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Mathematical Formulas

We describe population change in discrete (annual) time steps using a matrix
model. We consider only age-structured populations although many of our re-
sults can be generalized to stage-structured populations. Age classes are num-
bered 1 to k (actual ages are 0-1, 1-2, and so on). The population at census in
year t is a vector N(t) of numbers in each age class and between t and t + 1
the vital rates are contained in a k × k Leslie matrix X(t). We assume the
environment is statistically stationary so that averages, covariances and serial
covariances of the rates do not change with time.

Throughout we indicate averages (expectations) by E . We denote the com-
ponents of a matrix H by H(i, j) and of a vector u by u(i). The absolute value
of a real or complex number z is denoted by |z|. Superscript T always indicates
a transpose. The expression (u,v) denotes the scalar product of the vectors u
and v.

The average rates make up an average Leslie matrix A whose elements we
call a(i, j). Survivorship, R0, Tc and σd are defined in the main text. The Lotka
growth rate is r = log λ and r ≥ 0 according as R0 ≥ 0 and vice versa.

We assume that A is a primitive irreducible matrix with dominant eigenvalue
λ = er and corresponding right, left eigenvectors u, v respectively. These vec-
tors are, respectively, the stable age structure and reproductive value (Caswell,
2001). Matrix A also has a subdominant eigenvalue

λ1 = exp(r1 + is1),

where r1, s1 are real numbers and i =
√−1 so that |λ1| = exp(r1). In a popu-

lation with average rates, a non-stable age distribution approaches u at a rate
that increases with (r − r1). We say that the average life history is rapidly or
slowly damped according as the speed of approach to stability is high or low.

We set u(1) = v(1) = 1 so that

u(i) = l(i) e−r(i−1), for all ages i, (1)

and

(v,u) =
∑

i

i l(i)m(i) e−r i = T = Generation time in stable population. (2)

The matrix

Q =
A
λ
− uvT

vT u
. (3)

describes the transient behavior of the average demography. Fix the vital rates
at their average values and change population structure away from the stable age
distribution at t = 0: then the difference between population structure at time
t and the stable structure is proportional to the powers Qt → 0 as t increases.
Consistent with our discussion of damping rates above, the magnitudes of the
elements of Qt go to zero at a rate e(r1−r) t.
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In year t the deviation of vital rates from their average values is denoted
by H(t) = X(t) −A. The within-year variance of matrix element X(i, j, t) is
denoted by

σ2(i, j) = E [H(i, j, t)H(i, j, t)] = Var (X(i, j, t)) . (4)

The coefficient of variation of X(i, j, t) is the ratio (σ(i, j)/a(i, j)).
The within-year covariance between the matrix elements X(i, j, t) and X(p, q, t)

is denoted by

Cov (ij, pq) = E [H(p, q, t) H(i, j, t)] = Cov (X(i, j, t)X(p, q, t)) . (5)

The within-year correlations between elements are defined by

Corr(ij, pq) = Cov(ij, pq)/(σ(i, j)σ(pq)). (6)

The matrix element X(i, j, t) may be correlated with its own future value
X(i, j, t + m) in year (t + m),m > 0 or with the future value X(p, q, t + m) of
some other matrix element. Statistical stationarity makes such correlations a
function of only the lag m; we specify serial correlations in more detail below
for our model life histories.

We consider populations that are growing slowly over the long run, meaning
that the average fertility and mortality yield a growth rate r close to zero and
the stochastic growth rate a is also close to zero. The former condition implies
that the net reproductive rate R0 is close to 1. In addition we assume that
environmental fluctuations are small so that we can use the small-noise approx-
imation for a (Tuljapurkar, 1982). As is well known (Morris and Doak, 2002;
Lande et al., 2003) this approximation provides robust qualitative results for
fairly large fluctuations.

The approximation for r in equation (7) of the main text is derived using a
cumulant expansion (Keyfitz and Caswell, 2005). The sensitivities of λ = er to
the average rate are defined by

s(i, j) =
∂λ

∂a(i, j)
=

v(i)u(j)
T

. (7)

Using these,

Vs =
1

2λ2

∑

ij

s2(i, j) σ2(i, j), (8)

Vc =
1

2λ2

∑

(ij) 6=(pq)

s(i, j) s(p, q)σ(i, j)σ(p, q)Corr(ij, pq). (9)

The last term in equation (6) of the main text requires the matrix Q from
equation (3) that describes transient dynamics, and correlations between vital
rates at all time lags,

S =
1

λ2T
vT

(
m=∞∑
m=1

E [H(1 + m)Qm H(1)]

)
u. (10)
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