exponential peak at x = x+; asymptotic evaluation of this integral
leads to

R(t) ≈ j(x+, t)

D

2πeU(x+,t)−U(x
−

,t)

√

U11(x−, t)| U11(x+, t)|
. (14)

As is noted in the manuscript, the quantity j(x+, t) can be identified as
−Ṙ(t), thereby giving rise to a rate equation for determination of the survival

probability. For the case of constant rate loading with y(t) = vt, the rate
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equation can be integrated in terms of the error function with the result

that

R(t) = e
−D(16c

2
b
−a

4
κ
2)

8avκ
√

πcbkT

"

erf

 

q

cb

kT

(4cb+a
2

κ)√
16c2

b
−a4κ2

!

−erf

 

q

cb

kT

(4cb+a
2

κ−2atvκ)√
16c2

b
−a4κ2

!#

. (15)

For purposes of calculating the force f(t), we substitute the expression

(10) for density of states (with C2 = 0) into the defining expression (6) to
obtain

f(t) =
kT

D

∫ x2

x1

e−U(x,t)∂y(t)U(x, t)

∫ x2

x

j(ξ, t)eU(ξ,t) dξ dx . (16)

Successive applications of the Laplace method to this expression, proceeding

as above, leads to the result that

f(t) ≈ j(x+, t)

D

2πeU(x+,t)−U(x
−

,t)

√

U11(x−, t)| U11(x+, t)|

(

kT∂y(t)U(x−, t)
)

= R(t)ϕ(t) (17)

where ϕ(t) ≡ kT∂y(t)U(x−, t). This yields an expression that is useful for
calculating the force corresponding to a prescribed translation.

We recognize −Ṙ(t) as the fraction of states leaving the well per unit
time, and ϕ̇(t) is the change in force per state per unit time. Because both

measures are total derivatives, the ratio −Ṙ(t)/ϕ̇(t) is the fraction of states
per unit force leaving the bond well. Consequently, a graph of −Ṙ(t)/ϕ̇(t)

versus ϕ(t), parametric in time, provides a description of this measure in
terms of specific choices of microscopic system parameters. When expressed
in terms of force ϕ as the independent variable instead of time t, this quantity

is known as the force probability distribution P (ϕ).
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Quality of the asymptotic approximation

In order to develop some sense of the quality of the asymptotic approx-
imation used above, we have evaluated the integral

I(t) =

∫ x+

x1

e−U(x,t)

∫ x2

x

eU(ξ,t) dξ dx (18)

by means of standard numerical methods as a basis for comparison. The

interaction energy U(x, t) is chosen as in the manuscript. The comparison is
carried out for parameter values kT = 4, v = 1, κ = 2, a = 1 and a range of
values of cb, all in consistent units. The result of asymptotic approximation

by means of the Laplace method for values of cb/kT that are large in some
sense is

Ia(t) ≈
2πeU(x+,t)−U(x

−
,t)

√

U11(x−, t)| U11(x+, t)|
=

2πa2kT
√

16c2
b
− a4κ2

e
cb(4cb+aκ(a−2vt))2

kT (16c2
b
−a4κ2

. (19)

This expression is readily evaluated for any choice of parameter values.
Comparison of the asymptotic approximation to I(t) obtained for values

of cb/kT that are large compared to one with the results of accurate nu-
merical evaluation of the definite integrals is illustrated in Figure 2 for two

values of cb/kT . Figure 2 shows the comparison for cb/kT = 5 in the form
of discrete values – red for asymptotic and blue for numerical – at slightly

offset values in time. It is evident that the two sets of points represent
values more or less falling on a single curve, that is, the two results are vir-

tually indistinguishable over the full range of t of interest for the underlying
parameter set.

Figure 3 shows a similar comparison between numerical and asymptotic
results for cb/kT = 3. Even for this relatively small value of cb/kT (on the
scale of molecular bond strengths), the difference between the two results

is small and probably inconsequential for any practical point of view. The
conclusion to be drawn from these and other similar comparisons is that the

results of asymptotic evaluation of the integral representations of physical
quantities of interest in studies of debonding are reliable indicators of system

behavior.

Sensitivity of force probability distribution to stiffness κ

The sensitivity of bond response to changes in the stiffness κ of the loading

apparatus and/or of the molecules themselves can be demonstrated by con-
sidering changes in the force probability distribution P (ϕ) due to changes
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in stiffness with all other parameters, both those associated with loading

and those associated with response, held fixed. An example is shown in the
figure for the parameters given in Eq. 16 of the manuscript, except for the

value of κ which is varied significantly from that reference value.
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Figure Captions

1. An example of bond interaction energy. The function U(x, t) repre-
sents an energy landscape to which possible states of the bond are

confined. In general, this landscape evolves over time as a result of
external constraints.

2. Comparison of asymptotic and numerical results of integral evaluation.

The blue points represent the results of accurate numerical evaluation
of the definite integral defined in Eq. 18 at discrete values of time,
whereas the red points represent the results of asymptotic evaluation

for “large” values of cb/kT . The results show the asymptotic result to
be very accurate for values of cb/kT as small as 5.

3. Same as Figure 2 but for cb/kT = 3.

4. Sensitivity of force probability distribution to system stiffness κ. Plot
is based on relationship in Eq. 17 in the manuscript and on Eq. 15

above.
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