Supporting Information

Tricyclic [1,2,4]triazine 1,4-dioxides as hypoxia selective cytotoxins

Michael P. Hay,* Kevin O. Hicks, Karin Pchalek,[†] Ho H. Lee, Adrian Blaser, Frederik B. Pruijn, Robert F. Anderson, Sujata S. Shinde, William R. Wilson and William A. Denny.

Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand

*Corresponding author: Dr Michael P. Hay Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand Phone: +649-9236598 Fax: +649-3737502 Email: <u>m.hay@auckland.ac.nz</u>

Table of contents

General Experimental details	S2
General Chemical Methods A–E	S 2
Characterization data for final compounds 3–42 and intermediates 43–208	S 4
General Biological Methods F–K	S59
References	S61
Tables of data	S64

Experimental Section

Analyses were carried out in The Campbell Microanalytical Laboratory, University of Otago, Dunedin, NZ. Melting points were determined on an Electrothermal 2300 Melting Point Apparatus. NMR spectra were obtained on a Bruker Avance 400 spectrometer at 400 MHz for ¹H and 100 MHz for ¹³C spectra. Spectra were obtained in CDCl₃ unless otherwise specified, and are referenced to Me₄Si. Chemical shifts and coupling constants were recorded in units of ppm and Hz, respectively. Assignments were determined using COSY, HSQC, and HMBC two-dimensional experiments. Low resolution mass spectra were gathered by direct injection of methanolic solutions into a Surveyor MSO mass spectrometer using an atmospheric pressure chemical ionization (APCI) mode with a corona voltage of 50 V and a source temperature of 400 °C. Mass spectra were determined on a VG-70SE mass spectrometer using an ionizing potential of 70 eV at a nominal resolution of 1000. Highresolution spectra were obtained at nominal resolutions of 3000, 5000, or 10000 as appropriate. All spectra were obtained using fast atom bombardment with positive ionization (FAB⁺) unless otherwise stated. Solutions in organic solvents were dried with anhydrous Na₂SO₄. Solvents were evaporated under reduced pressure on a rotary evaporator. Thin-layer chromatography was carried out on aluminum-backed silica gel plates (Merck 60 F₂₅₄) with visualization of components by UV light (254 nm) or exposure to I₂. Column chromatography was carried out on silica gel, (Merck 230–400 mesh). DCM refers to dichloromethane; DME refers to dimethoxyethane; DMF refers to dry dimethylformamide; Et₂O refers to diethyl ether; EtOAc refers to ethyl acetate; EtOH refers to ethanol; MeOH refers to methanol; pet. ether refers to petroleum ether, boiling range 40-60 °C; THF refers to tetrahydrofuran dried over sodium benzophenone ketyl. All solvents were freshly distilled.

 TPZ^1 and BTO 2^2 were synthesized as previously described.

Preparation of 3-Aminotriazine 1-Oxides. General Method A. A mixture of nitroaniline (20 mmol) and cyanamide (80 mmol) were mixed together at 100 °C, cooled to 50 °C, cHCl (10 mL) added dropwise (CAUTION: Exotherm) and the mixture heated at 100 °C for 4 h. The mixture was cooled to 50 °C, 7.5 M NaOH solution added until the mixture was strongly basic and the mixture stirred at 100 °C for 3 h. The mixture was cooled, diluted with water (100 mL), filtered, washed with water (3 × 30 mL), washed with ether (2 × 5 mL) and dried. If necessary, the residue was purified by chromatography, eluting with a gradient (0–10%) of MeOH/DCM, to give the 1-oxide.

Preparation of 3-chlorotriazine 1-Oxides. General Method B. Sodium nitrite (10 mmol) was added in small portions to a stirred solution of 1-oxide (5 mmol) in trifluoroacetic acid (20 mL) at 0 °C and the solution stirred at 20 °C for 3 h. The solution was poured into ice/water, stirred 30 minutes, filtered, washed with water (3 × 10 mL)

and dried. The solid was suspended in $POCl_3$ (20 mL) and DMF (0.2 mL) and stirred at 100 °C for 1 h. The solution was cooled, poured into ice/water, stirred for 30 minutes, filtered, washed with water (3 × 30 mL) and dried. The solid was suspended in DCM (150 mL), dried and the solvent evaporated. The residue was purified by chromatography, eluting with 5% EtOAc/DCM, to give the chloride.

Preparation of 1-Oxides. General Method C. Amine (3.0 mmol) was added to a stirred solution of chloride (1.0 mmol) in DME (50 mL) and the solution stirred at reflux temperature for 8 h. The solution was cooled to 20 °C, the solvent evaporated and the residue partitioned between aqueous NH₄OH solution (100 mL) and EtOAc (100 mL). The organic fraction was dried, and the solvent evaporated. The residue was purified by chromatography, eluting with a gradient (0–10%) of MeOH/DCM, to give the 1-oxide.

Preparation of 1,4-Dioxides 3–42. General Method D. Hydrogen peroxide (70%, 10 mmol) was added dropwise to a stirred solution of trifluoroacetic anhydride (10 mmol) in DCM (20 mL) at 0 °C. The mixture was stirred at 0 °C for 5 min, warmed to 20 °C, stirred for 10 min, and cooled to 5 °C. The mixture was added to a stirred solution of 1-oxide (1.0 mmol) [and where aliphatic amine side chains are present, TFA (5.0 mmol)] in DCM (15 ml) at 0 °C and the mixture stirred at 20 °C for 4–16 h. The solution was carefully diluted with water (20 mL) and the mixture made basic with aqueous NH₄OH solution, the mixture was stirred for 15 min and then extracted with CHCl₃ (5 × 50 mL). The organic fraction was dried and the solvent evaporated. The residue was purified by chromatography, eluting with a gradient (0–15%) of MeOH/DCM, to give 1,4-dioxides.

Preparation of 1-Oxides. General Method E. $Pd(PPh_3)_4$ (0.1 mmol) was added to a stirred, degassed solution of halide (2.0 mmol) and stannane (2.4 mmol) in DME (20 mL) and the solution stirred under N₂ at reflux temperature for 16 h. The solvent was evaporated, the residue dissolved in DCM (10 mL) and stirred with saturated aqueous KF solution (10 mL) for 30 min. The mixture was filtered through Celite, the Celite washed with DCM and the combined organic filtrate washed with water. The organic fraction was dried, the solvent evaporated and the residue purified by chromatography, eluting with DCM to give product, which was, if necessary, further purified by chromatography, eluting with 20% EtOAc/pet. ether, to give the 3-alkyl 1-oxide.

7,8-Dihydro-6*H*-indeno[5,6-*e*][1,2,4]triazin-3-amine 1,4-Dioxide (3).

N-(2,3-Dihydro-1*H*-inden-5-yl)acetamide (44). Ac₂O (44.6 mL, 473 mmol) was added dropwise to a stirred solution of 5-indanamine (43) (30 g, 225 mmol) in dioxane (120 mL) at 0 °C and the solution stirred at 20 °C for 48 h. The solution was diluted with water (500 mL), stirred 20 min and the precipitate filtered. The solid was washed with water (3 × 30 mL) and air-dried to give acetamide 44 (37.4 g, 95%) as a tan solid: mp 99–101 °C (lit.³ mp 106–107 °C); ¹H NMR (CDCl₃) δ 7.38–7.43 (m, 2 H, H-4, NH), 7.10–7.16 (m, 2 H, H-6, H-7), 2.85 (br q, *J* = 7.7 Hz, 4 H, H-1, H-3), 2.13 (s, 3 H, CH₃), 2.06 (br, p, *J* = 7.4 Hz, 2 H, H-2); ¹³C NMR δ 168.3, 145.1, 140.3, 136.0, 124.4, 118.2, 116.6, 33.0, 32.3, 25.6, 24.4.

N-(6-Nitro-2,3-dihydro-1H-inden-5-yl)acetamide (45). Acetamide (44) was dissolved in cH₂SO₄ (100 mL) and cooled to 5 °C. A solution of KNO₃ (8.35 g, 82.6 mmol) in cH₂SO₄ (15 mL) was added dropwise and the solution stirred at 5 °C for 2 h, then at 20 °C for 2 h. The solution was poured into ice/water (500 mL) and the suspension stirred for 2 h. The precipitate was filtered, washed with water $(2 \times 20 \text{ mL})$ and dried. The solid was purified by chromatography, eluting with a gradient (20-40%) of EtOAc/pet. ether, to give (i) N-(6-nitro-2,3-dihydro-1H-inden-5-yl)acetamide (45) (3.97 g, 24%) as a colourless solid: mp (EtOAc/pet. ether) 105–108 °C (lit.³ mp 108–109 °C); ¹H NMR $(CDCl_3) \delta 10.36$ (s, 1 H, NHCO), 8.57 (s, 1 H, H-7), 8.03 (s, 1 H, H-4), 2.98 (br t, J = 7.5Hz, 2 H, H-1), 2.93 (br t, J = 7.4 Hz, 2 H, H-3), 2.27 (s, 3 H, CH₃), 2.10–2.17 (m, 2 H, H-2); (ii) N-(4-nitro-2,3-dihydro-1H-inden-5-yl)acetamide (**46**) (0.92 g, 5%) as a white solid: mp 126–129 °C (lit.³ mp 128.5 °C); ¹H NMR (CDCl₃) δ 9.51 (br s, 1 H, NHCO), 8.28 (d, J = 8.3 Hz, 1 H, H-7), 7.41 (d, J = 8.3 Hz, 1 H, H-6), 3.25 (br t, J = 7.5 Hz, 2 H, H-1), 2.96 (br t, J = 7.6 Hz, 2 H, H-3), 2.22 (s, 3 H, CH₃), 2.07–2.13 (m, 2 H, H-2); and (iii) N-(7-nitro-2,3-dihydro-1H-inden-5-yl)acetamide (47) (6.48 g, 39%) as a white solid: mp 174–176 °C; ¹H NMR (CDCl₃) δ 7.94 (s, 1 H, H-5), 7.89 (s, 1 H, H-7), 7.44 (br s, 1 H, NHCO), 3.36 (br t, J = 7.5 Hz, 2 H, H-3), 2.92 (br t, J = 7.6 Hz, 2 H, H-1), 2.20 (s, 3 H, CH₃), 2.09–2.18 (m, 2 H, H-2).

6-Nitro-5-indanamine (48). A suspension of nitroacetamide **45** (0.90 g, 4.1 mmol) in 5 M HCl was heated at 100 °C for 16 h. The suspension was cooled to 20 °C, diluted with water (100 mL), filtered, washed with water (3×15 mL) and dried to give indanamine **48** (0.69 g, 95%) as an orange solid: mp 129–131 °C [lit.³ mp (EtOH) 128.5–129.5 °C]; ¹H NMR (CDCl₃) δ 7.93 (s, 1 H, H-7), 6.55 (s, 1 H, H-4), 5.99 (br s, 2 H, NH₂), 2.79–2.88

(m, 4 H, H-1, H-3), 2.02–2.10 (m, 2 H, H-2); ¹³C NMR (CDCl₃) δ 154.3, 144.2, 134.0, 131.3, 120.8, 113.5, 33.0, 31.4, 25.7.

7,8-Dihydro-6*H*-indeno[5,6-*e*][1,2,4]triazin-3-amine 1-Oxide (49). Method A.

Reaction of nitroaniline **48** (21.67 g, 121.6 mmol) and cyanamide (20.45 g, 486 mmol) gave crude material (20.93 g, 85%), which can be used without further purification. The material was purified by chromatography, eluting with a gradient (0–5%) of MeOH/DCM, to give 1-oxide **49** (16.72 g, 68%) as a yellow powder: mp (MeOH/DCM) 270–272 °C; ¹H NMR δ 7.92 (s, 1 H, H-9), 7.33 (s, 1 H, H-5), 7.11 (br s, 2 H, NH₂), 2.91–2.99 (m, 4 H, H-6, H-8), 2.01–2.09 (m, 2 H, H-7); ¹³C NMR δ 159.9, 154.0, 148.5, 142.5, 128.7, 119.8, 113.8, 32.4, 31.6, 25.2. Anal. Calcd for C₁₀H₁₀N₄O: C, 59.4; H, 5.0; N, 27.7. Found: C, 59.4; H, 5.1; N, 27.8%.

7,8-Dihydro-6*H*-indeno[5,6-*e*][1,2,4]triazin-3-amine 1,4-Dioxide (3). Reaction D.

Reaction of 1-oxide **49** (2.0 g, 9.9 mmol) and CH₃CO₃H (ca. 99 mmol) in HOAc (20 mL) gave 1,4-dioxide **3** (317 mg, 15%) as a red solid: mp (MeOH/EtOAc) 190–195 °C; ¹H NMR δ 8.01 (s, 1 H, H-9), 7.98 (s, 1 H, H-5), 7.87 (br s, 2 H, NH₂), 3.07 (br t, *J* = 7.4 Hz, 2 H, H-6), 3.01 (br t, *J* = 7.4 Hz, 2 H, H-8), 2.10 (p, *J* = 7.4 Hz, 2 H, H-7); ¹³C NMR δ 154.3, 150.8, 144.7, 137.8, 129.6, 115.1, 111.2, 32.6, 31.7, 25.1. Anal. Calcd for C₁₀H₁₀N₄O₂·½CH₃OH: C, 53.8; H, 5.2; N, 23.9. Found: C, 53.6; H, 5.2; N, 23.9%.

 N^{1} -(1,4-Dioxido-7,8-dihydro-6*H*-indeno[5,6-*e*][1,2,4]triazin-3-yl)- N^{2} , N^{2} -dimethyl-1,2-ethanediamine (4).

3-Chloro-7,8-dihydro-6H-indeno[5,6-e][1,2,4]triazine 1-Oxide (50). Method B.

Reaction of 1-oxide **49** (837 mg, 4.1 mmol) and NaNO₂ (570 mg, 8.3 mmol) gave chloride **50** (696 mg, 76%) as a pale yellow solid: mp (DCM) 162–164 °C; ¹H NMR (CDCl₃) δ 8.21 (s, 1 H, H-9), 7.75 (s, 1 H, H-5), 3.11–3.18 (m, 4 H, H-6, H-8), 2.21–2.28 (m, 2 H, H-7); ¹³C NMR (CDCl₃) δ 156.4, 156.0, 150.1, 147.3, 132.8, 122.5, 114.5, 33.3, 32.9, 25.7. Anal. Calcd for C₁₀H₈ClN₃O: C, 54.2; H, 3.6; N, 19.0. Found: C, 54.1; H, 3.8; N, 18.7%.

 N^{1} , N^{1} -Dimethyl- N^{2} -(1-oxido-7,8-dihydro-6*H*-indeno[5,6-*e*][1,2,4]triazin-3-yl)-1,2ethanediamine (51). Method C. Reaction of chloride 50 (305 mg, 1.4 mmol) and *N*,*N*dimethyl-1,2-ethanediamine (0.45 mL, 4.1 mmol) in DME (30 mL) gave 1-oxide 51 (334 mg, 88%) as a yellow solid: mp (MeOH/EtOAc) 122–124 °C; ¹H NMR δ 8.06 (s, 1 H, H-9), 7.38 (s, 1 H, H-5), 5.80 (br s, 1 H, NH), 3.50–3.55 (m, 2 H, CH₂N), 2.96–3.03 (m, 4 H, H-6, H-8), 2.55 (t, J = 6.0 Hz, 2 H, CH₂N), 2.27 [s, 6 H, N(CH₃)₂], 2.09–2.18 (m, 2 H, H-7); ¹³C NMR δ 158.8, 154.5, 148.8, 143.2, 129.8, 120.5, 114.6, 57.6, 45.1 (2), 38.8, 33.1, 32.3, 25.7. Anal. Calcd for C₁₄H₁₉N₅O·¹/₄H₂O: C, 60.5; H, 7.1; N, 25.2. Found: C, 60.6; H, 6.8; N, 25.2%.

*N*¹-(1,4-Dioxido-7,8-dihydro-6*H*-indeno[5,6-*e*][1,2,4]triazin-3-yl)-*N*²,*N*²-dimethyl-1,2ethanediamine (4). Method D. Reaction of 1-oxide 51 (294 mg, 1.1 mmol) with CF₃CO₃H (ca. 11 mmol) gave 1,4-dioxide 4 (173 mg, 55%) as a red solid: mp (MeOH/EtOAc) 150–153 °C; ¹H NMR δ 8.12 (s, 1 H, H-9), 8.10 (s, 1 H, H-5), 7.40 (br s, 1 H, NH), 3.62–3.67 (m, 2 H, CH₂N), 3.03–3.13 (m, 4 H, H-6, H-8), 2.63 (t, *J* = 6.0 Hz, 2 H, CH₂N), 2.31 [s, 6 H, N(CH₃)₂], 2.17–2.23 (m, 2 H, H-7); ¹³C NMR δ 155.6, 149.5, 145.8, 138.0, 129.7, 115.7, 111.6, 57.5, 45.2 (2), 38.8, 33.6, 32.4, 25.6; MS *m/z* 289 (M⁺, 0.5%), 272 (5), 58 (100); HRMS (EI⁺) calcd for C₁₄H₁₉N₅O₂ (M⁺) *m/z* 289.1539, found 289.1536. The hydrochloride salt was crystallised from MeOH/EtOAc. Anal. Calcd for C₁₄H₂₀ClN₅O₂·¹/₄CH₃OH: C, 49.7; H, 6.8; N, 19.3. Found: C, 49.4; H, 7.0; N, 19.8%.

 N^{1} -(1,4-Dioxido-7,8-dihydro-6*H*-indeno[5,6-*e*][1,2,4]triazin-3-yl)- N^{2} , N^{2} -diethyl-1,2-ethanediamine (5).

*N*¹-(1-Oxido-7,8-dihydro-6*H*-indeno[5,6-*e*][1,2,4]triazin-3-yl)-*N*²,*N*²-diethyl-1,2ethanediamine (52). Method C. Reaction of chloride 50 (314 mg, 1.4 mmol) and *N*¹,*N*¹diethyl-1,2-ethanediamine (0.50 mL, 3.5 mmol) in DME (50 mL) gave 1-oxide 52 (406 mg, 95%) as a yellow solid: mp (MeOH/EtOAc) 109–112 °C; ¹H NMR δ 7.93 (s, 1 H, H-9), 7.31 (s, 1 H, H-5), 7.14 (br s, 1 H, NH), 3.97–4.03 (m, 2 H, CH₂N), 3.42–3.46 (m, 2 H, CH₂N), 3.25–3.33 (m, 4 H, 2 × CH₂N), 2.19–2.29 (m, 4 H, H-6, H-8), 2.08–2.14 (m, 2 H, H-7), 1.45 (t, *J* = 7.3 Hz, 6 H, 2 × CH₃); ¹³C NMR δ 158.2, 154.6, 148.4, 143.7, 129.8, 120.7, 114.4, 50.8, 47.7 (2), 36.3, 33.1, 32.3, 25.7, 8.8 (2). Anal. Calcd for C₁₆H₂₃N₅O: C, 63.8; H, 7.7; N, 23.2. Found: C, 63.9; H, 7.7; N, 23.3%.

*N*¹-(1,4-Dioxido-7,8-dihydro-6*H*-indeno[5,6-*e*][1,2,4]triazin-3-yl)-*N*²,*N*²-diethyl-1,2ethanediamine (5). Method D. Reaction of 1-oxide 52 (312 mg, 1.0 mmol) with CF₃CO₃H (ca. 10 mmol) gave 1,4-dioxide 5 (179 mg, 54%) as a red gum: ¹H NMR δ 8.11 (br s, 2 H, H-5, H-9), 7.73 (br s, 1 H, NH), 3.64–3.69 (m, 2 H, CH₂N), 3.01–3.10 (m, 4 H, H-6, H-8), 2.81–2.85 (m, 2 H, CH₂N), 2.64–2.73 (m, 4 H, 2 × CH₂N), 2.14–2.22 (m, 2 H, H-7), 1.09 (t, *J* = 7.1 Hz, 6 H, 2 × CH₃); ¹³C NMR δ 156.0, 149.5, 145.8, 138.1, 129.8, 115.7, 111.7, 51.1, 46.6 (2), 38.5, 33.4, 32.3, 25.6, 11.0 (2); MS (FAB⁺) *m/z* 318 (MH⁺, 70%), 302 (20); HRMS calcd for C₁₆H₂₄N₅O₂ (MH⁺) *m/z* 318.1930, found 318.1933.

 N^{1} -(1,4-Dioxido-7,8-dihydro-6*H*-indeno[5,6-*e*][1,2,4]triazin-3-yl)- N^{2} , N^{2} -dipropyl-1,2-ethanediamine (6).

*N*¹-(1-Oxido-7,8-dihydro-6*H*-indeno[5,6-*e*][1,2,4]triazin-3-yl)-*N*²,*N*²-dipropyl-1,2ethanediamine (53). Method C. Reaction of chloride 50 (298 mg, 1.3 mmol) and *N*¹,*N*¹dipropyl-1,2-ethanediamine² (0.27 g, 1.9 mmol) in DME (50 mL) gave 1-oxide 53 (325 mg, 74%) as a yellow powder: mp (MeOH/EtOAc) 95–97 °C; ¹H NMR δ 8.07 (s, 1 H, H-9), 7.39 (s, 1 H, H-5), 5.80 (br s, 1 H, NH), 3.46–3.53 (m, 2 H, CH₂N), 2.96–3.03 (m, 4 H, 2 × CH₂N), 2.68 (dd, *J* = 6.0, 5.8 Hz, 2 H, CH₂N), 2.38–2.45 (m, 4 H, H-6, H-8), 2.10–2.18 (m, 2 H, H-7), 1.41–1.51 (m, 4 H, 2 × CH₂), 0.87 (t, *J* = 7.1 Hz, 6 H, 2 × CH₃); ¹³C NMR δ 158.7, 154.4, 148.8, 143.0, 129.8, 120.5, 114.7, 55.9 (2), 52.6, 38.9, 31.1, 32.3, 25.7, 20.3 (2), 11.9 (2). Anal. Calcd for C₁₈H₂₇N₅O: C, 65.6; H, 8.3; N, 21.3. Found: C, 65.4; H, 8.4; N, 21.3%.

*N*¹-(1,4-Dioxido-7,8-dihydro-6*H*-indeno[5,6-*e*][1,2,4]triazin-3-yl)-*N*²,*N*²-dipropyl-1,2ethanediamine (6). Method D. Reaction of 1-oxide 53 (253 mg, 0.8 mmol) with CF₃CO₃H (ca. 8 mmol) gave 1,4-dioxide 6 (134 mg, 50%) as a red solid: mp (MeOH/EtOAc) 142–145 °C; ¹H NMR δ 8.12 (s, 1 H, H-9), 8.10 (s, 1 H, H-5), 7.46 (br s, 1 H, NH), 3.54–3.60 (m, 2 H, CH₂N), 3.03–3.11 (m, 4 H, H-6, H-8), 2.74 (dd, *J* = 6.1, 5.9 Hz, 2 H, CH₂N), 2.43–2.47 (m, 4 H, 2 × CH₂N), 2.16–2.24 (m, 2 H, H-7), 1.45–1.54 (m, 4 H, 2 × CH₂), 0.91 (t, *J* = 7.4 Hz, 6 H, 2 × CH₃); ¹³C NMR δ 155.5, 149.5, 145.7, 138.0, 129.6, 115.7, 111.6, 56.0 (2), 52.5, 39.1, 33.4, 32.4, 25.6, 20.4 (2), 11.8 (2). Anal. Calcd for C₁₈H₂₇N₅O₂: C, 62.6; H, 7.9; N, 20.3. Found: C, 62.3; H, 8.0; N, 20.2%.

N-[2-(1-Piperidinyl)ethyl]-7,8-dihydro-6*H*-indeno[5,6-*e*][1,2,4]triazin-3-amine 1,4-Dioxide (7).

N-[2-(1-Piperidinyl)ethyl]-7,8-dihydro-6*H*-indeno[5,6-*e*][1,2,4]triazin-3-amine 1-Oxide (52). Method C. Reaction of chloride 50 (348 mg, 1.6 mmol) and 2-(1piperidinyl)ethylamine (0.67 mL, 4.7 mmol) in DME (50 mL) gave 1-oxide 54 (465 mg, 95%) as a yellow solid: mp (MeOH/EtOAc) 151–153 °C; ¹H NMR δ 8.06 (s, 1 H, H-9), 7.39 (s, 1 H, H-5), 5.91 (br s, 1 H, NH), 3.52–3.57 (m, 2 H, CH₂N), 2.97–3.03 (m, 4 H, H-6, H-8), 2.58 (t, *J* = 6.0 Hz, 2 H, CH₂N), 2.40–2.47 (m, 4 H, 2 × CH₂N), 2.10–2.18 (m, 2 H, H-7), 1.55–1.63 (m, 4 H, 2 × CH₂), 1.42–1.48 (m, 2 H, CH₂); ¹³C NMR δ 158.7, 154.5, 148.8, 143.1, 129.7, 120.5, 114.6, 57.0, 54.3 (2), 37.9, 33.1, 32.3, 25.9 (2), 25.7, 24.4. Anal. Calcd for $C_{17}H_{23}N_5O$ ·¹/4H₂O: C, 64.2; H, 7.5; N, 22.0. Found: C, 64.6; H, 6.9; N, 22.1%.

N-[2-(1-Piperidinyl)ethyl]-7,8-dihydro-6*H*-indeno[5,6-*e*][1,2,4]triazin-3-amine 1,4-Dioxide (7). Method D. Reaction of 1-oxide 54 (397 mg, 1.3 mmol) with CF_3CO_3H (ca. 13 mmol) gave 1,4-dioxide 7 (241 mg, 57%) as a red solid: mp (MeOH/EtOAc) 165–168 °C; ¹H NMR δ 8.11 (s, 1 H, H-9), 8.08 (s, 1 H, H-5), 7.43 (br s, 1 H, NH), 3.60–3.64 (m, 2 H, CH₂N), 3.03–3.11 (m, 4 H, H-6, H-8), 2.62 (t, *J* = 6.0 Hz, 2 H, CH₂N), 2.42–2.47 (m, 4 H, 2 × CH₂), 2.15–2.22 (m, 2 H, H-7), 1.57–1.63 (m, 4 H, 2 × CH₂), 1.41–1.47 (m, 2 H, CH₂); ¹³C NMR δ 155.6, 149.5, 145.7, 138.0, 129.7, 115.8, 111.6, 56.9, 54.4 (2), 38.2, 33.4, 32.4, 25.9 (2), 25.6, 24.3. Anal. Calcd for C₁₇H₂₃N₅O₂·¹/4H₂O: C, 61.2; H, 7.1; N, 21.0. Found: C, 60.7; H, 7.0; N, 21.0%.

N-[3-(4-Morpholinyl)propyl]-7,8-dihydro-6*H*-indeno[5,6-*e*][1,2,4]triazin-3-amine 1,4-Dioxide (8).

N-[3-(4-Morpholinyl)propyl]-7,8-dihydro-6*H*-indeno[5,6-*e*][1,2,4]triazin-3-amine 1-Oxide (54). Method C. Reaction of chloride 50 (382 mg, 1.7 mmol) and 3-(1morpholinyl)propylamine (0.76 mL, 5.2 mmol) in DME (50 mL) gave 1-oxide 55 (553 mg, 98%) as a yellow solid: mp (MeOH/EtOAc) 139–141 °C; ¹H NMR δ 8.06 (s, 1 H, H-9), 7.38 (s, 1 H, H-5), 6.10 (br s, 1 H, NH), 3.72–3.77 (m, 4 H, 2 × CH₂O), 3.55–3.60 (m, 2 H, CH₂N), 2.95–3.02 (m, 4 H, H-6, H-8), 2.45–2.52 (m, 6 H, 3 × CH₂N), 2.09–2.17 (m, 2 H, CH₂), 1.79–1.86 (m, 2 H, CH₂); ¹³C NMR δ 158.8, 154.5, 148.8, 143.2, 129.8, 120.5, 114.7, 67.0 (2), 57.3, 53.8 (2), 40.8, 33.1, 32.3, 25.7, 25.3. Anal. Calcd for C₁₇H₂₃N₅O₂: C, 62.0; H, 7.0; N, 21.3. Found: C, 62.2; H, 6.9; N, 21.3%.

N-[3-(4-Morpholinyl)propyl]-7,8-dihydro-6*H*-indeno[5,6-*e*][1,2,4]triazin-3-amine

1,4-Dioxide (8). Method D. Reaction of 1-oxide **55** (412 mg, 1.2 mmol) with CF₃CO₃H (ca. 12 mmol) gave (i) starting material **55** (208 mg, 50%) and (ii) 1,4-dioxide **8** (122 mg, 30%) as a red solid: mp (MeOH) 158–160 °C; ¹H NMR δ 8.37 (br s, 1 H, NH), 8.11 (s, 1 H, H-5), 8.09 (s, 1 H, H-9), 3.80–3.84 (m, 4 H, 2 × CH₂O), 3.64–3.69 (m, 2 H, CH₂N), 3.02–3.10 (m, 4 H, H-6, H-8), 2.56 (dd, *J* = 6.2, 6.1 Hz, 2 H, CH₂N), 2.48–2.52 (m, 4 H, 2 × CH₂N), 2.15–2.22 (m, 2 H, H-7), 1.85–1.91 (m, 2 H, CH₂); ¹³C NMR δ 155.5, 149.5, 145.6, 138.0, 129.6, 115.8, 111.6, 66.9 (2), 57.7, 53.8 (2), 41.6, 33.3, 32.3, 25.5, 24.5. Anal. Calcd for C₁₇H₂₃N₅O₃·¹/₄CH₃OH: C, 58.6; H, 6.9; N, 19.8. Found: C, 58.4; H, 6.7; N, 19.9%.

7,8-Dihydro-6*H*-indeno[5,6-*e*][1,2,4]triazin-3-amine 1,4-Dioxide (9).

4-Nitro-5-indanamine (56). A suspension of acetamide **46** (0.90 g, 4.1 mmol) in 5 M HCl was heated at 100 °C for 16 h. The suspension was cooled to 20 °C, diluted with water (100 mL), filtered, washed with water (3 × 15 mL) and dried to give amine **56** (0.69 g, 95%) as an orange solid: mp (H₂O) 105–107 °C (lit.³ mp 115 °C); ¹H NMR δ 7.17 (d, *J* = 8.2 Hz, 1 H, H-7), 6.62 (d, *J* = 8.2 Hz, 1 H, H-6), 5.73 (br s, 2 H, NH₂), 3.32 (br t, *J* = 7.5 Hz, 2 H, H-3), 2.80–2.85 (m, 2 H, H-1), 2.02–2.11 (m, 2 H, H-2). Anal. Calcd for C₉H₁₀N₂O₂: C, 60.7; H, 5.7; N, 15.7. Found: C, 60.5; H, 5.5; N, 15.8%.

8,9-Dihydro-*7H***-indeno**[**5,4-***e***][1,2,4**]**triazin-3-amine 1-Oxide (57). Method A.** Reaction of amine **56** (0.67 g, 3.8 mmol) and cyanamide (0.63 g, 15.0 mmol) gave 1oxide **57** (279 mg, 37%) as a yellow powder: mp (MeOH/DCM) 270–274 °C; ¹H NMR [(CD₃)₂SO] δ 7.56 (d, *J* = 8.4 Hz, 1 H, H-6), 7.31 (d, *J* = 8.4 Hz, 1 H, H-5), 6.79 (br s, 2 H, NH₂), 3.55 (br t, *J* = 7.5 Hz, 2 H, H-9), 2.95 (br t, *J* = 7.7 Hz, 2 H, H-7), 2.09–2.20 (m, 2 H, H-8); ¹³C NMR [(CD₃)₂SO] δ 159.4, 148.7, 140.9, 136.0, 131.6, 128.1, 123.9, 34.6, 32.1, 24.1. Anal. Calcd for C₁₀H₁₀N₄O: C, 59.4; H, 5.0; N, 27.7. Found: C, 59.5; H, 5.0; N, 27.7%.

3-Chloro-8,9-dihydro-7*H***-indeno[5,4-***e***][1,2,4]triazine 1-Oxide (58). Method B.** Reaction of 1-oxide **57** (244 mg, 1.2 mmol) and NaNO₂ (167 mg, 2.4 mmol), with subsequent chlorination with DMF/POCl₃, gave chloride **58** (215 mg, 80%) as a pale yellow solid: mp (DCM/EtOAc) 162–164 °C; ¹H NMR δ 7.81 (d, *J* = 8.4 Hz, 1 H, H-6), 7.74 (d, *J* = 8.4 Hz, 1 H, H-5), 3.70 (dd, *J* = 8.0, 7.3 Hz, 2 H, H-9), 3.11 (dd, *J* = 8.0, 7.6 Hz, 2 H, H-7), 2.22–2.30 (m, 2 H, H-8); ¹³C NMR δ 155.0, 148.4, 146.8, 137.0, 132.8, 131.5, 126.1, 34.4, 32.9, 24.3. Anal. Calcd for C₁₀H₈ClN₃O: C, 54.2; H, 3.6; N, 19.0. Found: C, 54.2; H, 3.8; N, 18.9%.

*N*¹,*N*¹-Dimethyl-*N*²-(1-oxido-8,9-dihydro-7*H*-indeno[5,4-*e*][1,2,4]triazin-3-yl)-1,2ethanediamine (59). Method C. Reaction of chloride 58 (187 mg, 0.8 mmol) and *N*,*N*dimethyl-1,2-ethanediamine (0.28 mL, 2.5 mmol) in DME (30 mL) gave 1-oxide 59 (201 mg, 88%) as a pale yellow solid: mp (MeOH/EtOAc) 186–190 °C; ¹H NMR δ 7.54 (d, *J* = 8.4 Hz, 1 H, H-6), 7.37 (d, *J* = 8.4 Hz, 1 H, H-5), 5.80 (br s, 1 H, NH), 3.63 (br t, *J* = 7.3 Hz, 2 H, H-9), 3.52–3.57 (m, 2 H, CH₂N), 2.96 (br t, *J* = 7 Hz, 2 H, H-7), 2.57 (t, *J* = 6.0 Hz, 2 H, CH₂N), 2.29 [s, 6 H, N(CH₃)₂], 2.12–2.21 (m, 2 H, H-8); ¹³C NMR δ 158.5, 149.0, 142.0, 137.3, 132.2, 129.2, 124.7, 57.6, 45.0 (2), 38.7, 35.3, 32.9, 24.8. Anal. Calcd for C₁₄H₁₉N₅O·¹/4H₂O: C, 60.5; H, 7.1; N, 25.2. Found: C, 60.6; H, 6.6; N, 25.4%.

*N*¹,*N*¹-Dimethyl-*N*²-(1,4-dioxido-8,9-dihydro-7*H*-indeno[5,4-*e*][1,2,4]triazin-3-yl)-1,2ethanediamine (9). Method D. Oxidation of 1-oxide 59 (182 mg, 0.7 mmol) with CF₃CO₃H (ca. 7 mmol) gave 1,4-dioxide 9 (60 mg, 31%) as a red solid: mp (MeOH/EtOAc) 153–156 °C; ¹H NMR δ 8.12 (d, *J* = 8.7 Hz, 1 H, H-5), 7.70 (d, *J* = 8.7 Hz, 1 H, H-6), 7.37 (br s, 1 H, NH), 3.71 (br t, *J* = 7.4 Hz, 2 H, H-9), 3.60–3.64 (m, 2 H, CH₂N), 3.03 (br t, *J* = 7.8 Hz, 2 H, H-7), 2.61 (t, *J* = 6.0 Hz, 2 H, CH₂N), 2.30 [s, 6 H, N(CH₃)₂], 2.17–2.26 (m, 2 H, H-8); ¹³C NMR δ 149.1, 144.7, 138.6, 138.4, 132.7, 129.1, 115.8, 57.6, 45.2 (2), 38.8, 35.1, 32.9, 24.6; MS (EI⁺) *m*/*z* 289 (M⁺, 0.5%), 273 (2), 256 (3), 58 (100); HRMS (EI⁺) calcd for C₁₄H₁₉N₅O₂ (M⁺) *m*/*z* 289.1539, found 289.1536. N^1 , N^1 -Diethyl- N^2 -(1,4-dioxido-8,9-dihydro-7*H*-indeno[5,4-*e*][1,2,4]triazin-3-yl)-1,2-ethanediamine (10).

*N*¹,*N*¹-Diethyl-*N*²-(1-oxido-8,9-dihydro-7*H*-indeno[5,4-*e*][1,2,4]triazin-3-yl)-1,2ethanediamine (60). Method C. Reaction of chloride 58 (215 mg, 1.0 mmol) and *N*,*N*diethyl-1,2-ethanediamine (0.41 mL, 2.9 mmol) in DME (30 mL) gave 1-oxide 60 (271 mg, 93%) as a pale yellow solid: mp (MeOH/EtOAc) 126–130 °C; ¹H NMR δ 7.54 (d, *J* = 8.4 Hz, 1 H, H-6), 7.39 (d, *J* = 8.4 Hz, 1 H, H-5), 5.93 (br s, 1 H, NH), 3.63 (br dd, *J* = 7.5, 7.4 Hz, 2 H, H-9), 3.52–3.57 (m, 2 H, CH₂N), 2.97 (br dd, *J* = 7.8, 7.6 Hz, 2 H, H-7), 2.74 (br t, *J* = 6.0 Hz, 2 H, CH₂N), 2.63 (q, *J* = 7.4 Hz, 4 H, 2 × CH₂N), 2.16 (br p, *J* = 7.6 Hz, 2 H, H-8), 1.07 (t, *J* = 7.1 Hz, 6 H, 2 × CH₃); ¹³C NMR δ 158.4, 149.0, 142.0, 137.3, 132.2, 129.2, 124.6, 51.2, 46.6 (2), 38.5, 35.3, 32.8, 24.8, 11.5 (2). Anal. Calcd for C₁₆H₂₃N₅O·¼H₂O: C, 62.8; H, 7.7; N, 22.9. Found: C, 63.0; H, 7.6; N, 22.9%.

*N*¹,*N*¹-Diethyl-*N*²-(1,4-dioxido-8,9-dihydro-7*H*-indeno[5,4-*e*][1,2,4]triazin-3-yl)-1,2ethanediamine (10). Method D. Oxidation of 1-oxide 60 (219 mg, 0.7 mmol) with CF₃CO₃H (ca. 7 mmol) gave 1,4-dioxide 10 (91 mg, 31%) as a red solid: mp (MeOH) 138–141 °C; ¹H NMR δ 8.11 (d, *J* = 8.7 Hz, 1 H, H-5), 7.70 (d, *J* = 8.7 Hz, 1 H, H-6), 7.44 (br s, 1 H, NH), 3.70 (br t, *J* = 7.4 Hz, 2 H, H-9), 3.58–3.63 (m, 2 H, CH₂N), 3.03 (br t, *J* = 7.7 Hz, 2 H, H-7), 2.77 (br dd, *J* = 6.0, 5.8 Hz, 2 H, CH₂N), 2.63 (q, *J* = 7.1 Hz, 4 H, 2 × CH₂N), 2.22 (br p, *J* = 7.7 Hz, 2 H, H-8), 1.08 (t, *J* = 7.1 Hz, 6 H, 2 × CH₃); ¹³C NMR δ 149.0, 144.7, 138.6, 138.3, 132.7, 129.0, 115.7, 51.2, 46.8 (2), 38.8, 35.1, 32.9, 25.6, 11.7 (2). Anal. Calcd for C₁₆H₂₃N₅O₂·½H₂O: C, 58.9; H, 7.4; N, 21.5. Found: C, 59.2; H, 7.2; N, 21.5%.

 N^{1} -(1-Oxido-8,9-dihydro-7*H*-indeno[5,4-*e*][1,2,4]triazin-3-yl)- N^{2} , N^{2} -dipropyl-1,2-ethanediamine (11).

*N*¹-(1-Oxido-8,9-dihydro-7*H*-indeno[5,4-*e*][1,2,4]triazin-3-yl)-*N*²,*N*²-dipropyl-1,2ethanediamine (61). Method C. Reaction of chloride 58 (325 mg, 1.5 mmol) *N*,*N*dipropyl-1,2-ethanediamine² (0.53 g, 3.7 mmol) in DME (30 mL) gave 1-oxide 61 (454 mg, 94%) as a pale yellow solid: mp (MeOH) 148–151 °C; ¹H NMR δ 7.54 (d, *J* = 8.4 Hz, 1 H, H-6), 7.40 (d, *J* = 8.4 Hz, 1 H, H-5), 5.77 (br s, 1 H, NH), 3.63–3.68 (m, 2 H, H-9), 3.48–3.52 (m, 2 H, CH₂N), 2.95–3.00 (m, 2 H, H-7), 2.68 (dd, *J* = 6.0, 5.8 Hz, 2 H, CH₂N), 2.40–2.45 (m, 4 H, 2 × CH₂N), 2.16–2.23 (m, 2 H, H-8), 1.43–1.52 (m, 4 H, 2 × CH₂), 0.90 (t, *J* = 7.3 Hz, 6 H, 2 × CH₃); ¹³C NMR δ 158.5, 149.0, 142.0, 137.3, 132.2, 129.2, 124.7, 55.9 (2), 52.6, 38.9, 35.3, 32.9, 24.8, 20.3 (2), 11.9 (2). Anal. Calcd for C₁₈H₂₇N₅O: C, 65.6; H, 8.3; N, 21.3. Found: C, 65.7; H, 8.6; N, 21.5%.

*N*¹-(1-Oxido-8,9-dihydro-7*H*-indeno[5,4-*e*][1,2,4]triazin-3-yl)-*N*²,*N*²-dipropyl-1,2ethanediamine (11). Method D. Oxidation of 1-oxide 61 (364 mg, 1.1 mmol) with CF₃CO₃H (ca. 11 mmol) gave 1,4-dioxide 11 (207 mg, 57%) as a red solid: mp (MeOH/EtOAc) 133–135 °C; ¹H NMR δ 8.11 (d, *J* = 8.7 Hz, 1 H, H-5), 7.68 (d, *J* = 8.7 Hz, 1 H, H-6), 7.48 (br s, 1 H, NH), 3.68 (t, *J* = 7.5 Hz, 2 H, H-9), 3.58–3.64 (m, 2 H, CH₂N), 3.02 (t, *J* = 7.8 Hz, 2 H, H-7), 2.76–2.81 (m, 2 H, CH₂N), 2.46–2.55 (m, 4 H, 2 × CH₂N), 2.17–2.25 (m, 2 H, H-8), 1.47–1.58 (m, 4 H, 2 × CH₂), 0.92 (t, 6 H, *J* = 7.4 Hz, 2 × CH₃); ¹³C NMR δ 149.1, 144.7, 138.6, 138.4, 132.6, 129.0, 115.8, 55.9 (2), 52.5, 38.8, 35.1, 32.9, 24.6, 20.0 (2), 11.8 (2). Anal. calcd for C₁₈H₂₇N₅O₂: C, 62.6; H, 7.9; N, 20.3. Found: C, 62.7; H, 8.0; N, 20.4%.

N-[2-(1-Piperidinyl)ethyl]-8,9-dihydro-7*H*-indeno[5,4-*e*][1,2,4]triazin-3-amine 1,4-Dioxide (12).

N-[2-(1-Piperidinyl)ethyl]-8,9-dihydro-7*H*-indeno[5,4-*e*][1,2,4]triazin-3-amine 1-Oxide (62). Method C. Reaction of chloride 58 (165 mg, 0.7 mmol) and 2-(1piperidinyl)ethylamine (0.32 mL, 2.2 mmol) in DME (30 mL) gave 1-oxide 62 (205 mg, 88%) as a pale yellow solid: mp (MeOH) 152–155 °C; ¹H NMR δ 7.53 (d, *J* = 8.4 Hz, 1 H, H-5), 7.38 (d, *J* = 8.4 Hz, 1 H, H-6), 5.90 (br s, 1 H, NH), 3.60–3.66 (m, 2 H, H-9), 3.48–3.54 (m, 2 H, CH₂N), 2.97 (br t, *J* = 7.7 Hz, 2 H, H-7), 2.57 (dd, *J* = 6.1, 5.9 Hz, 2 H, CH₂N), 2.38–2.45 (m, 4 H, 2 × CH₂N), 2.17 (br p, *J* = 7.7 Hz, 2 H, H-8), 1.55–1.61 (m, 4 H, 2 × CH₂), 1.41–1.48 (m, 2 H, CH₂); ¹³C NMR δ 158.4, 149.0, 142.0, 137.3, 132.2, 129.1, 124.6, 56.9, 54.2 (2), 37.9, 35.3, 32.8, 25.9 (2), 24.8, 24.4. Anal. Calcd for C₁₇H₂₃N₅O: C, 65.2; H, 7.4; N, 22.4. Found: C, 65.1; H, 7.2; N, 22.5%.

N-[2-(1-Piperidinyl)ethyl]-8,9-dihydro-7*H*-indeno[5,4-*e*][1,2,4]triazin-3-amine 1,4-Dioxide (12). Method D. Oxidation of 1-oxide 62 (170 mg, 0.5 mmol) with CF₃CO₃H (ca. 5.4 mmol) gave 1,4-dioxide 12 (89 mg, 50%) as a red solid: mp (MeOH/EtOAc) 138–141 °C; ¹H NMR δ 8.12 (d, J = 8.7 Hz, 1 H, H-5), 7.70 (d, J = 8.7 Hz, 1 H, H-6), 7.44 (br s, 1 H, NH), 3.70 (br t, J = 7.6 Hz, 2 H, H-9), 3.60–3.64 (m, 2 H, CH₂N), 3.04 (br t, J = 7.7 Hz, 2 H, H-7), 2.64 (br t, J = 6.1 Hz, 2 H, CH₂N), 2.43–2.50 (m, 4 H, 2 × CH₂), 2.21 (br p, J = 7.7 Hz, 2 H, H-8), 1.59–1.65 (m, 4 H, 2 × CH₂), 1.42–1.48 (m, 2 H, CH₂); ¹³C NMR δ 149.1, 144.7, 138.6, 138.4, 132.7, 129.0, 115.7, 56.9, 54.4 (2), 38.1, 35.1, 32.9, 25.9 (2), 24.6, 24.3. Anal. Calcd for C₁₇H₂₃N₅O₂·½H₂O: C, 60.3; H, 7.2; N, 20.7. Found: C, 59.9; H, 7.0; N, 20.3%.

N-[3-(1-Morpholinyl)propyl]-8,9-dihydro-7*H*-indeno[5,4-*e*][1,2,4]triazin-3-amine 1,4-Dioxide (13).

N-[3-(1-Morpholinyl)propyl]-8,9-dihydro-7*H*-indeno[5,4-*e*][1,2,4]triazin-3-amine 1-Oxide (63). Method C. Reaction of chloride 58 (158 mg, 0.7 mmol) and 3-(1morpholinyl)propylamine (0.31 mL, 2.1 mmol) in DME (30 mL) gave 1-oxide 63 (212 mg, 91%) as a pale yellow solid: mp (MeOH/EtOAc) 179–181 °C; ¹H NMR δ 7.54 (d, *J* = 8.4 Hz, 1 H, H-5), 7.37 (d, *J* = 8.4 Hz, 1 H, H-6), 6.11 (br s, 1 H, NH), 3.73–3.78 (m, 4 H, 2 × CH₂O), 3.63 (br t, *J* = 7.6 Hz, 2 H, H-9), 3.55–3.60 (m, 2 H, CH₂N), 2.97 (br t, *J* = 7.7 Hz, 2 H, H-7), 2.43–2.52 (m, 6 H, 3 × CH₂N), 2.18 (br p, *J* = 7.7 Hz, 2 H, H-8), 1.90– 1.96 (m, 2 H, CH₂); ¹³C NMR δ 158.5, 149.0, 142.0, 137.3, 132.2, 129.1, 124.6, 67.0 (2), 57.2, 53.7 (2), 40.7, 35.3, 32.8, 25.3, 24.8. Anal. Calcd for C₁₇H₂₃N₅O·¹/4H₂O: C, 61.2; H, 7.1; N, 21.0. Found: C, 61.2; H, 7.0; N, 21.0%.

N-[3-(1-Morpholinyl)propyl]-8,9-dihydro-7*H*-indeno[5,4-*e*][1,2,4]triazin-3-amine 1,4-Dioxide (13). Method D. Oxidation of 1-oxide 63 (173 mg, 0.5 mmol) with CF₃CO₃H (ca. 5 mmol) gave 1,4-dioxide 13 (42 mg, 23%) as a red solid: mp (MeOH) 172–175 °C; ¹H NMR δ 8.28 (br s, 1 H, NH), 8.12 (d, *J* = 8.7 Hz, 1 H, H-5), 7.69 (d, *J* = 8.7 Hz, 1 H, H-6), 3.81–3.85 (m, 4 H, 2 × CH₂O), 3.64–3.72 (m, 4 H, CH₂N, H-9), 3.03 (br t, *J* = 7.7 Hz, 2 H, H-7), 2.49–2.57 (m, 6 H, 3 × CH₂N), 2.22 (br p, *J* = 7.7 Hz, 2 H, H-8), 1.84–1.91 (m, 2 H, CH₂); ¹³C NMR δ 149.2, 144.6, 138.6, 138.4, 132.6, 128.9, 115.8, 66.9 (2), 57.6, 53.9 (2), 41.4, 35.1, 32.9, 24.6, 24.3. Anal. Calcd for C₁₇H₂₃N₅O₃·¹/₄CH₃OH: C, 58.6; H, 6.9; N, 19.8. Found: C, 58.6; H, 6.7; N, 19.9%.

 N^1 , N^1 -Dimethyl- N^2 -(7-methyl-1,4-dioxido-7,8-dihydro-6*H*-indeno[5,6-e][1,2,4]triazin-3-yl)-1,2-ethanediamine (14).

Nitration of 2-Methyl-1-indanone (64). 2-Methyl-1-indanone (64) (18.74 g, 128 mmol) was added dropwise to stirred fuming HNO₃ (100 mL) at -10 °C over 1 h. The mixture was stirred at -10 °C for 10 min then poured into ice/water (1 L) and the mixture stirred for 1 h. The precipitate was filtered and the filtrate extracted with DCM (4 × 80 mL). The combined organic fraction was dried and the solvent evaporated. The combined residue was purified by chromatography, eluting with a gradient (10–20%) of EtOAc/pet. ether, to give (i) 2-methyl-4-nitro-1-indanone (65) (1.89 g, 8%) as a tan solid: mp 61–63 °C [lit.⁴ mp (Et₂O/pet. ether) 74–75 °C]; ¹H NMR δ 8.46 (dd, *J* = 8.0, 1.1 Hz, 1 H, H-5), 8.08 (br d, *J* = 7.5 Hz, 1 H, H-7), 7.60 (br dd, *J* = 8.0, 7.5 Hz, 1 H, H-6), 3.93 (dd, *J* = 19.2, 8.0 Hz, 1 H, H-3), 3.20 (dd, *J* = 19.2, 4.0 Hz, 1 H, H-3), 2.76–2.85 (m, 1 H, H-2), 1.37 (d, *J* = 7.5 Hz, 3 H, CH₃); and (ii) 2-methyl-6-nitro-1-indanone (66) (10.76 g, 44%) as a tan solid: mp 60–61 °C; ¹H NMR δ 8.56 (d, *J* = 2.0 Hz, 1 H, H-7), 8.44 (dd, *J* = 8.4, 2.2 Hz, 1 H, H-5), 7.63 (d, *J* = 8.4 Hz, 1 H, H-4), 3.48–3.54 (m, 1 H, H-2), 2.81–2.90 (m, 2 H, H-3), 1.36 (d, *J* = 7.3 Hz, 3 H, CH₃). Anal. Calcd for C₁₀H₉NO₃: C, 62.8; H, 4.7; N, 7.3. Found: C, 62.7; H, 4.8; N, 7.4%.

N-(2-Methyl-2,3-dihydro-1*H*-inden-5-yl)acetamide (67). A solution of nitroindanone 66 (2.08 g, 10.9 mmol) in EtOH (100 mL), water (10 mL) and cHCl (1 mL) with Pd/C (200 mg) was vigorously stirred under H₂ (60 psi) for 16 h. The mixture was filtered through Celite and the solvent was evaporated. The residue was partitioned between dilute aqueous NH₃ solution and DCM, and the organic fraction dried and the solvent evaporated. The residue was suspended in dioxane (30 mL), and Ac₂O (1.6 mL, 17.0 mmol) added dropwise. The mixture was stirred at 20 °C for 16 h, and then quenched with MeOH (20 mL) and the solvent evaporated. The residue was purified by chromatography, eluting with a gradient (20–50%) of EtOAc/pet. ether, to give acetamide 67 (1.03 g, 50%) as a white solid: mp (EtOAc/pet. ether) 90–91 °C; ¹H NMR δ 7.41 (br d, *J* = 1.7 Hz, 1 H, H-4), 7.35 (br s, 1 H, NH), 7.15 (br dd, *J* = 8.0, 1.7 Hz, 1 H, H-6), 7.10 (br d, *J* = 8.0 Hz, 1 H, H-7), 2.97–3.05 (m, 2 H, CH₂), 2.45–2.61 (m, 3 H, H-2, CH₂), 2.16 (s, 3 H, COCH₃), 1.13 (d, *J* = 6.4 Hz, 3 H, CH₃); ¹³C NMR δ 168.3, 144.7, 139.9, 136.0, 124.5, 118.2, 116.7, 41.2, 40.6, 34.7, 24.5, 20.7. Anal. Calcd for C₁₂H₁₅NO: C, 76.2; H, 8.0; N, 7.4. Found: C, 76.3; H, 7.9; N, 7.4%.

N-(2-Methyl-6-nitro-2,3-dihydro-1*H*-inden-5-yl)acetamide (68). A solution of nitric acid (70%, 3.2 mL, 50.3 mmol) in TFA (5 mL) was added dropwise to a stirred solution of acetamide 67 (3.93 g, 16.8 mmol) in TFA (40 mL) and the solution stirred at 20 °C for 2 h. The solution was poured into ice/water (400 mL) and stirred for 30 min. The precipitate was filtered, washed with water (3 × 30 mL), and dried. The solid was purified by chromatography, eluting with 10% EtOAc/pet. ether, to give nitroacetamide 68 (3.79 g, 96%) as a red solid: mp (EtOAc/pet. ether) 99–100 °C; ¹H NMR δ 10.41 (br s, 1 H, NH), 8.50 (s, 1 H, H-7), 8.00 (s, 1 H, H-4), 3.03–3.13 (m, 2 H, CH₂), 2.51–2.67 (m, 3 H, H-2, CH₂), 2.29 (s, 3 H, COCH₃), 1.14 (d, *J* = 6.4 Hz, 3 H, CH₃); ¹³C NMR δ 169.0, 153.9, 139.4, 135.3, 133.7, 121.1, 117.7, 41.6, 40.2, 34.7, 25.6, 20.4. Anal. Calcd for C₁₂H₁₄N₂O₃: C, 61.5; H, 6.0; N, 12.0. Found: C, 61.6; H, 6.2; N, 11.5%.

2-Methyl-6-nitro-5-indanamine (69). A suspension of nitroacetamide **68** (3.79 g, 16.2 mmol) in EtOH (100 mL) and cHCl (14 mL) was stirred at reflux temperature for 4 h.

The mixture was cooled and the EtOH evaporated. The mixture was diluted with water (100 mL) and the pH adjusted to 9 with cNH₃. The mixture was extracted with DCM (3 × 50 mL) and the combined organic fraction dried and the solvent evaporated. The residue was purified by chromatography, eluting with 20% EtOAc/pet. ether, to give nitroaniline **69** (3.01 g, 97%) as a red solid: mp (EtOAc/pet. ether) 100–101 °C; ¹H NMR δ 7.89 (s, 1 H, H-7), 6.61 (s, 1 H, H-4), 5.99 (br s, 2 H, NH₂), 2.92–2.99 (m, 2 H, CH₂), 2.40–2.58 (m, 3 H, H-2, CH₂), 1.12 (d, *J* = 6.5 Hz, 3 H, CH₃); ¹³C NMR δ 153.9, 144.3, 133.6, 131.3, 120.9, 113.6, 41.1, 39.6, 34.8, 20.4. Anal. Calcd for C₁₀H₁₂N₂O₂: C, 62.5; H, 6.3; N, 14.6. Found: C, 62.6; H, 6.3; N, 14.5%.

7-Methyl-7,8-dihydro-6*H***-indeno[5,6-***e***][1,2,4]triazin-3-amine 1-Oxide (70). Method A. Reaction of nitroaniline 69** (3.0 g, 15.7 mmol) and cyanamide (2.6 g, 62.6 mmol) gave 1-oxide **70** (3.06 g, 90%) as a yellow powder: mp (MeOH/DCM) 275–277 °C; ¹H NMR [(CD₃)₂SO] δ 7.90 (s, 1 H, H-9), 7.31 (s, 1 H, H-5), 7.10 (br s, 2 H, NH₂), 3.05–3.14 (m, 2 H, CH₂), 2.48–2.62 (m, 3 H, H-7, CH₂), 1.09 (d, *J* = 6.3 Hz, 3 H, CH₃); ¹³C NMR [(CD₃)₂SO] δ 159.9, 153.7, 148.6, 142.1, 128.7, 120.0, 113.9, 41.4, 39.6, 34.3, 19.9. Anal. Calcd for C₁₁H₁₂N₄O: C, 61.1; H, 5.6; N, 25.9. Found: C, 61.3; H, 5.6; N, 26.2%.

3-Chloro-7-methyl-7,8-dihydro-6*H***-indeno[5,6-***e***][1,2,4]triazine 1-Oxide (71). Method B.** Reaction of 1-oxide **70** (1.23 g, 5.7 mmol) and NaNO₂ (0.43 g, 6.2 mmol) in TFA (50 mL), followed by chlorination with POCl₃/DMF, gave chloride **71** (1.06 g, 79%) as a pale yellow solid: mp (DCM/pet. ether) 121–122 °C; ¹H NMR [(CD₃)₂SO] δ 8.18 (s, 1 H, H-9), 7.71 (s, 1 H, H-5), 3.21–3.30 (m, 2 H, CH₂), 2.65–2.80 (m, 3 H, H-7, CH₂), 1.20 (d, J = 6.4 Hz, 3 H, CH₃); ¹³C NMR [(CD₃)₂SO] δ 156.0, 155.9, 149.8, 147.4, 132.8, 122.6, 114.6, 41.3, 40.9, 35.0, 20.2. Anal. Calcd for C₁₁H₁₀ClN₃O: C, 56.1; H, 4.3; N, 17.8. Found: C, 56.0; H, 4.2; N, 17.8%.

*N*¹,*N*¹-Dimethyl-*N*²-(7-methyl-1-oxido-7,8-dihydro-6*H*-indeno[5,6-*e*][1,2,4]triazin-3yl)-1,2-ethanediamine (72). Method C. Reaction of chloride 71 (240 mg, 0.9 mmol), N^1 , N^1 -dimethyl-1,2-ethanediamine (0.26 mL, 2.4 mmol) and Et₃N (0.33 mL, 2.4 mmol) in DME (50 mL) gave 1-oxide 72 (389 mg, 86%) as a yellow solid: mp (MeOH/EtOAc) 119–121 °C; ¹H NMR δ 8.03 (s, 1 H, H-9), 7.35 (s, 1 H, H-5), 5.82 (br s, 1 H, NH), 3.52– 3.58 (m, 2 H, CH₂N), 3.07–3.17 (m, 2 H, CH₂), 2.55–2.67 (m, 5 H, CH, CH₂, CH₂N), 2.28 [s, 6 H, N(CH₃)₂], 1.15 (d, *J* = 6.1 Hz, 3 H, CH₃); ¹³C NMR δ 158.7, 154.2, 148.9, 142.9, 129.8, 120.7, 114.8, 57.6, 45.1 (2), 41.2, 40.4, 38.7, 34.9, 20.2. Anal. Calcd for C₁₅H₂₁N₅O: C, 62.7; H, 7.4; N, 24.4. Found: C, 62.4; H, 7.1; N, 24.1%.

N¹,N¹-Dimethyl-N²-(7-methyl-1,4-dioxido-7,8-dihydro-6*H*-indeno[5,6-

e][1,2,4]triazin-3-yl)-1,2-ethanediamine (14). Method D. Oxidation of 1-oxide 72 (371 mg, 1.3 mmol) with CF₃CO₃H (ca. 13 mmol) gave (i) starting material 72 (181 mg, 49%) and (ii) 1,4-dioxide 14 (103 mg, 26%) as a red solid: mp (MeOH/DCM) 149–151 °C; ¹H NMR δ 8.09 (s, 1 H, H-9), 8.07 (s, 1 H, H-5), 7.52 (br s, 1 H, NH), 3.58–3.64 (m, 2 H, CH₂N), 3.14–3.27 (m, 2 H, CH₂), 2.63–2.75 (m, 3 H, CH, CH₂), 2.59 (br t, *J* = 6.0 Hz, 2 H, CH₂), 2.28 [s, 6 H, N(CH₃)₂], 1.18 (d, *J* = 6.2 Hz, 3 H, CH₃); ¹³C NMR δ 155.6, 149.4, 145.5, 138.0, 128.9, 115.8, 111.8, 57.4, 45.0 (2), 41.4, 40.4, 38.7, 34.8, 20.1. Anal. Calcd for C₁₅H₂₁N₅O₂·½CH₂Cl₂: C, 54.6; H, 6.3; N, 19.9. Found: C, 54.4; H, 6.0; N, 19.8%.

7-Methyl-*N*-[3-(4-morpholinyl)propyl]-7,8-dihydro-6*H*-indeno[5,6-*e*][1,2,4]triazin-3-amine 1,4-Dioxide (15).

7-Methyl-*N*-[**3**-(**4-morpholinyl**)**propyl**]-**7**,**8**-dihydro-*6H*-indeno[**5**,6-*e*][**1**,**2**,**4**]triazin-3amine 1-Oxide (73). Method C. Reaction of chloride **71** (367 mg, 1.6 mmol), 3-(4morpholinyl)propylamine (0.34 mL, 2.3 mmol) and Et₃N (0.33 mL, 2.3 mmol) in DME (50 mL) gave 1-oxide **73** (525 mg, 98%) as a yellow solid: mp (MeOH/DCM) 138–140 °C; ¹H NMR δ 8.04 (s, 1 H, H-9), 7.35 (s, 1 H, H-5), 6.10 (br t, *J* = 5.0 Hz, 1 H, NH), 3.75 (br t, *J* = 4.7 Hz, 4 H, 2 × CH₂O), 3.56–3.61 (m, 2 H, CH₂N), 3.08–3.18 (m, 2 H, CH₂), 2.56–2.65 (m, 3 H, CH, CH₂), 2.44–2.52 (m, 6 H, 3 × CH₂N), 1.83 (br p, *J* = 6.5 Hz, 2 H, CH₂), 1.15 (d, *J* = 6.1 Hz, 3 H, CH₃); ¹³C NMR δ 158.8, 154.2, 148.9, 142.8, 129.8, 120.7, 114.8, 67.0 (2), 57.3, 53.8 (2), 41.2, 40.8, 40.4, 34.9, 25.3, 20.4. Anal. Calcd for C₁₈H₂₅N₅O₂: C, 63.0; H, 7.3; N, 20.4. Found: C, 63.2; H, 7.2; N, 20.4%.

7-Methyl-*N*-[**3**-(**4-morpholinyl**)**propyl**]-**7**,**8**-dihydro-*6H*-indeno[**5**,*6*-*e*][**1**,**2**,**4**]triazin-3amine 1,**4**-Dioxide (15). Method D. Oxidation of 1-oxide **73** (490 mg, 1.4 mmol) with CF₃CO₃H (ca. 14 mmol) gave (i) starting material **73** (280 mg, 57%) and (ii) 1,4-dioxide **15** (88 mg, 17%) as a red solid: mp (MeOH/DCM) 161–163 °C; ¹H NMR δ 8.30 (br s, 1 H, NH), 8.08 (br s, 2 H, H-5, H-9), 3.82 (br t, *J* = 4.5 Hz, 4 H, 2 × CH₂O), 3.58–3.63 (m, 2 H, CH₂N), 3.15–3.25 (m, 2 H, CH₂), 2.61–2.74 (m, 3 H, CH, CH₂), 2.57 (br t, *J* = 6.1 Hz, 2 H, CH₂N), 2.47–2.53 (m, 4 H, 2 × CH₂N), 1.83–1.90 (m, 2 H, CH₂), 1.18 (d, *J* = 6.2 Hz, 3 H, CH₃); ¹³C NMR δ 155.2, 149.5, 145.2, 138.1, 129.5, 115.8, 111.7, 66.9 (2), 57.7, 53.8 (2), 41.6, 41.4, 40.4, 34.9, 24.5, 20.2; MS *m*/*z* 360 (MH⁺, 5%); HRMS calcd for C₁₈H₂₆N₅O₃ (MH⁺) *m*/*z* 360.2036, found 360.2041. Anal. Calcd for C₁₈H₂₅N₅O₃: C, 60.2; H, 7.0. Found: C, 60.6; H, 7.0%. Also Calcd for N, 19.5. Found: 18.3%.

N-(5,6,7,8-Tetrahydro-2-naphthalenyl)acetamide (75). fHNO₃ (8.6 mL, 144 mmol) in cH₂SO₄ (50 mL) was added dropwise to a stirred solution of α-tetralone (74) (20 g, 137 mmol) in cH₂SO₄ (300 mL) at 0 °C and the solution stirred for 1 h. The solution was poured into ice/water (2 L), stirred for 30 min, filtered and washed with water. The solid was dried and purified by chromatography, eluting with 20% EtOAc/pet. ether, to give (i) 5-nitro-3,4-dihydro-1(2*H*)-naphthalenone (4.1 g, 16%) as a white solid: ¹H NMR δ 8.35 (dd, *J* = 7.8, 1.4 Hz, 1 H, H-6), 8.09 (dd, *J* = 8.0, 1.4 Hz, 1 H, H-8), 7.48 (br t, *J* = 7.9 Hz, 1 H, H-7), 3.22 (t, *J* = 6.1 Hz, 2 H, H-4), 2.74 (dd, *J* = 6.8, 6.4 Hz, 2 H, H-2), 2.13–2.21 (m, 2 H, H-3); and (ii) 7-nitro-3,4-dihydro-1(2*H*)-naphthalenone (20.1 g, 77%) as a white solid: ¹H NMR δ 8.86 (d, *J* = 2.5 Hz, 1 H, H-4), 8.30 (dd, *J* = 8.4, 2.5 Hz, 1 H, H-6), 7.46 (d, *J* = 8.4 Hz, 1 H, H-5), 3.09 (t, *J* = 6.1 Hz, 2 H, H-4), 2.74 (dd, *J* = 7.0, 6.2 Hz, 2 H, H-2), 2.17–2.25 (m, 2 H, H-3).

A solution of 7-nitro-3,4-dihydro-1(2*H*)-naphthalenone (1.67 g, 8.7 mmol) in EtOAc/EtOH (1:1, 150 mL), water (15 mL) and cHCl (2 mL) with Pd/C (5%, 500 mg) was stirred vigorously under H₂ (60 psi) for 16 h. The suspension was filtered through Celite, washed with EtOH (4 × 10 mL) and the organic solvent evaporated. The aqueous residue was partitioned between DCM and dilute aqueous NH₃ solution and the organic fraction dried and the solvent evaporated. The residue was dissolved in dioxane (20 mL), and Ac₂O (1.8 mL, 19.2 mmol) was added dropwise to the solution at 0 °C. The solution was stirred at 20 °C for 16 h, diluted with water (50 mL), and partitioned between EtOAc and dilute aqueous NH₃ solution. The organic fraction was washed with water (3 × 20 mL), dried and the solvent evaporated to give acetamide **75** (1.57 g, 95%) as a white solid: mp 98–101 °C (lit.⁵ mp 104–105 °C); ¹H NMR δ 7.18–7.25 (m, 2 H, H-1, NH), 7.15 (dd, *J* = 8.2, 2.1 Hz, 1 H, H-3), 7.00 (d, *J* = 8.2 Hz, 1 H, H-4), 2.69–2.77 (m, 4 H, 2 × CH₂), 2.15 (s, 3 H, CH₃), 1.74–1.80 (m, 4 H, 2 × CH₂). The procedure was repeated a number of times to give acetamide **75** (10.21 g, 88% overall).

Nitration of *N***-(5,6,7,8-Tetrahydro-2-naphthalenyl)acetamide (75).** A solution of KNO_3 (5.73 g, 56.6 mmol) in cH₂SO₄ (25 mL) was added dropwise to a stirred solution of acetamide 75 (10.21 g, 53.9 mmol) in cH₂SO₄ (150 mL) at 0 °C and the mixture stirred at 0 °C for 2 h. The mixture was poured into ice/water (1.5 L) and the suspension stirred for 30 min. The precipitate was filtered, washed with water and dried. The solid was purified by chromatography, eluting with a gradient (20–70%) of EtOAc/pet. ether, to give (i) N-(3-nitro-5,6,7,8-tetrahydro-2-naphthalenyl)acetamide (76) (840 mg, 7%) as a white solid: mp 129–130 °C [lit.⁶ mp (EtOH) 135–135 °C]; ¹H NMR δ 10.24 (br s, 1 H, NH), 8.44 (s, 1 H, H-4), 7.93 (s, 1 H, H-1), 2.82–2.86 (m, 2 H, CH₂), 2.75–2.79 (m, 2 H, CH_2 , 2.27 (s, 3 H, CH_3), 1.78–1.83 (m, 4 H, 2 × CH_2); and (ii) N-(1-nitro-5,6,7,8tetrahydro-2-naphthalenyl)acetamide (77) (1.65, g, 13%) as a white solid: mp 118–120 °C (lit.⁷ mp 127 °C); ¹H NMR δ 8.04 (br s, 1 H, NH), 7.91 (br d, J = 8.4 Hz, 1 H, H-3), 7.24 (d, J = 8.4 Hz, 1 H, H-4), 2.78–2.82 (m, 2 H, CH₂), 2.72–2.76 (m, 2 H, CH₂), 2.18 (s, 3 H, CH₃), 1.76–1.83 (m, 4 H, 2 × CH₂); and (iii) N-(4-nitro-5,6,7,8-tetrahydro-2naphthalenyl)acetamide (78) (7.58 g, 60%) as a white solid: mp 196–198 °C; ¹H NMR δ 7.79 (d, J = 2.0 Hz, 1 H, H-3), 7.56 (d, J = 2.0 Hz, 1 H, H-1), 7.22 (br s, 1 H, NH), 2.87– 2.93 (m, 2 H, CH₂), 2.80–2.84 (m, 2 H, CH₂), 2.20 (s, 3 H, CH₃), 1.76–1.83 (m, 4 H, 2 × CH₂).

3-Nitro-5,6,7,8-tetrahydro-2-naphthalenamine (79). A suspension of nitroacetamide **76** (151 mg, 0.65 mmol) in 6 M HCl (30 mL) was stirred at 100 °C for 6 h. The suspension was cooled to 20 °C, diluted with water (50 mL) and the pH adjusted to 8 with aqueous NH₃ solution. The mixture was extracted with DCM (3×50 mL), the combined organic fraction dried, and the solvent evaporated to give amine **79** (113 mg, 100%) as an orange solid: mp 120–122 °C (lit.⁶ mp 124–127 °C); ¹H NMR δ 7.83 (s, 1 H, H-4), 7.50 (s, 1 H, H-1), 5.79 (s, 2 H, NH₂), 2.67–2.73 (m, 4 H, 2 × CH₂), 1.78–1.83 (m, 4 H, 2 × CH₂).

6,7,8,9-Tetrahydronaphtho[**2,3**-*e*][**1,2,4**]**triazin-3-amine 1-Oxide (80). Method A.** Reaction of nitroaniline **79** (0.77 g, 4.0 mmol) and cyanamide (0.68 g, 16.0 mmol) gave amine **80** (0.30 g, 35%) as a yellow powder: mp (MeOH/DCM) 270–274 °C; ¹H NMR [(CD₃)₂SO] δ 7.83 (s, 1 H, H-10), 7.23 (s, 1 H, H-5), 7.11 (br s, 2 H, NH₂), 2.82–2.89 (m, 4 H, H-6, H-9), 1.72–1.77 (m, 4 H, H-7, H-8); ¹³C NMR [(CD₃)₂SO] δ 159.8, 146.9, 146.8, 136.2, 128.0, 124.0, 118.1, 29.1, 28.5, 22.0, 21.8. Anal. Calcd for C₁₁H₁₂N₄O·¹/4</sup>H₂O: C, 59.9; H, 5.7; N, 25.4. Found: C, 60.4; H, 5.5; N, 25.5%.

3-Chloro-6,7,8,9-tetrahydronaphtho[**2,3***e*][**1,2,4**]**triazine 1-Oxide (81). Method B.** Reaction of 1-oxide **80** (284 mg, 1.3 mmol) and NaNO₂ (181 mg, 2.6 mmol), followed by chlorination with POCl₃/DMF, gave chloride **81** (173 mg, 56%) as a pale yellow solid: mp (EtOAc/DCM) 104–106 °C; ¹H NMR δ 8.10 (s, 1 H, H-10), 7.65 (s, 1 H, H-5), 2.98–3.05 (m, 4 H, H-6, H-9), 1.86–1.93 (m, 4 H, H-7, H-8); ¹³C NMR δ 155.9, 149.5, 145.5, 143.1, 131.8, 126.9, 118.8, 30.2, 29.9, 22.2, 22.0. Anal. Calcd for C₁₁H₁₀ClN₃O: C, 56.0; H, 4.3; N, 17.8. Found: C, 56.2; H, 4.3; N, 17.8%.

*N*¹-(1-Oxido-6,7,8,9-tetrahydronaphtho[2,3-*e*][1,2,4]triazin-3-yl)-*N*²,*N*²-dimethyl-1,2ethanediamine (82). Reaction C. Reaction of chloride 81 (157 mg, 0.7 mmol) and *N*,*N*dimethylethanediamine (0.22 mL, 2.0 mmol) in DME (30 mL) gave 1-oxide 82 (167 mg, 87%) as a yellow solid: mp (MeOH) 149–151 °C; ¹H NMR δ 7.96 (s, 1 H, H-10), 7.29 (s, 1 H, H-5), 5.81 (br s, 1 H, NH), 3.50–3.55 (m, 2 H, CH₂N), 2.85–2.92 (m, 4 H, H-6, H-9), 2.56 (br t, *J* = 6.0 Hz, 2 H, CH₂N), 2.28 [s, 6 H, N(CH₃)₂], 1.81–1.85 (m, 4 H, H-7, H-8); ¹³C NMR δ 158.7, 147.5, 147.0, 136.0, 129.1, 124.9, 119.0, 57.6, 45.1 (2), 38.7, 30.0, 29.3, 22.7, 22.5. Anal. Calcd for C₁₅H₂₁N₅O: C, 62.7; H, 7.4; N, 24.4. Found: C, 62.5; H, 7.2; N, 24.3%.

*N*¹-(1,4-Dioxido-6,7,8,9-tetrahydronaphtho[2,3-*e*][1,2,4]triazin-3-yl)-*N*²,*N*²-dimethyl-1,2-ethanediamine (16). Method D. Oxidation of 1-oxide 82 (153 mg, 0.5 mmol) with CF₃CO₃H (ca. 5 mmol) gave (i) starting material 82 (37 mg, 24%) and (ii) 1,4-dioxide 16 (47 mg, 29%) as a red solid: mp (MeOH) 148–151 °C; ¹H NMR δ 8.02 (s, 1 H, H-10), 7.98 (s, 1 H, H-5), 7.35 (br s, 1 H, NH), 3.63 (br t, *J* = 6.0 Hz, 2 H, CH₂N), 2.98–3.04 (m, 2 H, CH₂), 2.91–2.96 (m, 2 H, CH₂), 2.61 (br t, *J* = 6.0 Hz, 2 H, CH₂N), 2.30 [s, 6 H, N(CH₃)₂], 1.83–1.92 (m, 4 H, H-7, H-8); ¹³C NMR δ 149.4, 148.7, 138.8, 136.5, 128.9, 120.1, 115.8, 57.6, 45.2 (2), 38.9, 30.3, 29.4, 22.3, 22.0; HRMS calcd for C₁₅H₂₂N₅O₂ (MH⁺) *m/z* 304.1774, found 304.1768. Anal. Calcd for C₁₅H₂₁N₅O₂·1^{*i*}₂H₂O: C, 54.5; H, 7.3; N, 21.2. Found: C, 54.4; H, 6.3; N, 20.7%.

N-[3-(4-Morpholinyl)propyl]-6,7,8,9-tetrahydronaphtho[2,3-*e*][1,2,4]triazin-3-amine 1,4-Dioxide (17).

N-[3-(4-Morpholinyl)propyl]-6,7,8,9-tetrahydronaphtho[2,3-*e*][1,2,4]triazin-3-amine 1-Oxide (83). Method C. Reaction of chloride 81 (171 mg, 0.7 mmol) and 3-(4morpholinyl)propylamine (314 mg, 2.2 mmol) in DME (8 mL) gave 1-oxide 83 (250 mg, 100%) as an orange solid: mp (EtOAc) 115–116 °C; ¹H NMR δ 7.97 (s, 1 H, H-10), 7.29 (s, 1 H, H-5), 6.14 (br s, 1 H, NH), 3.75 (t, J = 4.6 Hz, 4 H, 2 × CH₂O), 3.60 (q, J = 6.2Hz, 2 H, CH₂N), 2.86–2.95 (m, 4 H, H-6, H-9), 2.45–2.56 (m, 6 H, 3 × CH₂N), 1.80–1.88 (m, 6 H, H-7, H-8, CH₂); ¹³C NMR δ 158.7, 147.5 147.0, 136.0, 129.1, 124.9, 119.0, 67.0 (2), 57.3, 53.8 (2), 40.8, 30.0, 29.3, 25.3, 22.7, 22.5. Anal. Calcd for C₁₈H₂₅N₅O₂: C, 63.0; H, 7.3; N, 20.4. Found: C, 62.8; H, 7.4; N, 20.3%.

N-[3-(4-Morpholinyl)propyl]-6,7,8,9-tetrahydronaphtho[2,3-*e*][1,2,4]triazin-3-amine 1,4-Dioxide (17). Method D. Oxidation of 1-oxide 83 (204 mg, 0.6 mmol) with CF₃CO₃H (ca. 6 mmol) gave 1,4-dioxide 17 (28 mg, 13%) as a red solid which was converted to the hydrochloride salt: mp (MeOH/DCM) 182–185 °C; ¹H NMR [(CD₃)₂SO] δ 10.29 (s, 1 H, HCl), 8.35 (br s, 1 H, NH), 7.95 (s, 1 H, H-10), 7.87 (s, 1 H, H-5), 3.92–4.01 (m, 2 H, CH₂O), 3.37 (m, 4 H, CH₂N, CH₂O), 2.88–3.22 (m, 8 H, 2 × CH₂N, H-6, H-9), 2.53 (t, *J* = 5.6 Hz, 2 H, CH₂N), 2.00–2.09 (m, 2 H, CH₂N), 1.74–1.83 (m, 4 H, H-7, H-8); ¹³C NMR [(CD₃)₂SO] δ 149.2, 147.8, 138.0, 136.1, 128.5, 119.4, 115.0, 63.0 (2), 53.5, 50.9 (2), 37.9, 29.4, 28.5, 22.7, 21.7, 21.6. Anal. Calcd for C₁₈H₂₅N₅O₃·2HCl·2H₂O: C, 46.2; H, 6.7; N, 15.0. Found: C, 46.3; H, 6.4; N, 15.0%.

 N^{1} -(1,4-Dioxido-7,8,9,10-tetrahydronaphtho[2,1-*e*][1,2,4]triazin-3-yl)- N^{2} , N^{2} -dimethyl-1,2-ethanediamine (18).

1-Nitro-5,6,7,8-tetrahydro-2-naphthalenamine (84). A suspension of acetamide 77 (835 mg, 4.4 mmol) in 6 M HCl (50 mL) was stirred at 100 °C for 16 h. The suspension was cooled to 20 °C, diluted with water (50 mL) and the pH adjusted to 8 with dilute aqueous NH_3 solution. The mixture was extracted with DCM (3 × 50 mL), the combined organic fraction dried and the solvent evaporated. The residue was purified by

chromatography, eluting with 20% EtOAc/pet. ether, to give amine **84** (755 mg, 56%) as an orange solid: mp (EtOAc/pet. ether) 76–78 °C; ¹H NMR δ 6.98 (d, *J* = 8.4 Hz, 1 H, H-4), 6.58 (d, *J* = 8.4 Hz, 1 H, H-3), 4.73 (br s, 2 H, NH₂), 2.76–2.81 (m, 2 H, CH₂), 2.65–2.69 (m, 2 H, CH₂), 1.69–1.78 (m, 4 H, 2 × CH₂). Anal. Calcd for C₁₀H₁₂N₂O₂: C, 62.5; H, 6.3; N, 14.6. Found: C, 62.8; H, 6.1; N, 14.6%.

7,8,9,10-Tetrahydronaphtho[**2,1**-*e*][**1,2,4**]**triazin-3-amine 1-Oxide (85). Method A.** Reaction of nitroaniline **84** (0.73 g, 3.8 mmol) and cyanamide (0.63 g, 15.1 mmol) gave 1-oxide **85** (124 mg, 15%) as a yellow powder: mp (MeOH) 271 °C (dec.); ¹H NMR [(CD₃)₂SO] δ 7.43 (d, *J* = 8.6 Hz, 1 H, H-6), 7.26 (d, *J* = 8.6 Hz, 1 H, H-5), 7.00 (br s, 2 H, NH₂), 3.36–3.40 (m, 2 H, CH₂), 2.75–2.80 (m, 2 H, CH₂), 1.67–1.75 (m, 4 H, 2 × CH₂); ¹³C NMR [(CD₃)₂SO] δ 159.5, 149.5, 137.3, 133.8, 131.1, 129.9, 123.0, 29.8, 28.7, 22.5, 21.0. Anal. Calcd for C₁₁H₁₂N₄O: C, 61.1; H, 5.6; N, 25.9. Found: C, 61.0; H, 5.6; N, 26.0%.

3-Chloro-7,8,9,10-tetrahydronaphtho[2,1-*e*][1,2,4]triazine 1-Oxide (86). Method B. Reaction of 1-oxide 85 (114 mg, 0.5 mmol) and NaNO₂ (73 mg, 1.0 mmol), with subsequent chlorination with DMF/POCl₃, gave chloride 86 (95 mg, 76%) as a pale yellow solid: mp (MeOH) 165–167 °C; ¹H NMR δ 7.68 (d, *J* = 8.6 Hz, 1 H, H-5), 7.63 (d, *J* = 8.6 Hz, 1 H, H-6), 3.48–3.53 (m, 2 H, CH₂), 2.92–2.97 (m, 2 H, CH₂), 1.80–1.88 (m, 4 H, 2 × CH₂); ¹³C NMR δ 155.6, 148.3, 141.3, 138.6, 133.9, 132.8, 125.0, 31.1, 29.0, 22.6, 21.1. Anal. Calcd for C₁₁H₁₀ClN₃O₂: C, 56.0; H, 4.3; N, 17.8. Found: C, 56.3; H, 4.4; N, 17.6%.

*N*¹,*N*¹-Dimethyl-*N*²-(1-oxido-7,8,9,10-tetrahydronaphtho[2,1-*e*][1,2,4]triazin-3-yl)-1,2-ethanediamine (87). Method C. Reaction of chloride 86 (83 mg, 0.4 mmol) and *N*,*N*-dimethyl-1,2-ethanediamine (0.12 mL, 1.0 mmol) in DME (20 mL) gave 1-oxide 87 (84 mg, 84%) as a yellow solid: mp (MeOH) 151–153 °C; ¹H NMR δ 7.31–7.36 (m, 2 H, H-5, H-6), 5.75 (br s, 1 H, NH), 3.51–3.55 (m, 2 H, CH₂N), 3.45–3.49 (m, 2 H, CH₂), 2.72–2.83 (m, 2 H, CH₂), 2.57 (br dd, *J* = 6.0, 5.8 Hz, 2 H, CH₂N), 2.29 [s, 6 H, N(CH₃)₂], 1.75–1.82 (m, 4 H, 2 × CH₂); ¹³C NMR δ 158.4, 149.8, 137.4, 134.7, 132.4, 129.1, 123.5, 57.7, 45.0 (2), 38.6, 30.7, 29.3, 23.1, 21.6. Anal. Calcd for C₁₅H₂₁N₅O·¹/₂CH₃OH: C, 61.4; H, 7.6; N, 23.1. Found: C, 61.2; H, 7.4; N, 23.4%.

 N^{1} -(1,4-Dioxido-7,8,9,10-tetrahydronaphtho[2,1-*e*][1,2,4]triazin-3-yl)- N^{2} , N^{2} -dimethyl-1,2-ethanediamine (18). Method D. Oxidation of 1-oxide 87 (70 mg, 0.2 mmol) with CF₃CO₃H (ca. 2 mmol) gave 1,4-dioxide 18 (38 mg, 52%) as a red solid: mp (MeOH/EtOAc) 139–142 °C; ¹H NMR δ 8.06 (d, J = 8.9 Hz, 1 H, H-5), 7.51 (d, J = 8.9 Hz, 1 H, H-6), 7.38 (br s, 1 H, NH), 3.59–3.66 (m, 2 H, CH₂N), 3.49–3.55 (m, 2 H, CH₂), 2.83–2.92 (m, 2 H, CH₂), 2.61–2.65 (m, 2 H, CH₂N), 2.32 [s, 6 H, N(CH₃)₂], 1.80–1.88 (m, 4 H, 2 × CH₂). HRMS calcd for C₁₅H₂₂N₅O₂ (MH⁺) *m/z* 304.1774, found 304.1772.

 N^{1} -(1,4-Dioxido-7,8,9,10-tetrahydro-6*H*-cyclohepta[g][1,2,4]benzotriazin-3-yl)- N^{2} , N^{2} -dimethyl-1,2-ethanediamine (19).

3-Nitro-6,7,8,9-tetrahydro-5*H*-benzo[*a*]cyclohepten-2-amine (92). A solution of fHNO₃ (7.5 mL) in cH₂SO₄ (50 mL) was added dropwise to a stirred suspension of 1benzosuberone (88) (20 g, 125 mmol) in cH₂SO₄ (400 mL) at 0 °C. The mixture was stirred a further 30 min and poured into ice/water. The slurry was extracted with ether (2 \times 200 mL), the combined organic fraction dried, and the solvent evaporated. The residue was purified by chromatography, eluting with a gradient (10–30%) of EtOAc/pet. ether, to give 3-nitro-6,7,8,9-tetrahydro-5*H*-benzo[*a*]cyclohepten-5-one (14.75 g, 58%) as a tan powder: mp (EtOAc/pet. ether) 81–82 °C; ¹H NMR δ 8.56 (d, J = 2.5 Hz, 1 H, H-4), 8.26 (dd, J = 8.3, 2.5 Hz, 1 H, H-2), 7.40 (d, J = 8.3 Hz, 1 H, H-1), 3.02-3.08 (m, 2 H, H-9),2.78-2.82 (m, 2 H, H-6), 1.92-1.99 (m, 2 H, H-8), 1.83-1.90 (m, 2 H, H-7). A solution of the ketone (14.7 g, 71.6 mmol) in EtOAc/EtOH (1:1, 100 mL) and 20% HCl (50 mL) was stirred vigorously under H_2 (60 psi) for 5 days. The suspension was filtered through Celite, washed with EtOH (4×20 mL) and the solvent evaporated. The residue was dissolved in DCM, washed with dilute NH₃, dried, and the solvent evaporated. The residue was dissolved in dioxane (300 mL), cooled to 0 °C, and Ac₂O (13.5 mL, 143.2 mmol) added dropwise. The solution was stirred at 20 °C for 16 h, diluted with water (500 mL) and the suspension filtered. The filtrate was extracted with EtOAc (2×100 mL); the combined organic fraction washed with water (50 mL) and dilute aqueous NH₃ solution $(2 \times 50 \text{ mL})$, dried, and the solvent evaporated. The combined solids were purified by chromatography, eluting with 50% EtOAc/pet. ether, to give N-(6,7,8,9tetrahydro-5*H*-benzo[*a*]cyclohepten-2-yl)acetamide (10.89 g, 75%) as a tan powder: mp 112–114 °C; ¹H NMR δ 7.20 (d, J = 2.2 Hz, 1 H, H-1), 7.15–7.21 (m, 2 H, H-3, NH), 7.02 (d, J = 8.0 Hz, 1 H, H-4), 2.71–2.77 (m, 4 H, H-5, H-9), 2.15 (s, 3 H, CH₃), 1.78– 1.86 (m, 2 H, H-7), 1.56–1.66 (m, 4 H, H-6, H-8). A solution of KNO₃ (5.96 g, 58.9 mmol) in cH₂SO₄ (25 mL) was added dropwise to a stirred suspension of amide (10.89 g, 53.6 mmol) in cH₂SO₄ (160 mL) at 0 °C and the mixture stirred at 0–5 °C for 2 h. The mixture was poured into ice/water, stirred 30 min, filtered, washed with water (3×30) mL) and dried. The solid was purified by chromatography, eluting with a gradient (20-50%) of EtOAc/pet. ether, to give (i) N-(3-nitro-6,7,8,9-tetrahydro-5Hbenzo[a]cyclohepten-2-yl)acetamide (89) (2.62 g, 20%) as a white solid: ¹H NMR δ 10.32 (br s, 1 H, NH), 8.52 (s, 1 H, H-4), 7.94 (s, 1 H, H-1), 2.84–2.88 (m, 2 H, H-5), 2.78-2.82 (m, 2 H, H-9), 2.27 (s, 3 H, CH₃), 1.80-1.87 (m, 2 H, H-7), 1.61-1.69 (m, 4 H, H-6, H-8); (ii) N-(1-nitro-6,7,8,9-tetrahydro-5*H*-benzo[*a*]cyclohepten-2-yl)acetamide

(90) (0.85 g, 6%) as a white solid: ¹H NMR δ 7.81 (br d, J = 8.4 Hz, 1 H, H-4), 7.77 (br s, 1 H, NH), 7.23 (d, J = 8.4 Hz, 1 H, H-3), 2.82–2.86 (m, 2 H, H-5), 2.65–2.69 (m, 2 H, H-9), 2.27 (s, 3 H, CH₃), 1.80–1.88 (m, 2 H, H-7), 1.61–1.73 (m, 4 H, H-6, H-8); and (iii) *N*-(4-nitro-6,7,8,9-tetrahydro-5*H*-benzo[*a*]cyclohepten-2-yl)acetamide (91) (6.91 g, 52%) as a white solid: ¹H NMR δ 7.69 (br d, J = 1.9 Hz, 1 H, H-3), 7.45 (d, J = 1.9 Hz, 1 H, H-1), 7.24 (br s, 1 H, NH), 2.84–2.88 (m, 2 H, H-5), 2.78–2.81 (m, 2 H, H-9), 2.19 (s, 3 H, CH₃), 1.81–1.87 (m, 2 H, H-7), 1.61–1.72 (m, 4 H, H-6, H-8).

A suspension of 3-nitroacetamide **89** (2.62 g, 10.6 mmol) in 5 M HCl (100 mL) was stirred at reflux temperature for 16 h. The suspension was cooled, diluted with water (100 mL), filtered, washed with water (3 × 10 mL) and dried to give nitroaniline **92** (1.96 g, 90%) as a yellow powder: mp 137–139 °C; ¹H NMR δ 7.83 (s, 1 H, H-4), 6.55 (s, 1 H, H-1), 5.96 (br s, 2 H, NH₂), 2.67–2.73 (m, 4 H, H-5, H-9), 1.76–1.81 (m, 2 H, H-7), 1.59–1.67 (m, 4 H, H-6, H-8); ¹³C NMR δ 153.1, 143.2, 133.0, 129.8, 125.1, 118.5, 36.6, 35.4, 32.1, 28.8, 28.2. Anal. Calcd for C₁₁H₁₄N₂O₂: C, 64.1; H, 6.8; N, 13.6. Found: C, 64.0; H, 6.5; N, 13.5%.

7,8,9,10-Tetrahydro-6*H***-cyclohepta**[*g*][**1,2,4**]**benzotriazin-3-amine 1-Oxide (93).** Method A. Reaction of nitroaniline 92 (2.26 g, 11.0 mmol) and cyanamide (1.84 g, 43.8 mmol) gave 1-oxide 93 (0.26 g, 10%) as a yellow powder: mp (MeOH) 261–265 °C; ¹H NMR [(CD₃)₂SO] δ 7.86 (s, 1 H, H-11), 7.29 (s, 1 H, H-5), 7.13 (br s, 2 H, NH₂), 2.84–2.90 (m, 4 H, H-6, H-10), 1.74–1.80 (m, 2 H, H-8), 1.58–1.67 (m, 4 H, H-7, H-9); ¹³C NMR [(CD₃)₂SO] δ 160.2, 152.8, 147.8, 141.2, 127.9, 124.3, 117.8, 35.6, 35.1, 31.3, 29.3, 28.0. Anal. Calcd for C₁₂H₁₄N₄O: C, 62.6; H, 6.1; N, 24.3. Found: C, 62.9; H, 6.2; N, 24.6%.

3-Chloro-7,8,9,10-tetrahydro-6*H***-cyclohepta[***g***][1,2,4]benzotriazine 1-Oxide (94). Method B. Reaction of 1-oxide 93 (252 mg, 1.1 mmol) and NaNO₂ (151 mg, 2.2 mmol), with subsequent reaction with DMF/POCl₃, gave chloride 94 (204 mg, 75%) as a pale yellow solid: mp (EtOAc/DCM) 146–148 °C; ¹H NMR \delta 8.11 (s, 1 H, H-11), 7.67 (s, 1 H, H-5), 2.97–3.03 (m, 4 H, H-6, H-10), 1.85–1.91 (m, 2 H, H-8), 1.70–1.76 (m, 4 H, H-7, H-9); ¹³C NMR \delta 156.3, 155.2, 148.9, 146.7, 132.0, 126.8, 118.5, 36.9, 36.7, 31.9, 28.2, 28.1. Anal. Calcd for C₁₂H₁₂ClN₃O: C, 57.7; H, 4.8; N, 16.8. Found: C, 57.6; H, 4.9; N, 16.9%.**

N^1 , N^1 -Dimethyl- N^2 -(1-oxido-7,8,9,10-tetrahydro-6*H*-

cyclohepta[*g***][1,2,4]benzotriazin-3-yl)-1,2-ethanediamine (95). Method C.** Reaction of chloride **94** (178 mg, 0.7 mmol) and *N*,*N*-dimethyl-1,2-ethanediamine (0.23 mL, 2.1 mmol) in DME (30 mL) gave 1-oxide **95** (204 mg, 95%) as a yellow solid: mp (MeOH) 149–152 °C; ¹H NMR δ 7.96 (s, 1 H, H-11), 7.31 (s, 1 H, H-5), 5.84 (br s, 1 H, NH), 3.52–3.57 (m, 2 H, CH₂N), 2.85–2.90 (m, 4 H, H-6, H-10), 2.58 (br t, *J* = 6.0 Hz, 2 H, CH₂N), 2.28 [s, 6 H, N(CH₃)₂], 1.79–1.85 (m, 2 H, H-8), 1.65–1.74 (m, 4 H, H-7, H-9); ¹³C NMR δ 159.0, 153.4, 148.0, 142.1, 129.0, 125.0, 118.8, 57.6, 45.1 (2), 38.7, 36.8, 36.2, 32.0, 28.7, 28.4. Anal. Calcd for C₁₆H₂₃N₅O·½H₂O: C, 61.9; H, 7.8; N, 22.6. Found: C, 62.0; H, 7.8; N, 22.4%.

*N*¹-(1,4-Dioxido-7,8,9,10-tetrahydro-6*H*-cyclohepta[*g*][1,2,4]benzotriazin-3-yl)-*N*²,*N*²-dimethyl-1,2-ethanediamine (19). Method D. Oxidation of 1-oxide 95 (186 mg, 0.6 mmol) with CF₃CO₃H (6 mmol) gave (i) starting material 95 (43 mg, 23%) and (ii) 1,4-dioxide 19 (82 mg, 42%) as a red solid: mp (MeOH) 131–133 °C; ¹H NMR δ 8.03 (s, 1 H, H-11), 7.99 (s, 1 H, H-5), 7.36 (br s, 1 H, NH), 3.63 (br t, *J* = 6.0 Hz, 2 H, CH₂N), 2.98–3.03 (m, 2 H, CH₂), 2.91–2.95 (m, 2 H, CH₂), 2.60 (br t, *J* = 6.0 Hz, 2 H, CH₂N), 2.30 [s, 6 H, N(CH₃)₂], 1.82–1.89 (m, 2 H, H-8), 1.68–1.76 (m, 4 H, H-7, H-9); ¹³C NMR δ 154.4, 149.7, 144.7, 137.1, 128.7, 119.8, 115.9, 57.5, 45.2 (2), 38.9, 37.0, 36.2, 31.8, 28.4, 28.2. Anal. Calcd for C₁₆H₂₃N₅O₂·¼CH₃OH: C, 60.0; H, 7.4; N, 21.5. Found: C, 59.9; H, 7.0; N, 21.5%.

 N^{1} -(1,4-Dioxido-6,7-dihydrofuro[3,2-g][1,2,4]benzotriazin-3-yl)- N^{2} , N^{2} -dimethyl-1,2-ethanediamine (20).

1-(2,3-Dihydro-1-benzofuran-5-yl)ethanone (97). AlCl₃ (12.4 g, 93 mmol) was added in small portions to a stirred solution of AcCl (12.6 mL, 178 mmol) in dry DCM (100 mL) at -10 °C and the mixture stirred until homogeneous (15 min). The solution was added, via a cannula, to a stirred solution of 2,3-dihydro-1-benzofuran (**96**) (11.2 g, 93 mmol) in dry DCM (100 mL) at -10 °C and the solution stirred for 30 min at -10 °C, and then poured into ice/cHCl (5:1 v/v, 1 L). The mixture was stirred for 2 h, extracted with DCM (3 × 100 mL), the combined organic fraction dried, and the solvent evaporated. The residue was purified by chromatography, eluting with a gradient (10–20%) of EtOAc/pet. ether, to give ketone **97** (14.23 g, 94%) as a white solid: mp 59–60 °C (lit.⁸ mp 60 °C); ¹H NMR δ 7.85 (d, *J* = 1.9 Hz, 1 H, H-4), 7.79 (dd, *J* = 8.5, 1.9 Hz, 1 H, H-6), 6.80 (d, *J* = 8.5 Hz, 1 H, H-7), 4.65 (t, *J* = 8.7 Hz, 2 H, H-2), 3.18 (br t, *J* = 8.7 Hz, 2 H, H-3), 2.13 (s, 3 H, CH₃).

N-(2,3-Dihydro-1-benzofuran-5-yl)acetamide (98). NH₂OH·HCl (7.3 g, 105 mmol) was added to a stirred solution of ketone 97 (14.2 g, 88 mmol) and pyridine (9.2 mL, 114 mmol) in MeOH (100 mL) and the mixture stirred at 20 °C for 16 h. The solvent was evaporated and the residue partitioned between brine and EtOAc. The organic fraction was dried and the solvent evaporated to give crude 1-(2,3-dihydro-1-benzofuran-5-yl)ethanone oxime (15.3 g, 99%). HCl gas was bubbled through a solution of the oxime

(15.3 g, 86.5 mmol) in Ac₂O (16.3 mL, 173 mmol) and HOAc (54 mL, 865 mmol), and the solution stood at 20 °C for 24 h. The precipitate was poured into ice/water, stirred for 2 h, the solid filtered and washed with water and dried. The aqueous fraction was extracted with DCM (2 × 50 mL), the combined organic extract dried and the solvent evaporated. The slurry was treated with water (20 mL) and evaporated several times to remove Ac₂O. The combined solids were purified by chromatography, eluting with a gradient (50–100%) of EtOAc/pet. ether, to give acetamide **98** (7.94 g, 52%) as a white solid: mp 92–93 °C (lit.⁹ mp 93 °C); ¹H NMR δ 7.47 (br s, 1 H, H-4), 7.21 (br s, 1 H, NH), 6.99 (dd, *J* = 8.5, 2.1 Hz, 1 H, H-6), 6.69 (d, *J* = 8.5 Hz, 1 H, H-7), 4.55 (t, *J* = 8.7 Hz, 2 H, H-2), 3.18 (br t, *J* = 8.7 Hz, 2 H, H-3), 2.13 (s, 3 H, CH₃).

N-(6-Nitro-2,3-dihydro-1-benzofuran-5-yl)acetamide (99). A solution of fHNO₃ (2.1 mL, 52 mmol) in HOAc (10 mL) was added dropwise to a stirred solution of acetamide 98 (6.58 g, 37 mmol) in HOAc (100 mL) at 15 °C. The mixture was stirred at 15 °C for 1 h, then poured into ice/water (800 mL) and stirred for 30 min. The precipitate was filtered, washed with water (3 × 30 mL) and dried. The solid was purified by chromatography, eluting with a gradient (50–100%) of EtOAc/pet. ether, to give acetamide 99 (7.52 g, 91%) as a white solid: mp (EtOAc) 139–140 °C (lit.¹⁰ mp 141–142 °C); ¹H NMR δ 10.19 (br s, 1 H, NH), 8.56 (s, 1 H, H-7), 7.53 (s, 1 H, H-4), 4.65 (t, *J* = 8.7 Hz, 2 H, H-2), 3.30 (dt, *J* = 8.7, 1.1 Hz, 2 H, H-3), 2.26 (s, 3 H, CH₃). Anal. Calcd for C₁₀H₁₀N₂O₄: C, 54.0; H, 4.5; N, 12.6. Found: C, 54.2; H, 4.6; N, 12.6%.

6-Nitro-2,3-dihydro-1-benzofuran-5-ylamine (100). A suspension of acetamide **99** (8.98 g, 40.4 mmol) and cHCl (50 mL) in EtOH (100 mL) was heated at reflux temperature for 2 h. The solution was cooled, carefully neutralized with aqueous NH₃ solution, and the resulting precipitate filtered and dried to give nitroaniline **100** (7.27 g, 100%) as an orange solid: mp (H₂O) 148–149 °C; ¹H NMR δ 7.44 (s, 1 H, H-7), 6.68 (t, *J* = 1.2 Hz, 1 H, H-4), 5.92 (br s, 2 H, NH₂), 4.54 (t, *J* = 8.4 Hz, 2 H, H-2), 3.18 (dt, *J* = 8.4, 1.2 Hz, 2 H, H-3); ¹³C NMR δ 151.8, 140.8, 139.0, 131.2, 114.4, 103.4, 71.2, 30.0. Anal. Calcd for C₈H₈N₂O₃: C, 53.3; H, 4.5; N, 15.6. Found: C, 53.2; H, 4.5; N, 15.6%.

6,7-Dihydrofuro[**3,2-***g*][**1,2,4**]**benzotriazin-3-amine 1-Oxide (101). Method A.** Reaction of nitroaniline **100** (7.27 g, 40.4 mmol) and cyanamide (6.79 g, 162 mmol) gave crude 1-oxide **101** (1.87 g, 23%) as a yellow powder: mp (MeOH/DCM) 241–246 °C. Anal. Calcd for C₉H₈N₄O₂: C, 52.9; H, 4.0. Found: C, 53.3; H, 3.8%. Also calcd for N, 26.4; found 27.4%.

3-Chloro-6,7-dihydrofuro[3,2-*g*]**[1,2,4]benzotriazine 1-Oxide (102). Method B.** Reaction of 1-oxide **101** (825 mg, 4.0 mmol) and NaNO₂ (310 mg, 4.4 mmol), with subsequent chlorination with DMF/POCl₃, gave chloride **102** (283 mg, 31%) as a pale yellow solid: mp (EtOAc/DCM) 223–224 °C; ¹H NMR δ 7.75 (br t, *J* = 1.4 Hz, 1 H, H-5), 7.58 (s, 1 H, H-9), 4.81 (t, *J* = 8.4 Hz, 2 H, H-7), 3.49 (dt, *J* = 8.4, 1.4 Hz, 2 H, H-6); ¹³C NMR δ 162.8, 154.9, 154.3, 144.4, 142.3, 123.8, 96.4, 72.9, 29.5. Anal. Calcd for C₉H₆ClN₃O₂: C, 48.3; H, 2.7; N, 18.8. Found: C, 48.5; H, 2.7; N, 18.9%. *N*¹,*N*¹-Dimethyl-*N*²-(1-oxido-6,7-dihydrofuro[3,2-g][1,2,4]benzotriazin-3-yl)-1,2ethanediamine (103). Method C. Reaction of chloride 102 (270 mg, 1.2 mmol) and *N*,*N*-dimethyl-1,2-ethanediamine (0.40 mL, 3.6 mmol) in DME (30 mL) gave 1-oxide 103 (216 mg, 65%) as a yellow solid: mp (MeOH/EtOAc) 153–157 °C; ¹H NMR δ 7.50 (s, 1 H, H-9), 7.40 (t, *J* = 1.4 Hz, 1 H, H-5), 5.73 (br s, 1 H, NH), 4.67 (t, *J* = 8.3 Hz, 2 H, H-7), 3.48–3.53 (m, 2 H, CH₂N), 3.53 (dt, *J* = 8.3, 1.4 Hz, 2 H, H-6), 2.55 (dd, *J* = 6.1, 5.9 Hz, 2 H, CH₂N), 2.28 [s, 6 H, N(CH₃)₂]; ¹³C NMR δ 158.3, 158.2, 146.1, 140.6, 130.6, 121.8, 96.6, 71.9, 57.7, 45.1 (2), 38.8, 29.7. Anal. Calcd for $C_{13}H_{17}N_5O_2$ ·¹/₄CH₃OH: C, 56.2; H, 6.4; N, 24.7. Found: C, 56.1; H, 6.2; N, 25.0%.

*N*¹-(1,4-Dioxido-6,7-dihydrofuro[3,2-g][1,2,4]benzotriazin-3-yl)-*N*²,*N*²-dimethyl-1,2ethanediamine (20). Method D. Oxidation of 1-oxide 103 (363 mg, 1.3 mmol) with CF₃CO₃H (ca. 13 mmol) gave 1,4-dioxide 20 (98 mg, 25%) as a red solid: mp (MeOH/EtOAc) 149–151 °C; ¹H NMR δ 8.12 (s, 1 H, H-5), 7.54 (s, 1 H, H-9), 7.27 (br s, 1 H, NH), 4.75 (t, J = 8.3 Hz, 2 H, H-7), 3.58–3.64 (m, 2 H, CH₂N), 3.43 (t, J = 8.2 Hz, 2 H, H-6), 2.62 (t, J = 6.0 Hz, 2 H, CH₂N), 2.31 [s, 6 H, N(CH₃)₂]; ¹³C NMR δ 159.9, 148.9, 141.6, 135.2, 130.9, 113.1, 97.4, 72.4, 57.5, 45.1 (2), 38.8, 29.7. Anal. Calcd for C₁₃H₁₇N₅O₃·¹/₄H₂O: C, 52.8; H, 6.0; N, 23.7. Found: C, 52.8; H, 5.7; N, 23.5%.

N-[3-(4-Morpholinyl)propyl]-6,7-dihydrofuro[3,2-*g*][1,2,4]benzotriazin-3-amine 1,4-Dioxide (21).

N-[3-(4-Morpholinyl)propyl]-6,7-dihydrofuro[3,2-*g*][1,2,4]benzotriazin-3-amine 1-Oxide (104). Method C. Reaction of chloride 102 (850 mg, 3.8 mmol) and 3-(4morpholinyl)propylamine (1.7 mL, 11.5 mmol) in DME (30 mL) gave 1-oxide 104 (1.08 g, 85%) as a yellow solid: mp 142–144 °C; ¹H NMR δ 7.52 (s, 1 H, H-9), 7.41 (s, 1 H, H-5), 5.97 (br s, 1 H, NH), 4.67 (t, *J* = 8.3 Hz, 2 H, H-7), 3.75 (t, *J* = 4.7 Hz, 4 H, 2 × CH₂O), 3.56 (dt, *J* = 6.4, 5.9 Hz, 2 H, CH₂N), 3.35 (dt, *J* = 8.3, 1.2 Hz, 2 H, H-6), 2.42– 2.53 (m, 6 H, 2 × CH₂N, CH₂), 1.83 (p, *J* = 6.5 Hz, 2 H, CH₂); ¹³C NMR δ 158.3, 151.4, 146.1, 140.5, 128.7, 121.8, 96.7, 71.9, 67.0 (2), 57.3, 53.8 (2), 40.8, 29.7, 25.4; MS (APCI) *m*/z 332 (MH⁺, 100%). Anal. Calcd for C₁₆H₂₁N₅O₃: C, 58.0; H, 6.4; N, 21.1. Found: C, 58.0; H, 6.0; N, 21.2%.

N-[3-(4-Morpholinyl)propyl]-6,7-dihydrofuro[3,2-*g*][1,2,4]benzotriazin-3-amine 1,4-Dioxide (21). Method D. Oxidation of 1-oxide 104 (1.06 g, 3.2 mmol) with CF₃CO₃H (ca. 32 mmol) gave 1,4-dioxide 21 (150 mg, 14%) as a red solid: mp 145–148 °C; ¹H NMR δ 8.26 (br s, 1 H, NH), 8.14 (s, 1 H, H-9), 7.53 (s, 1 H, H-5), 4.74 (t, *J* = 8.3 Hz, 2 H, H-7), 3.83 (t, *J* = 4.6 Hz, 4 H, 2 × CH₂O), 3.65 (br q, *J* = 5.9 Hz, 2 H, CH₂N), 3.43 (dt, *J* = 8.3, 1.2 Hz, 2 H, H-6), 2.58 (br t, *J* = 6.1 Hz, 2 H, CH₂), 2.53 (br s, 4 H, 2 × CH₂N), 1.88 (p, *J* = 6.2 Hz, 2 H, CH₂); ¹³C NMR δ 159.8, 149.0, 141.5, 135.2, 130.8, 113.1, 97.4, 72.4, 66.8 (2), 57.7, 53.8 (2), 41.6, 29.7, 24.5; MS (APCI) *m/z* 348 (MH⁺, 100%); HRMS calcd for $C_{16}H_{22}N_5O_4$ (MH⁺) *m/z* 348.1672, found 348.1666. Anal. Calcd for $C_{16}H_{21}N_5O_4 \cdot 0.4CH_2Cl_2$: C, 51.7; H, 5.8; N, 18.4. Found: C, 51.7; H, 5.4; N, 18.1%.

7,8-Dihydrofuro[2,3-g][1,2,4]benzotriazin-3-amine 1,4-Dioxide (22).

6-Nitro-2,3-dihydro-1-benzofuran (105). NaNO₂ (2.66 g, 39 mmol) was added in portions to a solution of nitroaniline **100** (6.5 g, 36 mmol) in water (150 mL) and cH₂SO₄ (60 mL) at 0 °C. The solution was stirred at 0 °C for 3 h, aqueous H₃PO₂ solution (50%, 13 mL) was added, and the mixture stood at 0 °C for 16 h and then at 20 °C for 4 days. The mixture was extracted with ether (3 × 300 mL), the combined organic layer washed with water (3 × 200 mL), dried and the solvent evaporated to yield dihydrobenzofuran **105** (4.34 g, 73%) as a red-brown solid: mp 71–72 °C; ¹H NMR δ 7.76 (dd, *J* = 8.1, 2.1 Hz, 1 H, H-5), 7.57 (d, *J* = 2.1 Hz, 1 H, H-7), 7.29 (d, *J* = 8.1 Hz, 1 H, H-4), 4.70 (t, *J* = 8.1 Hz, 2 H, H-2), 3.30 (t, *J* = 8.1 Hz, 2 H, H-3). Anal. Calcd for C₈H₇NO₃: C, 58.2; H, 4.3; N, 8.5. Found: C, 58.5; H, 4.3; N, 8.5%.

N-(2,3-Dihydro-1-benzofuran-6-yl)acetamide (106). A mixture of dihydrobenzofuran 105 (4.34 g, 26.3 mmol) and PtO₂ (420 mg, 1.9 mmol) in THF (40 mL) and EtOH (200 mL) was stirred vigorously under H₂ (30 psi) for 16 h. The mixture was filtered through Celite, washed with THF and the solvent evaporated. The residue was purified by chromatography, eluting with 2% MeOH/DCM, to give 6-amino-2,3-dihydrobenzofuran (2.89 g, 81%), which was dissolved in dioxane (95 mL), Ac₂O (4.3 mL, 45.6 mmol) was added dropwise, and the solution stirred at 20 °C for 16 h. Water (200 mL) was added and the mixture extracted with DCM (3 × 120 mL). The combined organic layer was dried and the solvent evaporated to give acetamide 106 (3.56 g, 97%) as a yellow solid: mp 115–118 °C; ¹H NMR δ 7.26 (br s, 1 H, NH), 7.09 (d, *J* = 7.9 Hz, 1 H, H-4), 7.04 (s, 1 H, H-7), 6.91 (d, *J* = 7.9 Hz, 1 H, H-5), 4.56 (t, *J* = 8.6 Hz, 2 H, H-2), 3.15 (t, *J* = 8.1 Hz, 2 H, H-3), 2.14 (s, 3 H, COCH₃). Anal. Calcd for C₁₀H₁₁NO₂: C, 67.8; H, 6.3; N, 7.9. Found: C, 67.7; H, 6.4; N, 8.0%.

5-Nitro-2,3-dihydro-1-benzofuran-6-ylamine (107). A solution of $cHNO_3$ (70%, 1.3 mL, 21 mmol) in HOAc (5 mL) was added dropwise to a stirred solution of acetamide **106** (3.56 g, 20 mmol) in HOAc (15 mL) at 20 °C and the solution stirred at 20 °C for 2 h. The solution was poured into ice/water (150 mL) and the mixture stirred for 30 min. The precipitate was filtered, washed with water, and dried to give a pale-brown solid, which was dissolved in a mixture of EtOH (35 mL) and cHCl (16 mL) and stirred at reflux temperature for 2 h. The resulting solution was cooled, the solvent evaporated, the residue diluted with water (40 mL), and then made basic with dilute aqueous NH₃ solution. The precipitate was filtered, washed with water, and dried to give nitroaniline

107 (2.08 g, 90%) as a yellow solid, mp 140–142 °C; ¹H NMR δ 7.98 (s, 1 H, H-4), 6.25 (br s, 2 H, NH₂), 6.11 (s, 1 H, H-7), 4.64 (t, *J* = 8.0 Hz, 2 H, H-2), 3.13 (t, *J* = 7.8 Hz, 2 H, H-3); ¹³C NMR δ 166.6, 147.7, 126.9, 122.8, 118.9, 96.1, 73.2, 27.9. Anal. Calcd for C₈H₈N₂O₃: C, 53.3; H, 4.5; N, 15.6. Found: C, 53.1; H, 4.6; N, 15.5%.

7,8-Dihydrofuro[2,3-g][1,2,4]benzotriazin-3-amine 1-Oxide (108). Method A.

Reaction of nitroaniline **107** (4.0 g, 22.2 mmol) and cyanamide (7.2 g, 171 mmol) gave 1oxide **108** (8.60 g, 96%) as a yellow powder: mp (DCM) 293–296 °C; ¹H NMR [(CD₃)₂SO] δ 7.71 (s, 1 H, H-9), 6.23 (s, 1 H, H-5), 4.59 (t, *J* = 8.5 Hz, 2 H, H-7), 3.12 (t, *J* = 8.5 Hz, 2 H, H-8), NH₂ not observed; HRMS calcd for C₉H₉N₄O₂ (MH⁺) *m/z* 205.0726, found 205.0725.

7,8-Dihydrofuro[2,3-g][1,2,4]benzotriazin-3-amine 1,4-Dioxide (22). Method D.

Oxidation of 1-oxide **108** (500 mg, 2.45 mmol) with CH₃CO₃H (ca. 25 mmol) in HOAc (10 mL) gave 1,4-dioxide **22** (199 mg, 37%) as a red solid: mp > 300 °C (235–240 °C dec.); ¹H NMR [(CD₃)₂SO] δ 8.06 (t, *J* = 1.6 Hz, 1 H, H-9), 7.86 (br s, 2 H, NH₂), 7.23 (s, 1 H, H-5), 4.77 (t, *J* = 8.3 Hz, 2 H, H-8), 3.30–3.60 (m, 2 H, H-7); HRMS (EI⁺) calcd for C₉H₈N₄O₃ (M⁺) *m*/*z* 220.0596, found 220.0601.

N^{1} -(1,4-Dioxido-7,8-dihydrofuro[2,3-g][1,2,4]benzotriazin-3-yl)- N^{2} , N^{2} -dimethyl-1,2-ethanediamine (23).

3-Chloro-7,8-dihydrofuro[2,3-g][1,2,4]benzotriazine 1-Oxide (109). Method B.

Reaction of 1-oxide **108** (5.0 g, 24.5 mmol) and NaNO₂ (3.38 g, 49.0 mmol), with subsequent chlorination with DMF/POCl₃, gave chloride **109** (3.76 g, 69%) as a yellow solid: mp (DCM) 203–205 °C; ¹H; ¹H NMR δ 8.23 (t, *J* = 1.6 Hz, 1 H, H-9), 7.20 (s, 1 H, H-5), 4.23 (t, *J* = 8.4 Hz, 2 H, H-7), 3.45 (dt, *J* = 8.4, 1.6 Hz, 2 H, H-8); ¹³C NMR δ 167.2, 155.3, 150.0, 137.4, 129.1, 116.0, 102.7, 73.9, 28.3; HRMS calcd for C₉H₇³⁵ClN₃O₂ (MH⁺) m/z 224.0227, found 224.0221.

*N*¹,*N*¹-Dimethyl-*N*²-(1-oxido-7,8-dihydrofuro[2,3-g][1,2,4]benzotriazin-3-yl)-1,2ethanediamine (110). Method C. Reaction of chloride 109 (100 mg, 0.45 mmol) and *N*¹,*N*¹-dimethylethane-1,2-diamine (0.2 mL, 1.8 mmol) in DME (10 mL) gave 1-oxide 110 (108 mg, 88%) as a yellow solid: mp 163–165 °C; ¹H NMR δ 8.09 (t, *J* = 1.4 Hz, 1 H, H-9), 6.79 (s, 1 H, H-5), 5.83 (br s, 1 H, NH), 4.72 (t, *J* = 8.3 Hz, 2 H, H-7), 3.52–3.56 (m, 2 H, CH₂N), 3.31 (dt, *J* = 8.3, 1.4 Hz, 2 H, H-8), 2.57 (t, *J* = 8.3 Hz, 2 H, CH₂N), 2.29 [s, 6 H, N(CH₃)₂]; ¹³C NMR δ 166.5, 159.3, 151.8, 129.3, 126.4, 116.6, 102.0, 72.9, 57.6, 45.0 (2), 38.6, 28.6. HRMS calcd for C₁₃H₁₈N₅O₂ (MH⁺) *m/z* 276.1461, found 276.1461. *N*¹-(1,4-Dioxido-7,8-dihydrofuro[2,3-g][1,2,4]benzotriazin-3-yl)-*N*²,*N*²-dimethyl-1,2ethanediamine (23). Method D. Oxidation of 1-oxide 110 (100 mg, 0.36 mmol) with CF₃CO₃H (ca. 4 mmol) gave 1,4-dioxide 23 (56 mg, 53%) as an orange solid: mp 186– 189 °C; ¹H NMR δ 8.13 (t, *J* = 1.6 Hz, 1 H, H-9), 7.48 (br s, 2 H, H-5, NH), 4.81 (t, *J* = 8.3 Hz, 2 H, H-7), 3.62 (t, *J* = 6.0 Hz, 2 H, CH₂N), 3.37 (dt, *J* = 8.3, 1.6 Hz, 2 H, H-8), 2.62 (t, *J* = 8.3 Hz, 2 H, CH₂N), 2.30 [s, 6 H, N(CH₃)₂]; ¹³C NMR δ 167.2, 149.9, 140.6, 132.0, 117.9, 93.8, 87.9, 73.4, 57.5, 45.2 (2), 38.8, 28.5. HRMS calcd for C₁₃H₁₈N₅O₃ (MH⁺) *m*/z 292.1410, found 292.1409.

 N^{1} -(1,4-Dioxido-7,8-dihydrofuro[2,3-g][1,2,4]benzotriazin-3-yl)- N^{2} , N^{2} -diethyl-1,2-ethanediamine (24).

*N*¹,*N*¹-Diethyl-*N*²-(1-oxido-7,8-dihydrofuro[2,3-g][1,2,4]benzotriazin-3-yl)-1,2ethanediamine (111). Method C. Reaction of chloride 109 (250 mg, 1.12 mmol) and *N*¹,*N*¹-diethylethane-1,2-diamine (0.63 mL, 4.48 mmol) in DME (25 mL) gave 1-oxide 111 (255 mg, 75%) as a yellow solid: mp (MeOH/EtOAc) 150–151 °C; ¹H NMR δ 8.09 (t, *J* = 1.6 Hz, 1 H, H-9), 6.79 (s, 1 H, H-5), 5.90 (br s, 1 H, NH), 4.72 (t, *J* = 8.3 Hz, 2 H, H-7), 3.48–3.54 (m, 2 H, CH₂N), 3.30 (dt, *J* = 8.3, 1.4 Hz, 2 H, H-8), 2.69–2.72 (m, 2 H, CH₂N), 2.59 (q, *J* = 7.1 Hz, 4 H, 2 × CH₂), 1.05 (t, *J* = 7.1 Hz, 6 H, 2 × CH₃); ¹³C NMR δ 166.5, 159.3, 151.8, 129.3, 126.3, 116.6, 102.1, 72.9, 51.3, 46.7 (2), 38.7, 28.6, 11.7 (2). Anal. Calcd for C₁₅H₂₁N₅O₂·¹/₄CH₃OH: C, 58.8; H, 7.1; N, 22.5. Found: C, 58.8; H, 6.7; N, 22.8%.

*N*¹-(1,4-Dioxido-7,8-dihydrofuro[2,3-*g*][1,2,4]benzotriazin-3-yl)-*N*²,*N*²-diethyl-1,2ethanediamine (24). Method D. Oxidation of 1-oxide 111 (235 mg, 0.78 mmol) with CF₃CO₃H (ca. 2.8 mmol) gave 1,4-dioxide 24 (95 mg, 38%) as a red solid: mp 187–190 °C; ¹H NMR (CD₃OD) δ 8.16 (t, *J* = 1.7 Hz, 1 H, H-9), 7.30 (s, 1 H, H-5), 4.85 (t, *J* = 8.4 Hz, 2 H, H-7), 3.90–3.94 (m, 2 H, CH₂), 3.40–3.49 (m, 4 H, H-8, CH₂), 3.36 (q, *J* = 7.3 Hz, 4 H, CH₂), 1.37 (t, *J* = 7.3 Hz, 6 H, CH₃), NH not observed; ¹³C NMR δ 169.8, 151.5, 142.3, 135.5, 128.2, 119.0, 93.7, 75.6, 51.7, 49.0 (2), 37.3, 29.4, 9.1 (2); HRMS calcd for C₁₅H₂₂N₅O₃ (MH⁺) *m/z* 320.1723, found 320.1726.

N-[3-(4-Morpholinyl)propyl]-7,8-dihydrofuro[2,3-g][1,2,4]benzotriazin-3-amine 1,4-Dioxide (25).

N-[3-(4-Morpholinyl)propyl]-7,8-dihydrofuro[2,3-g][1,2,4]benzotriazin-3-amine 1-Oxide (112). Method C. Reaction of chloride 109 (250 mg, 1.1 mmol) and 3-(4morpholinyl)propylamine (0.65 mL, 4.5 mmol) in DME (25 mL) gave 1-oxide 112 (340 mg, 92%) as a yellow solid: mp 152–154 °C; ¹H NMR δ 8.10 (t, *J* = 1.6 Hz, 1 H, H-9), 6.79 (s, 1 H, H-5), 6.09 (br s, 1 H, NH), 4.42 (t, J = 8.3 Hz, 2 H, H-7), 3.75 (t, J = 4.7 Hz, 4 H, 2 × CH₂O), 3.55–3.60 (m, 2 H, CH₂), 3.30 (dt, J = 8.3, 1.6 Hz, 2 H, H-7), 2.46–2.52 (m, 6 H, 2 × CH₂N, CH₂), 1.82 (p, J = 6.5 Hz, 2 H, CH₂); ¹³C NMR δ 166.5, 159.4, 151.8, 129.2, 126.4, 116.6, 102.1, 72.9, 67.0 (2), 57.3, 53.8 (2), 40.8, 28.6, 25.3. Anal. Calcd for C₁₆H₂₁N₅O₃: C, 58.0; H, 6.4; N, 21.1. Found: C, 57.8; H, 6.2; N, 21.1%.

N-[3-(4-Morpholinyl)propyl]-7,8-dihydrofuro[2,3-*g*][1,2,4]benzotriazin-3-amine 1,4-Dioxide (25). Method D. Oxidation of 1-oxide 112 (313 mg, 0.95 mmol) with CF₃CO₃H (ca. 9.5 mmol) gave (i) starting material 112 (120 mg, 38%) and (ii) 1,4-dioxide 25 (68 mg, 21%) as a dark orange solid: mp 186–189 °C; ¹H NMR [(CD₃)₂SO] δ 8.45 (t, *J* = 1.4 Hz, 1 H, H-9), 8.05 (s, 1 H, H-5), 7.21 (s, 1 H, NH), 4.77 (t, *J* = 8.3 Hz, 2 H, H-7), 3.33–3.64 (m, 8 H, 2 × CH₂O, H-8, CH₂), 2.36–2.45 (m, 6 H, 2 × CH₂N, CH₂), 1.77 (p, *J* = 6.6 Hz, 2 H, CH₂); HRMS calcd for C₁₆H₂₂N₅O₄ (MH⁺) *m/z* 348.1672, found 348.1671.

 N^{1} -(1,4-Dioxido[1,3]dioxolo[4,5-g][1,2,4]benzotriazin-3-yl)- N^{2} , N^{2} -dimethyl-1,2-ethanediamine (26).

N-(1,3-Benzodioxol-5-yl)acetamide (114). Ac₂O (21.4 mL, 226 mmol) was added dropwise to a stirred solution of 3,4-methylendioxyaniline (113) (25.87 g, 189 mmol) in dioxane (200 mL) at 0 °C and the mixture was stirred at 16 °C for 16 h. MeOH (10 mL) was added to decompose excess Ac₂O and the solvent evaporated. The residue was dissolved in EtOAc (200 mL), dried and the solvent evaporated. The residue was filtered through a short column of silica, eluting with a gradient (50–100%) of EtOAc/pet. ether, to give acetamide 114 (29.17 g, 86%) as a white solid: mp (EtOAc/pet. ether) 133–135 °C [lit.¹¹ mp (toluene) 138–139 °C]; ¹H NMR δ 7.09 (d, *J* = 1.8 Hz, 1 H, H-4), 7.06 (br s, 1 H, NH), 6.77 (dd, *J* = 8.3, 1.8 Hz, 1 H, H-6), 6.72 (d, *J* = 8.3 Hz, 1 H, H-7), 5.94 (s, 2 H, H-2), 2.14 (s, 3 H, CH₃).

N-(6-Nitro-1,3-benzodioxol-5-yl)acetamide (115). A solution of 70% HNO₃ (15.5 mL, 244 mmol) in HOAc (40 mL) was added dropwise to a stirred solution of acetamide 114 (29.17 g, 163 mmol) in HOAc (150 mL) at 15–20 °C and the mixture stirred at 20 °C for 16 h. The precipitate was filtered, washed with water and dried to give nitroacetamide 115 (36.0 g, 99%) as a yellow powder: mp 207–208 °C (lit.¹¹ mp 212–213 °C); ¹H NMR

δ 10.78 (br s, 1 H, NH), 8.36 (s, 1 H, H-7), 7.66 (s, 1 H, H-4), 6.10 (s, 2 H, H-2), 2.27 (s, 3 H, CH₃).

6-Nitro-1,3-benzodioxol-5-amine (116). NaOMe (4.82 g, 89.2 mmol) was added to a stirred solution of nitroacetamide **115** (5.0 g, 22.3 mmol) in MeOH (100 mL) at reflux temperature and the mixture stirred at reflux temperature for 15 min. HOAc (25 mL, 446 mmol) was added to quench the reaction and the solvent evaporated. Toluene (2×50 mL) was added and the azeotrope evaporated. The residue was dissolved in DCM (100 mL) and filtered through a short column of silica to give nitroaniline **116** (3.25 g, 80%) as an orange solid: mp 199–201 °C [lit.¹¹ mp (*i*PrOH) 203–204 °C]; ¹H NMR δ 7.53 (s, 1 H, H-7), 6.30 (br s, 2 H, NH₂), 6.22 (s, 1 H, H-4), 5.98 (s, 2 H, H-2).

[1,3]Dioxolo[4,5-g][1,2,4]benzotriazin-3-amine 1-Oxide (117). Method A. Reaction of nitroaniline 116 (5.55 g, 30.5 mmol) and cyanamide (5.37 g, 122 mmol) gave 1-oxide 117 (3.24 g, 51%) as a yellow powder: mp (MeOH/DCM) 290–295 °C; ¹H NMR [(CD₃)₂SO] δ 7.45 (s, 1 H, H-9), 7.00 (br s, 2 H, NH₂), 6.94 (s, 1 H, H-5), 6.23 (s, 2 H, H-7); ¹³C NMR [(CD₃)₂SO] δ 160.0, 155.1, 149.0, 147.0, 125.3, 103.1, 101.3, 95.8. Anal. Calcd for C₈H₆N₄O₃: C, 46.6; H, 2.9; N, 27.2. Found: C, 46.7; H, 2.9; N, 27.3%.

3-Chloro[1,3]dioxolo[4,5-*g*]**[1,2,4]benzotriazine 1-Oxide (118). Method B.** Reaction of 1-oxide **117** (1.75 g, 8.5 mmol) with NaNO₂ (620 mg, 8.9 mmol), with subsequent chlorination with DMF/POCl₃, gave chloride **118** (753 mg, 39%) as a pale yellow solid: mp (DCM) 253–255 °C; ¹H NMR δ 7.69 (s, 1 H, H-9), 7.45 (s, 1 H, H-5), 6.42 (s, 2 H, H-7); ¹³C NMR δ 156.6, 154.2, 152.0, 147.8, 130.6, 104.7, 103.1, 95.7. Anal. Calcd for C₈H₄ClN₃O₃: C, 42.6; H, 1.8; N, 18.6. Found: C, 42.7; H, 1.7; N, 18.5%.

*N*¹,*N*¹-Dimethyl-*N*²-(1-oxido[1,3]dioxolo[4,5-*g*][1,2,4]benzotriazin-3-yl)-1,2ethanediamine (119). Method C. Reaction of chloride 118 (359 mg, 1.6 mmol) and *N*,*N*-dimethyl-1,2-ethanediamine (0.52 mL, 4.8 mmol) gave 1-oxide 119 (390 mg, 88%) as a yellow solid: mp (MeOH/DCM) 192–194 °C; ¹H NMR δ 7.45 (s, 1 H, H-9), 7.35 (br s, 1 H, NH), 6.96 (s, 1 H, H-5), 6.23 (s, 2 H, H-7), 3.35–3.39 (m, 2 H, CH₂N), 2.42 (t, *J* = 6.7 Hz, 2 H, CH₂N), 2.18 [s, 6 H, N(CH₃)₂]; ¹³C NMR δ 158.9, 155.2, 148.7, 146.9, 125.3, 103.2, 101.6, 95.9, 57.8, 45.2 (2), 38.6. Anal. Calcd for C₁₂H₁₅N₅O₃: C, 52.0; H, 5.5; N, 25.3. Found: C, 52.1; H, 5.5; N, 25.3%.

*N*¹-(1,4-Dioxido[1,3]dioxolo[4,5-*g*][1,2,4]benzotriazin-3-yl)-*N*²,*N*²-dimethyl-1,2ethanediamine (26). Method D. Oxidation of 1-oxide 119 (374 mg, 1.4 mmol) with CF₃CO₃H (ca. 14 mmol) gave 1,4-dioxide 26 (52 mg, 13%) as a red solid: mp (MeOH/EtOAc) 175–179 °C; ¹H NMR δ 7.60 (s, 1 H, H-9), 7.59 (s, 1 H, H-5), 7.35 (br s, 1 H, NH), 6.21 (s, 2 H, H-7), 3.61 (br t, *J* = 6.0 Hz, 2 H, CH₂N), 2.62 (br t, *J* = 6.0 Hz, 2 H, CH₂N), 2.31 [s, 6 H, N(CH₃)₂]; ¹³C NMR δ 155.9, 149.7, 148.9, 137.8, 126.7, 103.5, 97.9, 94.1, 57.4, 45.1 (2), 38.8. Anal. Calcd for C₁₂H₁₅N₅O₄·½CH₃OH: C, 48.5; H, 5.5; N, 22.6. Found: C, 48.7; H, 5.3; N, 22.6%.

 N^{1} -(1,4-Dioxido-7,8-dihydro-6*H*-chromeno[6,7-*e*][1,2,4]triazin-3-yl)- N^{2} , N^{2} -dimethyl-1,2-ethanediamine (27).

6-Nitro-2,3-dihydro-4H-chromen-4-one (122). A solution of KNO₃ (2.25 g, 22.3 mmol) in cH₂SO₄ (10 mL) was added dropwise to a stirred solution of 4-chromanone (120) (3.0 g, 20.2 mmol) in cH₂SO₄ (50 mL) at 0 °C and the mixture stirred at 0 °C for 2 h. The mixture was poured into ice/water (500 mL), stirred 30 min and the precipitate filtered. The solid was washed with water $(3 \times 10 \text{ mL})$ and dried. The solid was purified by chromatography, eluting with 20% EtOAc/pet. ether, to give (i) 8-nitro-2.3-dihydro-4Hchromen-4-one (121) (369 mg, 9%) as a white solid: mp (EtOAc/pet. ether) 120–121 °C; ¹H NMR δ 8.17 (dd, J = 7.8, 1.8 Hz, 1 H, H-7), 8.10 (dd, J = 8.0, 1.8 Hz, 1 H, H-5), 7.12 (dd, J = 8.0, 7.8 Hz, 1 H, H-6), 4.73 (dd, J = 6.5, 6.4 Hz, 2 H, H-2), 2.95 (br t, J = 6.5 Hz)2 H, H-3). Anal. Calcd for C₉H₇NO₄: C, 56.0; H, 3.7; N, 7.3. Found: C, 56.1; H, 3.7; N, 7.3%; and (ii) 6-nitro-2,3-dihydro-4H-chromen-4-one (122) (3.17 g, 81%) as a white solid: mp (EtOAc/pet. ether) 169–171 °C; ¹H NMR δ 8.78 (d, J = 2.8 Hz, 1 H, H-5), 8.32 (dd, J = 9.1, 2.8 Hz, 1 H, H-7), 7.11 (d, J = 9.1 Hz, 1 H, H-8), 4.67 (dd, J = 6.6, 6.4 Hz, 2)H, H-2), 2.91 (dd, J = 6.6, 6.4 Hz, 2 H, H-3); ¹³C NMR δ 189.4, 165.7, 142.1, 130.3, 123.7, 120.8, 119.3, 67.6, 37.1. Anal. Calcd for C₉H₇NO₄: C, 56.0; H, 3.7; N, 7.3. Found: C, 56.1; H, 3.7; N, 7.4%.

N-(3,4-Dihydro-2*H*-chromen-6-yl)acetamide (123). A mixture of nitrochromanone 122 (2.0 g, 13.4 mmol) and Pd/C (5%, 100 mg) in EtOH/EtOAc (4:1, 150 mL), water (10 mL), and cHCl (1 mL) was stirred under H₂ (60 psi) for 16 h. The mixture was filtered through Celite, washed with EtOH (3 × 25 mL) and the solvent evaporated. The residue was partitioned between dilute aqueous NH₃ solution and DCM, the organic fraction was dried, and the solvent was evaporated. The residue was dissolved in dry dioxane (100 mL) and Ac₂O (2.8 mL, 29.4 mmol) added dropwise. The solution was stirred at 20 °C for 16 h, diluted with water and the solvent evaporated. The residue was purified by chromatography, eluting with a gradient (50–100%) of EtOAc/pet. ether, to give acetamide 123 (2.09 g, 70%) as a white solid: mp (EtOAc/pet. ether) 111–113 °C [lit.¹² mp (EtOH) 118 °C]; ¹H NMR δ 7.28 (d, *J* = 2.2 Hz, 1 H, H-5), 7.02 (dd, *J* = 8.6, 2.2 Hz,

1 H, H-7), 6.72 (d, *J* = 8.6 Hz, 1 H, H-8), 4.15 (br dd, *J* = 5.2, 5.0 Hz, 2 H, H-2), 2.77 (br t, *J* = 6.5 Hz, 2 H, H-4), 2.13 (s, 3 H, CH₃), 1.95–2.02 (m, 2 H, H-3).

Alternative Preparation of *N*-(3,4-Dihydro-2*H*-chromen-6-yl)acetamide (123). A solution of 4-chromanone (120) (14.82 g, 100 mmol) in HOAc (50 mL) was added to a stirred suspension of Zn dust (10 eq. w/w, 148 g) in HOAc (200 mL) and the mixture stirred at 100 °C for 16 h. The mixture was cooled, filtered, washed with HOAc (3×100 mL) and the solvent from the combined filtrate evaporated. The residue was suspended in water (200 mL) and the suspension made basic with NaOH, extracted with EtOAc (3×100 mL), the combined extracts dried and the solvent evaporated to give chroman (124) (11.83 g, 88%) as a white solid.

AlCl₃ (11.8 g, 88.2 mmol) was added in small portions to a stirred solution of AcCl (11.9 mL, 167.5 mmol) in dry DCM (250 mL) at -10 °C and the mixture stirred until homogeneous (15 min). The solution was added, via a cannula, to a stirred solution of chroman (**124**) (11.8 g, 88.2 mmol) in dry DCM (200 mL) at -10 °C and the solution stirred for 30 min at -10 °C and then poured into ice/cHCl (5:1 v/v, 1.5 L). The mixture was stirred for 2 h, extracted with DCM (3 × 100 mL), the combined organic fraction dried and the solvent evaporated. The residue was purified by chromatography, eluting with a gradient (10–20%) of EtOAc/pet. ether, to give 1-(3,4-dihydro-2*H*-chromen-6-yl)ethanone (**125**) (12.45 g, 80%) as a white solid: ¹H NMR δ 7.68–7.22 (m, 2 H, H-5, H-7), 6.82 (d, *J* = 9.2 Hz, 1 H, H-8), 4.24 (br dd, *J* = 5.3, 5.2 Hz, 2 H, H 2), 2.83 (br t, *J* = 6.5 Hz, 2 H, H-4), 2.53 (s, 3 H, CH₃), 2.00–2.06 (m, 2 H, H-3).

Hydroxylamine·HCl (2.9 g, 41.9 mmol) was added to a stirred solution of ketone 230 (6.15 g, 34.9 mmol) and pyridine (3.7 mL, 45.4 mmol) in MeOH (30 mL) and the mixture stirred at 20 °C for 16 h. The solvent was evaporated and the residue partitioned between brine and EtOAc. The organic fraction was dried and the solvent evaporated to give crude 1-(3,4-dihydro-2*H*-chromen-6-yl)ethanone oxime (6.3 g, 94%). HCl gas was bubbled through a solution of oxime (6.3 g, 32.5 mmol) in Ac₂O (6.1 mL, 65 mmol) and HOAc (40 mL, 650 mmol), and the solution stood at 20 °C for 24 h. The precipitate was poured into ice/water, stirred for 2 h, the solid filtered and washed with water and dried. The aqueous fraction was extracted with DCM (2×50 mL), the combined extract dried and the solvent evaporated. The slurry was treated with water (20 mL) and evaporated several times to remove Ac₂O. The combined solids were purified by chromatography, eluting with a gradient (50–100%) of EtOAc/pet. ether, to give acetamide **123** (3.74 g, 59%) as a white solid: spectroscopically identical to the sample prepared above.

Nitration of *N*-(3,4-Dihydro-2*H*-chromen-6-yl)acetamide (123). A solution of fHNO₃ (2.5 mL, 63.2 mmol) in HOAc (10 mL) was added dropwise to a stirred solution of acetamide 123 (8.63 g, 45.1 mmol) in HOAc (100 mL) at 15 °C. The mixture was stirred at 15 °C for 1 h, then poured into ice/water (800 mL) and stirred for 30 min. The precipitate was filtered, washed with water (3 × 30 mL) and dried. The solid was purified by chromatography, eluting with a gradient (30–100%) of EtOAc/pet. ether, to give (i) *N*-(7-nitro-3,4-dihydro-2*H*-chromen-6-yl)acetamide (126) (2.49 g, 23%) as a white solid: mp (EtOAc) 141–143 °C [lit.¹³ mp (EtOH) 139–142 °C]; ¹H NMR δ 10.0 (br s, 1 H, NH), 8.40 (s, 1 H, H-8), 7.61 (s, 1 H, H-5), 4.21 (br t, *J* = 5.2 Hz, 2 H, H-2), 2.87 (br t, *J* = 6.5 Hz, 2 H, H-4), 2.24 (s, 3 H, CH₃), 2.00–2.06 (m, 2 H, H-3); and (ii) *N*-(5-nitro-3,4-

dihydro-2*H*-chromen-6-yl)acetamide (**127**) (2.08 g, 19%) as a white solid: mp (EtOAc) 191–192 °C [lit.¹³ mp (EtOH) 177–180 °C]; ¹H NMR δ 8.07 (br s, 1 H, NH), 7.83 (br d, *J* = 9.1 Hz, 1 H, H-7), 6.99 (d, *J* = 9.1 Hz, 1 H, H-8), 4.20 (br t, *J* = 5.2 Hz, 2 H, H-2), 2.80 (br t, *J* = 6.5 Hz, 2 H, H-4), 2.16 (s, 3 H, CH₃); 1.96–2.02 (m, 2 H, H-3); and (iii) *N*-(8-nitro-3,4-dihydro-2*H*-chromen-6-yl)acetamide (0.85g, 8%), as a white solid: mp (EtOAc) 200–201 °C [lit.¹³ mp (EtOH) 188–191 °C]; ¹H NMR δ 7.67 (br s, 1 H, H-6), 7.61 (br s, 1 H, H-5), 7.16 (br s, 1 H, NH), 4.30 (br t, *J* = 5.2 Hz, 2 H, H-2), 2.86 (br t, *J* = 6.5 Hz, 2 H, H-4), 2.17 (s, 3 H, CH₃); 2.04–2.10 (m, 2 H, H-3).

7-Nitro-3,4-dihydro-2*H***-chromen-6-ylamine (128).** A suspension of acetamide **126** (2.49 g, 10.5 mmol) and cHCl (10 mL) in EtOH (50 mL) was heated at reflux temperature for 16 h. The solution was cooled, carefully neutralized with aqueous NH₃ solution, extracted with EtOAc (2 × 50 mL), the combined organic fraction dried and the solvent evaporated to give nitroaniline **128** (2.05 g, 100%) as an orange solid: mp (EtOAc) 145–148 °C [lit.¹³ mp (H₂O) 139–140 °C]; ¹H NMR δ 7.54 (s, 1 H, H-8), 6.50 (s, 1 H, H-5), 5.62 (br s, 2 H, NH₂), 4.14 (br t, *J* = 5.2 Hz, 2 H, H-2), 2.77 (br t, *J* = 6.5 Hz, 2 H, H-4), 1.95–2.02 (m, 2 H, H-3).

7,8-Dihydro-6*H***-chromeno[6,7-***e***][1,2,4]triazin-3-amine 1-Oxide (129). Method A.** Reaction of nitroaniline **128** (2.05 g, 10.6 mmol) and cyanamide (1.78 g, 42.3 mmol) gave 1-oxide **129** (1.30 g, 56%) as a yellow powder: mp (MeOH/DCM) 280–283 °C; ¹H NMR [(CD₃)₂SO] δ 7.32 (s, 1 H, H-10), 7.31 (s, 1 H, H-5), 6.96 (br s, 2 H, NH₂), 4.22 (dd, *J* = 5.3, 5.2 Hz, 2 H, H-8), 2.95 (br t, *J* = 6.3 Hz, 2 H, H-6), 1.92–1.98 (m, 2 H, H-7); ¹³C NMR [(CD₃)₂SO] δ 159.1, 152.2, 143.4, 135.8, 128.7, 125.7, 102.6, 66.5, 25.0, 21.0. Anal. Calcd for C₁₀H₁₀N₄O₂: C, 55.0; H, 4.6; N, 25.7. Found: C, 55.1; H, 4.6; N, 25.5%.

3-Chloro-7,8-dihydro-6*H***-chromeno**[6,7-*e*][1,2,4]triazine 1-Oxide (130). Method B. Reaction of 1-oxide 129 (963 mg, 4.4 mmol) and NaNO₂ (320 mg, 4.6 mmol), with subsequent chlorination with DMF/POCl₃, gave chloride 130 (939 mg, 66%) as a pale yellow solid: mp (EtOAc/DCM) 192–195 °C; ¹H NMR δ 7.64–7.67 (m, 2 H, H-5, H-10), 4.34–4.39 (m, 2 H, H-8), 3.08 (br dd, *J* = 6.6, 6.1 Hz, 2 H, H-6), 2.09–2.15 (m, 2 H, H-7); ¹³C NMR δ 157.6, 154.1, 141.9, 136.7, 133.2, 128.3, 104.0, 67.4, 26.0, 21.1. Anal. Calcd for C₁₀H₈ClN₃O₂: C, 50.5; H, 3.4; N, 17.7. Found: C, 50.8; H, 3.3; N, 17.7%.

*N*¹,*N*¹-Dimethyl-*N*²-(1-oxido-7,8-dihydro-6*H*-chromeno[6,7-*e*][1,2,4]triazin-3-yl)-1,2ethanediamine (131). Method C. Reaction of chloride 130 (341 mg, 1.4 mmol) and *N*,*N*-dimethyl-1,2-ethanediamine (0.47 mL, 4.3 mmol) gave 1-oxide 131 (343 mg, 83%) as a yellow solid: mp (MeOH/EtOAc) 150–152 °C; ¹H NMR δ 7.58 (s, 1 H, H-10), 7.30 (s, 1 H, H-5), 5.79 (br s, 1 H, NH), 4.25 (br dd, J = 5.3, 5.2 Hz, 2 H, H-8), 3.51–3.56 (m, 2 H, CH₂N), 2.96 (br t, J = 6.0 Hz, 2 H, H-6), 2.60 (br t, J = 6.0 Hz, 2 H, CH₂N), 2.31 [s, 6 H, N(CH₃)₂], 2.02–2.09 (m, 2 H, H-7); ¹³C NMR δ 158.0, 152.9, 143.6, 135.1, 130.0, 126.1, 104.3, 66.9, 57.6, 45.0 (2), 38.7, 25.9, 21.7. Anal. Calcd for C₁₄H₁₉N₅O₂-¹/₄H₂O: C, 57.2; H, 6.7; N, 23.8. Found: C, 57.1; H, 6.5; N, 23.9%.

 N^{1} -(1,4-Dioxido-7,8-dihydro-6*H*-chromeno[6,7-*e*][1,2,4]triazin-3-yl)- N^{2} , N^{2} -dimethyl-1,2-ethanediamine (27). Method D. Oxidation of 1-oxide 131 (270 mg, 0.9 mmol) with CF₃CO₃H (ca. 9 mmol) gave 1,4-dioxide **27** (71 mg, 22%) as a red solid: mp (MeOH/EtOAc) 152–154 °C; ¹H NMR δ 7.99 (s, 1 H, H-5), 7.61 (s, 1 H, H-10), 7.27 (br s, 1 H, NH), 4.30 (br dd, *J* = 5.3, 5.2 Hz, 2 H, H-8), 3.62 (br t, *J* = 5.9 Hz, 2 H, CH₂N), 3.05 (br t, *J* = 6.3 Hz, 2 H, H-6), 2.62 (t, *J* = 6.0 Hz, 2 H, CH₂N), 2.31 [s, 6 H, N(CH₃)₂], 2.05–2.12 (m, 2 H, H-7); ¹³C NMR δ 154.7, 148.7, 136.2, 133.2, 130.1, 117.4, 105.2, 67.1, 57.6, 45.1 (2), 38.8, 26.1, 21.3; HRMS calcd for C₁₄H₁₉N₅O₃ (MH⁺) *m/z* 3060.1566, found 306.1569. Anal. Calcd for C₁₄H₁₉N₅O₃·³4H₂O: C, 52.7; H, 6.5; N, 22.0. Found: C, 53.0; H, 5.9, N, 21.6%.

N-[3-(4-Morpholinyl)propyl]-7,8-dihydro-6*H*-chromeno[6,7-*e*][1,2,4]triazin-3-amine 1,4-Dioxide (28).

N-[3-(4-Morpholinyl)propyl]-7,8-dihydro-6*H*-chromeno[6,7-*e*][1,2,4]triazin-3-amine 1-Oxide (132). Method C. Reaction of chloride 130 (380 mg, 1.6 mmol) and 3-(4morpholinyl)propylamine (0.71 mL, 4.8 mmol) gave 1-oxide 132 (514 mg, 93%) as a yellow solid: mp (MeOH/EtOAc) 151–152 °C; ¹H NMR δ 7.60 (s, 1 H, H-10), 7.30 (s, 1 H, H-5), 6.00 (br s, 1 H, NH), 4.26 (br dd, J = 5.3, 5.2 Hz, 2 H, H-8), 3.75 (br t, J = 4.7Hz, 4 H, 2 × CH₂O), 3.55 (dt, J = 6.3, 5.9 Hz, 2 H, CH₂N), 2.97 (br t, J = 6.3 Hz, 2 H, H-6), 2.45–2.52 (m, 6 H, 3 × CH₂N), 2.02–2.08 (m, 2 H, H-7), 1.79–1.86 (m, 2 H, CH₂); ¹³C NMR δ 158.1, 152.9, 143.6, 135.1, 130.0, 126.1, 104.4, 67.0 (2), 66.9, 57.3 (2), 53.8, 40.7, 25.9, 25.3, 21.7. Anal. Calcd for C₁₇H₂₃N₅O₃: C, 59.1; H, 6.7; N, 20.3. Found: C, 59.4; H, 6.6; N, 20.3%.

N-[3-(4-Morpholinyl)propyl]-7,8-dihydro-6*H*-chromeno[6,7-*e*][1,2,4]triazin-3-amine 1,4-Dioxide (28). Method D. Oxidation of 1-oxide 132 (509 mg, 1.5 mmol) with CF₃CO₃H (ca. 15 mmol) gave (i) starting material 132 (80 mg, 16%) and (ii) 1,4-dioxide 28 (75 mg, 16%) as a red solid: mp (MeOH/EtOAc) 173–176 °C; ¹H NMR δ 8.33 (br t, *J* = 4.9 Hz, 1 H, NH), 8.01 (s, 1 H, H-5), 7.62 (s, 1 H, H-10), 4.31 (br dd, *J* = 5.3, 5.2 Hz, 2 H, H-8), 3.83 (br t, *J* = 4.6 Hz, 4 H, 2 × CH₂O), 3.62–3.68 (m, 2 H, CH₂N), 3.03–3.08 (m, 2 H, H-6), 2.58 (br dd, *J* = 6.2, 6.0 Hz, 2 H, CH₂N), 2.50 (m, 4 H, 2 × CH₂N), 2.07–2.13 (m, 2 H, H-7), 1.84–1.91 (m, 2 H, CH₂); ¹³C NMR δ 154.5, 148.7, 136.1, 133.2, 129.9, 117.3, 105.2, 67.1, 66.9 (2), 57.8, 53.8 (2), 41.6, 26.1, 24.4, 21.3. Anal. Calcd for C₁₇H₂₃N₅O₃·¹/₄H₂O: C, 55.8; H, 6.5; N, 19.1. Found: C, 55.8; H, 6.5, 18.8%.

 N^{1} -(1,4-Dioxido-9,10-dihydro-8*H*-chromeno[6,5-*e*][1,2,4]triazin-3-yl)- N^{2} , N^{2} -dimethyl-1,2-ethanediamine (29).

5-Nitro-3,4-dihydro-2*H***-chromen-6-ylamine (133).** A solution of acetamide **127** (1.24 g, 5.3 mmol) in 95% EtOH (50 mL) and NaOH (0.63 g, 15.7 mmol) was stirred at reflux temperature for 16 h. The mixture was cooled and the solvent evaporated. The residue was partitioned between Et₂O and water, the organic fraction dried and the solvent evaporated. The residue was purified by chromatography, eluting with 20% EtOAc/pet. ether, to give nitroaniline¹³ **133** (1.54 g, 85%) as red oil: ¹H NMR δ 6.85 (d, *J* = 9.0 Hz, 1 H, H-8), 6.60 (d, *J* = 9.0 Hz, 1 H, H-7), 4.90 (br s, 2 H, NH₂), 4.13 (dd, *J* = 5.3, 5.1 Hz, 2 H, H-2), 2.90 (br t, *J* = 6.5 Hz, 2 H, H-4), 1.91–1.96 (m, 2 H, H-3).

9,10-Dihydro-8*H***-chromeno[6,5-***e***][1,2,4]triazin-3-amine 1-Oxide (134). Method A.** Reaction of nitroaniline **133** (1.52 g, 7.8 mmol) and cyanamide (1.32 g, 31.3 mmol) gave (i) starting nitroaniline **133** (470 mg, 31%) and (ii) amine **134** (246 mg, 14%) as a yellow powder: mp (MeOH/DCM) 275–279 °C (dec.); ¹H NMR [(CD₃)₂SO] δ 7.26–7.31 (m, 2 H, H-5, H-6), 6.90 (br s, 2 H, NH₂), 4.12–4.17 (m, 2 H, H-8), 3.30–3.33 (m, 2 H, H-10), 1.87–1.93 (m, 2 H, H-9); ¹³C NMR [(CD₃)₂SO] δ 159.0, 151.2, 146.3, 129.5, 128.0, 124.6, 113.5, 65.3, 24.4, 21.5. Anal. Calcd for C₁₀H₁₀N₄O₂: C, 55.0; H, 4.6; N, 25.6. Found: C, 55.0; H, 4.6; N, 25.6%.

3-Chloro-9,10-dihydro-8*H***-chromeno[6,5-***e***][1,2,4]triazine 1-Oxide (135). Method B. Reaction of 1-oxide 134 (231 mg, 1.0 mmol) and NaNO₂ (134 mg, 1.9 mmol), with subsequent chlorination with DMF/POCl₃, gave chloride 135 (63 mg, 27%) as a pale yellow solid: mp (EtOAc) 160–162 °C; ¹H NMR \delta 7.70 (d,** *J* **= 9.2 Hz, 1 H, H-6), 7.47 (d,** *J* **= 9.2 Hz, 1 H, H-5), 4.29 (br dd,** *J* **= 5.2, 5.2 Hz, 2 H, H-8), 3.54 (t,** *J* **= 6.5 Hz, 2 H, H-10), 2.03–2.09 (m, 2 H, H-9); ¹³C NMR \delta 156.6, 154.0, 145.0, 133.9, 129.5, 126.9, 114.0, 66.4, 24.6, 21.6. Anal. Calcd for C₁₀H₈ClN₃O₂: C, 50.5; H, 3.4; N, 17.7. Found: C, 50.7; H, 3.4; N, 17.8%.**

*N*¹,*N*¹-Dimethyl-*N*²-(1-oxido-9,10-dihydro-8*H*-chromeno[6,5-*e*][1,2,4]triazin-3-yl)-1,2-ethanediamine (136). Method C. Reaction of chloride 135 (47 mg, 0.2 mmol) and *N*,*N*-dimethyl-1,2-ethanediamine (65 μL, 0.6 mmol) gave 1-oxide 136 (55 mg, 95%) as a pale yellow solid: mp (MeOH/EtOAc) 119–120 °C; ¹H NMR δ 7.35 (d, *J* = 9.2 Hz, 1 H, H-6), 7.23 (d, *J* = 9.2 Hz, 1 H, H-5), 5.66 (br s, 1 H, NH), 4.19 (br dd, *J* = 5.1, 5.0 Hz, 2 H, H-8), 3.47–3.53 (m, 4 H, H-10, CH₂N), 2.54 (br t, *J* = 6.0 Hz, 2 H, CH₂N), 2.27 [s, 6 H, N(CH₃)₂], 1.97–2.04 (m, 2 H, H-9); ¹³C NMR δ 158.0, 152.2, 146.7, 130.3, 128.4, 125.2, 114.0, 65.9, 57.7, 45.1 (2), 38.7, 24.9, 22.2. Anal. Calcd for C₁₄H₁₉N₅O₂·¼H₂O: C, 57.2; H, 6.7; N, 23.8. Found: C, 57.5; H, 6.6; N, 23.8%. *N*¹-(1,4-Dioxido-9,10-dihydro-8*H*-chromeno[6,5-*e*][1,2,4]triazin-3-yl)-*N*²,*N*²dimethyl-1,2-ethanediamine (29). Method D. Oxidation of 1-oxide 136 (50 mg, 0.17 mmol) with CF₃CO₃H (ca. 3.2 mmol) gave 1,4-dioxide 29 (28 mg, 54%) as a red gum: ¹H NMR δ 8.11 (d, *J* = 9.5 Hz, 1 H, H-5), 7.36 (d, *J* = 9.5 Hz, 1 H, H-6), 7.23 (br s, 1 H, NH), 4.21–4.25 (m, 2 H, H-8), 3.61 (br t, *J* = 5.8 Hz, 2 H, CH₂N), 3.56 (br t, *J* = 6.5 Hz, 2 H, H-10), 2.62 (br t, *J* = 6.0 Hz, 2 H, CH₂N), 2.31 [s, 6 H, N(CH₃)₂], 2.00–2.07 (m, 2 H, H-9); ¹³C NMR δ 154.0, 148.4, 135.8, 130.6, 128.9, 116.0, 114.9, 66.2, 57.5, 45.1 (2), 38.7, 24.5, 21.9; MS *m/z* 306 (MH⁺, 60%), 290 (20), 176 (100); HRMS calcd for C₁₄H₂₀N₅O₃ (MH⁺) *m/z* 306.1566, found 306.1568. Anal. Calcd for C₁₄H₁₉N₅O₃·¹/₂H₂O·¹/₂MeOH: C, 52.7; H, 6.7; N, 21.2. Found: C, 52.8; H, 6.7; N, 21.2%.

 N^3 -Ethyl- N^7 , N^7 -dimethyl-7,8-dihydro-6*H*-indeno[5,6-*e*][1,2,4]triazine-3,7-diamine 1,4-Dioxide (30).

N.N-Dimethyl-2-indanamine (138). Methanesulfonyl chloride (11.5 mL, 149 mmol) was added dropwise to a stirred solution of 2-indanol (137) (20 g, 149 mmol) and iPr₂NEt (28.6 mL, 164 mmol) in DCM (300 mL) at 0 °C, and the solution stirred at 20 °C for 16 h. The solution was washed with 1 M HCl (80 mL), aqueous saturated NaHCO₃ solution (80 mL) and brine (100 mL), dried and the solvent evaporated. The residue was recrystallised from EtOH to give 2,3-dihydro-1*H*-inden-2-yl methanesulfonate (31.14 g, 98%) as a white solid. Aqueous HNMe₂ (40%, 180 mL, 1.42 mol) was added slowly to a stirred solution of mesylate (30.25 g, 143 mmol) in DMF (200 mL) and the solution stirred at 20 °C for 16 h. The solution was partitioned between EtOAc (400 mL) and water (800 mL) and the organic fraction washed with water (3×80 mL), brine (100 mL), dried and the solvent evaporated. The residue was suspended in 1 M HCl (400 mL) and washed with DCM (3×80 mL). The pH of the aqueous fraction was adjusted to 14 with NaOH, the mixture chilled at 5 $^{\circ}$ C for 8 h and the precipitate filtered. The precipitate was washed with water (50 mL) and dried to give amine 138 (21.54 g, 93%) as a light gray solid: ¹H NMR δ 7.10–7.17 (m, 4 H, H_{arom}), 3.01–3.08 (m, 3 H, H-2, CH₂), 2.82–2.91 (m, 2 H, CH₂), 2.31 [s, 6 H, N(CH₃)₂].

N,*N*-Dimethyl-5-nitro-2-indanamine (139). cHNO₃ (70%, 22.6 mL, 357 mmol) was added dropwise to a stirred solution of indane 138 (15.54 g, 95.8 mmol) in TFA (90 mL) and the solution stirred at 20 °C for 48 h. The solution was poured into ice/water (1 L) and the pH adjusted to 10 with cNH₃. The mixture was extracted with DCM (4 × 150 mL), the combined organic fraction dried and the solvent evaporated to give crude 5-nitroindanamine containing ca. 5% of the corresponding 4-nitro isomer. A small portion was purified by chromatography, eluting with a gradient (0–5%) of MeOH/DCM, to give 5-nitroindanamine 139 as an oil: ¹H NMR δ 8.03–8.06 (m, 2 H, H-4, H-6), 7.30 (d, *J* = 8.9 Hz, 1 H, H-7), 3.23–3.30 (m, 1 H, H-2), 3.12–3.20 (m, 2 H, CH₂), 2.97–3.03 (m, 2 H, CH₂), 2.38 [s, 6 H, N(CH₃)₂]. The hydrochloride salt crystallised as a tan powder, mp 223–227 °C. Anal. Calcd for C₁₁H₁₅ClN₂O₂: C, 54.4; H, 6.2; N, 11.5. Found: C, 55.0; H, 6.3; N, 11.4%.

N-[2-(Dimethylamino)-2,3-dihydro-1*H*-inden-5-yl]acetamide (140). A solution of crude nitroindanamine 139 (19.82 g, 95.8 mmol) in EtOH (200 mL) and Pd/C (500 mg) was stirred in 2 × 100 mL batches under H₂ (60 psi) for 16 h. The combined batches were filtered through Celite, and washed with warm EtOH (1 L) and then DMF (100 mL). The solvent was evaporated and the residue suspended in dioxane (130 mL), and Ac₂O (19 mL, 190 mmol) added dropwise. The mixture was stirred at 20 °C for 16 h, diluted with water (200 mL), the pH adjusted to 10 with cNH₃, and the mixture stirred for 30 min. The precipitate was filtered, washed with water (50 mL) and dried to give pure 5-acetamide 140 (15.38 g, 73%) as tan powder: mp 94–96 °C; ¹H NMR δ 7.42 (br s, 1 H, NH), 7.08–7.14 (m, 3 H, H-4, H-6, H-7), 2.97–3.08 (m, 3 H, H-2, CH₂), 2.78–2.89 (m, 2 H, CH₂), 2.30 [s, 6 H, N(CH₃)₂], 2.15 (s, 3 H, COCH₃); ¹³C NMR δ 168.3, 142.8, 137.9, 136.3, 124.5, 118.5, 116.6, 68.1, 43.8 (2), 37.7, 37.1, 24.5. Anal. Calcd for C₁₃H₁₈N₂O·H₂O: C, 66.1; H, 8.5; N, 11.9. Found: C, 66.1; H, 8.5; N, 11.9%.

 N^2 , N^2 -Dimethyl-6-nitro-2,5-indanediamine (141). A solution of cHNO₃ (70%, 13.4) mL, 211 mmol) in TFA (15 mL) was added dropwise to a stirred solution of acetamide 140 (15.38 g, 70.5 mmol) in TFA (120 mL) and the solution stirred at 20 °C for 16 h. The solution was poured into ice/water (1.2 L) and the pH adjusted to 10 with cNH₃. The mixture was extracted with DCM (4×150 mL), the combined organic fraction dried and the solvent evaporated. The residue was filtered through a short column of silica, eluting with a gradient (0-15%) of MeOH/DCM, to give a 6:1 mixture of N-[2-(dimethylamino)-6-nitro-2,3-dihydro-1*H*-inden-5-yl]acetamide and *N*-[2-(dimethylamino)-4-nitro-2,3dihydro-1*H*-inden-5-yl]acetamide (16.7 g, 90%). A solution of the acetamide mixture (16.7 g, 63.4 mmol) in EtOH (300 mL) and cHCl (70 mL) was stirred at reflux temperature for 4 h. The mixture was cooled and the EtOH evaporated. The mixture was diluted with water (200 mL) and the pH adjusted to 9 with cNH₃. The precipitate was filtered, washed with water (40 mL), dried and recrystallised from EtOAc/pet. ether to give pure 6-nitroaniline **141** (8.12 g, 52%) as a red solid: mp 119–121 °C; ¹H NMR δ 7.91 (s, 1 H, H-7), 6.61 (s, 1 H, H-4), 6.00 (br s, 2 H, NH₂), 2.95-3.06 (m, 3 H, H-2, CH₂), 2.74–2.84 (m, 2 H, CH₂), 2.29 [s, 6 H, N(CH₃)₂]; ¹³C NMR δ 151.8, 144.4, 131.6, 131.4, 121.0, 113.6, 67.8, 43.8 (2), 37.9, 36.2. Anal. Calcd for C₁₁H₁₅N₃O₂: C, 59.7; H, 6.8; N, 19.0. Found: C, 59.5; H, 6.9; N, 18.9%.
*N*⁷,*N*⁷-Dimethyl-7,8-dihydro-6*H*-indeno[5,6-*e*][1,2,4]triazine-3,7-diamine 1-Oxide (142). Method A. Reaction of nitroaniline 141 (0.50 g, 2.3 mmol) and cyanamide (0.4 g, 9.0 mmol) gave 1-oxide 142 (246 mg, 44%) as a yellow powder: mp (MeOH/DCM) 212–216 °C; ¹H NMR [(CD₃)₂SO] δ 7.93 (s, 1 H, H-9), 7.34 (s, 1 H, H-5), 7.11 (br s, 2 H, NH₂), 3.03–3.18 (m, 3 H, H-7, CH₂), 2.79–2.89 (m, 2 H, CH₂), 2.22 [s, 6 H, N(CH₃)₂]; ¹³C NMR [(CD₃)₂SO] δ 159.9, 152.0, 148.6, 140.5, 128.9, 120.0, 114.1, 67.0, 43.2 (2), 37.0, 36.1. Anal. Calcd for C₁₂H₁₅N₅O·½H₂O: C, 56.7; H, 6.3; N, 27.5. Found: C, 56.9; H, 6.0; N, 27.4%.

3-Chloro-*N*,*N*-dimethyl-7,8-dihydro-6*H*-indeno[5,6-*e*][1,2,4]triazin-7-amine 1-Oxide (143). Method B. Reaction of 1-oxide 142 (320 mg, 1.3 mmol) and NaNO₂ (100 mg, 1.4 mmol), with subsequent chlorination with DMF/POCl₃, gave chloride 143 (245 mg, 71%) as a pale yellow solid: mp (DCM) 160–165 °C; ¹H NMR δ 8.19 (s, 1 H, H-9), 7.73 (s, 1 H, H-5), 3.25–3.34 (m, 2 H, CH₂), 3.15–3.23 (m, 1 H, H-7), 3.02–3.11 (m, 2 H, CH₂), 2.34 [s, 6 H, N(CH₃)₂]; ¹³C NMR δ 156.1, 154.0, 147.8, 147.4, 133.0, 122.7, 114.8, 67.5, 43.8 (2), 38.1, 37.7. Anal. Calcd for C₁₂H₁₃ClN₄O: C, 54.5; H, 5.0; N, 21.2. Found: C, 54.6; H, 4.9; N, 21.3%.

*N*³-Ethyl-*N*⁷,*N*⁷-dimethyl-7,8-dihydro-6*H*-indeno[5,6-*e*][1,2,4]triazine-3,7-diamine 1-Oxide (144). Method C. Reaction of chloride 143 (240 mg, 0.9 mmol) and aqueous ethylamine (70%, 0.35 mL, 4.4 mmol) gave 1-oxide 144 (203 mg, 84%) as a yellow solid: mp (MeOH/EtOAc) 187–190 °C; ¹H NMR δ 8.05 (s, 1 H, H-9), 7.37 (s, 1 H, H-5), 5.14 (br s, 1 H, NH), 3.54 (dq, J = 7.2, 1.3 Hz, 2 H, CH₂N), 3.06–3.21 (m, 3 H, CH, CH₂), 2.89–2.99 (m, 2 H, CH₂), 2.32 [s, 6 H, N(CH₃)₂], 1.28 (t, J = 7.2 Hz, 3 H, CH₃); ¹³C NMR δ 158.7, 152.1, 148.9, 140.9, 130.0, 120.8, 115.0, 67.7, 43.9 (2), 38.0, 37.1, 36.3, 14.8. Anal. Calcd for C₁₄H₁₉N₅O: C, 61.5; H, 7.0; N, 25.6. Found: C, 61.3; H, 7.1; N, 25.5%.

 N^3 -Ethyl- N^7 , N^7 -dimethyl-7,8-dihydro-6*H*-indeno[5,6-*e*][1,2,4]triazine-3,7-diamine 1,4-Dioxide (30). Method D. Oxidation of 1-oxide 144 (188 mg, 0.7 mmol) with CF₃CO₃H (ca. 6.9 mmol) gave (i) starting material 144 (175 mg, 93%) and (ii) 1,4-dioxide 30 (8 mg, 4%) as a red gum: ¹H NMR δ 8.11 (s, 1 H, H-9), 8.08 (s, 1 H, H-5), 6.98 (br s, 1 H, NH), 3.63 (dq, *J* = 7.2, 1.0 Hz, 2 H, CH₂N), 3.15–3.30 (m, 3 H, CH, CH₂), 2.95–3.07 (m, 2 H, CH₂), 2.33 [s, 6 H, N(CH₃)₂], 1.36 (t, *J* = 7.2 Hz, 3 H, CH₃); MS *m*/*z* 290 (MH⁺, 20%), 274 (5); HRMS calcd for C₁₄H₂₀N₅O₂ (MH⁺) *m*/*z* 290.1617, found 290.1607.

7-Ethyl-7,8-dihydro-6*H*-[1,2,4]triazino[5,6-*f*]isoindol-3-amine 1,4-Dioxide (31).

1,2-Bis(bromomethyl)-4-nitrobenzene (146). KNO₃ (33.0 g, 330 mmol) was added in small portions, over 1 h, to a stirred solution of 1,2-bis(bromomethyl)benzene (**145**) (72.2 g, 300 mmol) in cH₂SO₄ (600 mL) at 0 °C. After the addition was completed, the mixture was stirred at 0 °C for 3 h. The mixture was poured onto ice and stirred at 0 °C for 2 h. The solid was filtered, washed with water several times and dried to give nitrobenzene **146** (63.1 g, 68%) as a white solid: mp (EtOAc/pet. ether) 73–74 °C; (lit¹⁴ mp 68–72 °C) ¹H NMR δ 8.25 (d, *J* = 2.3 Hz, 1 H, H-3), 8.15 (dd, *J* = 8.4, 2.3 Hz, 1 H, H-5), 7.56 (d, *J* = 8.4 Hz, 1 H, H-6), 4.67 (s, 2 H, CH₂Br), 4.66 (s, 2 H, CH₂Br); ¹³C NMR δ 148.0, 143.4 138.3, 132.1, 125.9, 124.1, 28.0, 27.5. Anal. Calcd for C₈H₇NBr₂O₂: C, 31.1; H, 2.3; N, 4.5. Found: C, 31.1; H, 2.3; N, 4.5%.

2-Ethyl-5-nitroisoindoline (147). A mixture of dibromide **146** (9.27 g, 30.0 mmol), ethylamine hydrochloride (2.45 g, 30.0 mmol) and Et₃N (21 mL, 150 mmol) in DMF (100 mL) was stirred at 20 °C for 90 min. The mixture was partitioned between EtOAc and aqueous Na₂CO₃ solution. The organic fraction was washed with water, dried and the solvent evaporated to give isoindole **147** (3.21 g, 56%) as a dark oil: ¹H NMR δ 8.11 (dd, J = 8.1, 2.1 Hz, 1 H, H-6), 8.05 (d, J = 2.1 Hz, 1 H, H-4), 7.34 (d, J = 8.1 Hz, 1 H, H-7), 3.99 (s, 4 H, H-1, H-3), 2.82 (q, J = 7.2 Hz, 2 H, CH₂), 1.22 (t, J = 7.2 Hz, 3 H, CH₃); HRMS calcd for C₁₀H₁₃N₂O₂ (MH⁺) *m/z* 193.0977, found 193.0983.

N-(2-Ethyl-2,3-dihydro-1*H*-isoindol-5-yl)acetamide (148). A solution of isoindole 147 (3.20 g, 16.7 mmol) in MeOH (100 mL) was stirred with Pd/C (5%, 300 mg) under H₂ (60 psi) for 16 h. The solution was filtered through Celite, washed with MeOH (3 × 20 mL) and the solvent evaporated. The residue was dissolved in DCM (130 mL) and Et₃N (13 mL, 93 mmol), Ac₂O (13 mL, 138 mmol) was added dropwise and the solution stirred at 20 °C for 15 h. The mixture was partitioned between DCM and aqueous Na₂CO₃ solution. The organic solution was washed with water, dried and the solvent was evaporated to give acetamide 148 (3.00 g, 88%) as a dark oil: ¹H NMR δ 7.45 (br s, 1 H, H-4), 7.30 (br s, 1 H, NH), 7.18 (br d, *J* = 8.0 Hz, 1 H, H-6), 7.12 (d, *J* = 8.0 Hz, 1 H, H-7), 3.90 (s, 2 H, H-1), 3.87 (s, 2 H, H-3), 2.76 (q, *J* = 7.2 Hz, 2 H, CH₂), 2.15 (s, 3 H, COCH₃) 1.19 (t, *J* = 7.2 Hz, 3 H, CH₃); HRMS calcd for C₁₂H₁₇N₂O (MH⁺) *m/z* 203.1184, found 203.1188.

N-(2-Ethyl-6-nitro-2,3-dihydro-1*H*-isoindol-5-yl)acetamide (149). KNO₃ (1.33 g, 13.2 mmol) was added in small portions, over 10 min, to a stirred solution of acetamide 148 (2.45 g, 12.0 mmol) in cH₂SO₄ (50 mL) at 0 °C and the reaction mixture was stirred at 0 °C for a further 45 min. The mixture was poured onto ice, made basic with cNH₃ and extracted with DCM (3×100 mL). The solvent was evaporated to give a brown oil which was purified by chromatography on neutral Al₂O₃, eluting with a gradient (0–20%) of EtOAc/pet. ether, to give nitroacetamide 149 (1.49 g, 50%) as a yellow solid: mp EtOAc/pet. ether) 85–87 °C; ¹H NMR δ 10.43 (br s, 1 H, NH), 8.62 (s, 1 H, H-7), 8.03 (s, 1 H, H-4), 3.96 (s, 2 H, CH₂N), 3.92 (s, 2 H, CH₂N), 2.79 (q, *J* = 7.2 Hz, 2 H, CH₂N), 2.28 (s, 3 H, COCH₃), 1.21 (t, *J* = 7.2 Hz, 3 H, CH₃); HRMS calcd for C₁₂H₁₆N₃O₃ (MH⁺) *m/z* 250.1192, found 250.1195. Anal. Calcd for C₁₂H₁₅N₃O₃: C, 57.8; H, 6.0; N, 16.9. Found: C, 57.9; H, 5.9; N, 16.7%.

2-Ethyl-6-nitro-5-isoindolinamine (150). A mixture of nitroacetamide **149** (1.52 g, 6.1 mmol) and 5 M HCl (12 mL) was stirred at reflux temperature for 20 min. The suspension was diluted with water (40 mL), cooled to 0 °C, and made basic with cNH₃. The precipitate was filtered, washed with water and dried to give nitroaniline **150** (1.13 g, 89%) as a tan solid: mp 121–123 °C; ¹H NMR δ 7.94 (s, 1 H, H-7), 6.64 (s, 1 H, H-4), 6.06 (br s, 2 H, NH₂), 3.83 (br s, 2 H, CH₂N), 3.81 (br s, 2 H, CH₂N), 2.75 (q, *J* = 7.2 Hz, 2 H, CH₂N), 1.19 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C NMR δ 149.7, 144.6, 131.5, 130.0, 119.3, 111.7, 58.4, 57.3, 49.9, 13.9. Anal. Calcd for C₁₀H₁₃N₃O₂: C, 58.0; H, 6.2; N, 20.3. Found: C, 57.8; H, 6.2; N, 20.0%.

7-Ethyl-7,8-dihydro-6*H***-[1,2,4]triazino[5,6-***f***]isoindol-3-amine 1-Oxide (151). Method A.** Reaction of nitroaniline **150** (414 mg, 2.0 mmol) and cyanamide (336 mg, 8.0 mmol) gave 1-oxide **151** (404 mg, 87%) as a greenish-yellow solid: mp 218 °C; ¹H NMR [(CD₃)₂SO] δ 7.98 (s, 1 H, H-9), 7.38 (s, 1 H, H-5), 7.18 (s, 2 H, NH₂), 3.89 (s, 2 H, CH₂N), 3.86 (s, 2 H, CH₂N), 2.70 (q, *J* = 7.2 Hz, 2 H, CH₂N), 1.11 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C NMR [(CD₃)₂SO] δ 160.0, 149.8, 148.7, 138.5, 128.9, 118.2, 112.5, 57.5, 57.0, 49.0, 13.5. Anal. Calcd for C₁₁H₁₃N₅O: C, 57.1; H, 5.7; N, 30.3. Found: C, 57.1; H, 5.6; N, 30.3%.

7-Ethyl-7,8-dihydro-6*H***-[1,2,4]triazino**[**5,6-***f*]**isoindol-3-amine 1,4-Dioxide (31). Method D.** Oxidation of 1-oxide **151** (328 mg, 1.4 mmol) with CF₃CO₃H (ca. 10 mmol) gave 1,4-dioxide **31** (68 mg, 19%) as a red solid which was crystallised as the hydrochloride salt: mp (MeOH/DCM) 230 °C; ¹H NMR [(CD₃)₂SO] δ 11.84 (br s, 1 H, HCl), 8.27 (s, 1 H, H-9), 8.20 (s, 1 H, H-5), 8.14 (br s, 2 H, NH₂), 4.88–5.05 (m, 2 H, CH₂N), 4.50–4.73 (m, 2 H, CH₂N), 3.42 (q, *J* = 7.2 Hz, 2 H, CH₂N), 1.32 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C NMR [(CD₃)₂SO] δ 151.4, 143.0, 138.5, 134.0, 130.6, 115.6, 111.4, 56.5, 56.1, 49.1, 10.3; HRMS calcd for C₁₁H₁₄N₅O₂ (MH⁺) *m/z* 248.1148, found 248.1154.

N-Ethyl-7-methyl-6,7,8,9-tetrahydro[1,2,4]triazino[6,5-*g*]isoquinolin-3-amine 1,4-Dioxide (32).

2-Methyl-7-nitro-1,2,3,4-tetrahydroisoquinoline (153). Formic acid (9.4 mL, 250 mmol) was added dropwise to Ac₂O (19 mL, 202 mmol) at 0 °C. The solution was stirred at 50 °C for 45 min, then cooled to -18 °C, diluted with THF (100 mL) and a solution of 7-nitro-1,2,3,4-tetrahydroisoquinoline¹⁵ (152) (13.8 g, 5.0 mmol) in THF (100 mL) was added and stirred at -15 to -18 °C for 30 min. The solution was warmed to 20 °C, the solvent was evaporated and the residue was partitioned between saturated aqueous NaHCO₃ solution (250 mL) and EtOAc (250 mL). The aqueous fraction was extracted with EtOAc (3×250 mL), dried and the solvent evaporated. The residue was dissolved in THF (200 mL), cooled to 10 °C and BH₃·DMS solution (10 M, 19.4 mL, 194 mmol) was added. The solution was stirred at 20 °C for 1 h, diluted with MeOH (30 mL) and acidified with HCl solution (1 M, 45 mL). The solution was stirred at 40 °C for 15 min, the solvent evaporated and the residue partitioned between saturated aqueous NaHCO₃ solution (250 mL) and EtOAc (250 mL). The aqueous fraction was extracted with EtOAc $(3 \times 250 \text{ mL})$, dried and the solvent evaporated. The residue was purified by chromatography, eluting with a gradient (2-5%) of MeOH/DCM, to give isoquinoline **153** (13.9 g, 94%) as an orange solid: mp 51–54 °C (lit.¹⁶ mp 57 °C) ¹H NMR δ 8.09 (dd, J = 8.4, 2.3 Hz, 1 H, H-6), 7.95 (d, J = 2.3 Hz, 1 H, H-8), 7.37 (d, J = 8.4 Hz, 1 H, H-5), 4.27 (d, J = 16.1 Hz, 1 H, H-1), 3.94 (d, J = 16.1 Hz, 1 H, H-1), 3.23-3.34 (m, 2 H, CH₂),2.99–3.18 (m, 2 H, CH₂), 2.17 (s, 3 H, NCH₃); MS (APCI) *m/z* 193 (MH⁺, 100%).

N-(2-Methyl-1,2,3,4-tetrahydro-7-isoquinolinyl)acetamide (154). A solution of isoquinoline 153 (2.5 g, 13.0 mmol) in EtOH (200 mL) was stirred with Pd/C (5%, 200 mg) under H₂ (35 psi) for 4 h. The solution was filtered through Celite, washed with EtOH (50 mL) and the solvent was evaporated. The residue was dissolved in dioxane (50 mL), Ac₂O (2.7 mL, 28.6 mmol) was added and the solution stirred at 20 °C for 16 h. The solution (50 mL) and DCM (50 mL). The aqueous layer was extracted with DCM (4 × 125 mL), the combined organic fraction dried and the solvent evaporated. The residue was purified by chromatography, eluting with 5% MeOH/DCM, to give acetamide 154 (2.10 g, 77%) as a brown solid: mp 157–159 °C; ¹H NMR δ 7.29 (br s, 1 H, H-8), 7.27 (br s, 1 H, H-6), 7.22 (br s, 1 H, NH), 7.12 (br d, *J* = 8.1 Hz, 1 H, H-5), 4.18 (d, *J* = 16.2 Hz, 1 H, H-1), 3.82 (d, *J* = 16.1 Hz, 1 H, H-1), 3.11–3.25 (m, 2 H, H-3), 2.91–3.00 (m, 2 H, H-4), 2.61 (s, 3 H, NCH₃), 2.16 (s, 3 H, COCH₃); ¹³C NMR δ 168.3, 136.6, 131.0,

129.2, 126.6, 119.2, 118.1, 61.5, 56.6, 47.3, 24.5, 24.0; MS (APCI) *m/z* 205 (MH⁺, 100%). Anal. Calcd for C₁₂H₁₆N₂O·½CH₃OH·½H₂O: C, 65.5; H, 8.4; N, 12.2. Found: C, 65.8; H, 8.8; N, 12.6%.

Nitration of N-(2-Methyl-1,2,3,4-tetrahydro-7-isoquinolinyl)acetamide (154). A solution of KNO₃ (7.9 g, 78.4 mmol) in cH₂SO₄ (30 mL) was added dropwise to a stirred solution of acetamide 154 (14.6 g, 71.3 mmol) in cH₂SO₄ (200 mL) at 0 °C. The solution was stirred at 0 °C for 90 min, then poured into ice/water (1 L), the pH adjusted to 10 with cNH_3 and the mixture extracted with DCM (4 × 250 mL). The solvent was evaporated, the residue dissolved in HCl (5 M, 150 mL) and heated at reflux temperature for 3 h. The solution was cooled and partitioned between cNH_3 (70 mL) and DCM (250 mL). The aqueous layer was extracted with DCM (3×250 mL), the combined organic fraction dried and the solvent evaporated. The residue was purified by chromatography, eluting with a gradient (5-20%) of MeOH/DCM, to give (i) 2-methyl-8-nitro-1,2,3,4tetrahydro-7-isoquinolinamine (155) (4.75 g, 30%) as an orange solid: mp 122–123 °C; ¹H NMR δ 7.05 (d, J = 8.5 Hz, 1 H, H-6), 6.64 (d, J = 8.5 Hz, 1 H, H-5), 5.24 (br s, 2 H, NH_2 , 3.69 (s, 2 H, H-1), 2.84 (t, J = 6.0 Hz, 2 H, H-3), 2.66 (t, J = 6.0 Hz, 2 H, H-4), 2.46 (s, 3 H, NCH₃); ¹³C NMR δ 141.5, 134.5, 134.0, 131.6, 124.6, 116.6, 56.3, 51.9, 46.0, 28.7; MS (APCI) *m/z* 208 (MH⁺, 100%). Anal. Calcd for C₁₀H₁₃N₃O₂·¹/₄H₂O: C, 56.7; H, 6.4; N, 19.9. Found: C, 56.5; H, 6.8; N, 20.0%; and (ii) 2-methyl-6-nitro-1.2,3,4tetrahydro-7-isoquinolinamine (156) (6.07 g, 18%) as an orange solid: mp 171–172 °C; ¹H NMR δ 7.89 (s, 1 H, H-5), 6.46 (s, 1 H, H-8), 5.85 (br s, 2 H, NH₂), 3.50 (s, 2 H, H-1), 2.84 (t, J = 6.0 Hz, 2 H, H-3), 2.66 (t, J = 6.0 Hz, 2 H, H-4), 2.43 (s, 3 H, NCH₃); ¹³C NMR δ 144.0, 142.5, 131.4, 125.5, 123.5, 115.4, 57.7, 52.8, 45.8, 28.0; MS (APCI) *m/z* 208 (MH⁺, 100%). Anal. Calcd for C₁₀H₁₃N₃O₂: C, 58.0; H, 6.3; N, 20.3. Found: C, 57.9; H, 6.3; N, 20.4%.

7-Methyl-6,7,8,9-tetrahydro[**1,2,4**]**triazino**[**6,5-***g*]**isoquinolin-3-amine 1-Oxide** (**157**). **Method A.** Reaction of 6-nitroaniline **156** (2.30 g, 10.7 mmol) and cyanamide (2.00 g, 46.6 mmol) gave 1-oxide **157** (2.32 g, 90%) as a brown solid: mp 170–175 °C; ¹H NMR [(CD₃)₂SO] δ 7.90 (s, 1 H, H-10), 7.25 (s, 1 H, H-5), 7.15 (br s, 2 H, NH₂), 3.62 (s, 2 H, H-6), 2.96 (t, J = 5.9 Hz, 2 H, H-8), 2.62 (t, J = 5.9 Hz, 2 H, H-9), 2.35 (s, 3 H, NCH₃); ¹³C NMR δ 159.8, 146.8, 144.3, 132.0, 128.4, 121.9, 118.3, 57.3, 51.9, 45.4, 28.3; MS (APCI) *m*/*z* 232 (MH⁺, 100%). Anal. Calcd for C₁₁H₁₃N₅O·½H₂O: C, 55.0; H, 5.9; N, 29.1. Found: C, 55.6; H, 5.5; N, 28.7%.

3-Chloro-7-methyl-6,7,8,9-tetrahydro[1,2,4]triazino[6,5-*g*]isoquinoline 1-Oxide (158). Method B. Reaction of 1-oxide 157 (1.8 g, 7.8 mmol) and NaNO₂ (570 mg, 8.2 mmol), with subsequent chlorination with DMF/POCl₃, gave chloride 158 (1.55 g, 79%) as a yellow solid: mp 179 °C (dec.); ¹H NMR δ 8.17 (s, 1 H, H-10), 7.63 (s, 1 H, H-5), 3.80 (s, 2 H, H-6), 3.17 (t, *J* = 6.0 Hz, 2 H, H-8), 2.77 (t, *J* = 5.9 Hz, 2 H, H-9), 2.51 (s, 3 H, NCH₃); ¹³C NMR δ 156.2, 146.3, 145.5, 139.7, 128.0, 124.8, 119.0, 58.0, 52.0, 45.8, 29.7; MS (APCI) *m*/*z* 251 (MH⁺, 100%), 253 (MH⁺, 30%). Anal. Calcd for C₁₁H₁₁ClN₄O: C, 52.7; H, 4.4; N, 22.4; Cl, 14.1. Found: C, 52.7; H, 4.4; N, 22.3; Cl, 14.2%.

N-Ethyl-7-methyl-6,7,8,9-tetrahydro[1,2,4]triazino[6,5-*g*]isoquinolin-3-amine 1-Oxide (159). Method C. Reaction of chloride 158 (500 mg, 2.0 mmol) and ethylamine (0.4 mL, 6.0 mmol) in DME (15 mL) gave 1-oxide 159 (460 mg, 88%) as a yellow solid: mp 193–196 °C; ¹H NMR δ 8.03 (s, 1 H, H-10), 7.27 (s, 1 H, H-5), 5.07 (br s, 1 H, NH), 3.69 (s, 2 H, H-6), 3.53 (dq, J = 7.2, 5.8 Hz, 2 H, CH₂N), 3.05 (t, J = 6.0 Hz, 2 H, H-8), 2.72 (t, J = 6.0 Hz, 2 H, H-9), 2.48 (s, 3 H, NCH₃), 1.29 (t, J = 7.2 Hz, 3 H, CH₃); ¹³C NMR δ 158.6, 147.0, 144.4, 132.5, 129.6, 122.8, 119.3, 58.2, 52.6, 46.0, 36.3, 29.1, 14.8; MS (APCI) *m*/*z* 260 (MH⁺, 100%). Anal. Calcd for C₁₃H₁₇N₅O: C, 60.2; H, 6.6; N, 27.0. Found: C, 59.9; H, 6.6; N, 26.9%.

N-Ethyl-7-methyl-6,7,8,9-tetrahydro[1,2,4]triazino[6,5-*g*]isoquinolin-3-amine 1,4-Dioxide (32). Method D. Oxidation of 1-oxide 159 (440 mg, 1.7 mmol) with CF₃CO₃H (ca. 17 mmol) gave 1,4-dioxide 32 (35 mg, 8%) as a red solid: mp 120–124 °C; ¹H NMR δ 8.10 (s, 1 H, H-10), 7.96 (s, 1 H, H-5), 6.95 (br s, 1 H, NH), 3.78 (s, 2 H, H-6), 3.63 (dq, *J* = 7.2, 6.0 Hz, 2 H, CH₂N), 3.10 (t, *J* = 6.0 Hz, 2 H, H-8), 2.75 (t, *J* = 6.0 Hz, 2 H, H-9), 2.50 (s, 3 H, NCH₃), 1.36 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C NMR δ 149.3, 145.5, 136.5, 135.3, 129.3, 120.5, 113.9, 58.1, 52.1, 45.8, 36.5, 29.1, 14.8; MS (APCI) *m/z* 276 (MH⁺, 100%); HRMS calcd for C₁₃H₁₈N₅O₂ (MH⁺) *m/z* 276.1461, found 276.1456.

3-(7-Methyl-1,4-dioxido-7,8-dihydro-6*H*-indeno[5,6-*e*][1,2,4]triazin-3-yl)-1-propanol (33).

3-Iodo-7-methyl-7,8-dihydro-6*H***-indeno[5,6-***e***][1,2,4]triazine 1-Oxide (160).** *tert***-Butyl nitrite (2.5 mL, 18.6 mmol) was added a stirred mixture of 1-oxide 70** (1.30 g, 6.0 mmol), diiodomethane (4.8 mL, 60 mmol) and CuI (1.2 g, 6.3 mmol) in THF (50 mL) and the mixture stirred at reflux temperature for 3 h. The solution was cooled and the solvent evaporated. The residue was purified by chromatography, eluting with a gradient (20–50%) of EtOAc/pet. ether, to give iodide **160** (1.31 g, 67%) as a pale yellow solid: mp (EtOAc/pet. ether) 140–142 °C; ¹H NMR δ 8.15 (s, 1 H, H-9), 7.70 (s, 1 H, H-5), 3.20–3.30 (m, 2 H, CH₂), 2.65–2.79 (m, 3 H, H-7, CH₂), 1.20 (d, *J* = 6.4 Hz, 3 H, CH₃); ¹³C NMR δ 155.5, 149.9, 147.6, 133.4, 122.5, 121.7, 114.6, 41.3, 41.0, 35.0, 20.2. Anal. Calcd for C₁₁H₁₀IN₃O: C, 40.4; H, 3.1; N, 12.9. Found: C, 40.6; H, 3.0; N, 12.7%.

3-(7-Methyl-1-oxido-7,8-dihydro-6*H***-indeno[5,6-***e***][1,2,4]triazin-3-yl)propanal (161). Iodide 160 (1.53 g, 4.7 mmol) was added to a degassed solution of allyl alcohol (0.89 mL, 13.1 mmol), Pd(OAc)₂ (52 mg, 0.23 mmol), nBu₄NBr (1.35 g, 4.2 mmol) and NaHCO₃ (0.86 g, 10.3 mmol) in DMF (40 mL) and the solution was stirred at 50 °C for 24 h under N₂. The mixture was quenched with saturated aqueous NH₄Cl solution (50 mL) and filtered. The filtrate was extracted with EtOAc (5 × 50 mL), dried and the solvent evaporated. The residue was purified by chromatography, eluting with a gradient (20–50%) of EtOAc/pet. ether, to give (i) starting material 160 (0.86 g, 56%) and (ii) aldehyde 161 (426 mg, 37%) as an orange gum: ¹H NMR \delta 9.93 (s, 1 H, CHO), 8.21 (s, 1 H, H-9), 7.69 (s, 1 H, H-5), 3.35 (t,** *J* **= 7.0 Hz, 2 H, CH₂), 3.20–3.27 (m, 2 H, CH₂), 3.19 (br dd,** *J* **= 7.2, 6.7 Hz, 2 H, CH₂), 2.64–2.76 (m, 3 H, H-7, CH₂), 1.19 (d,** *J* **= 6.4 Hz, 3 H, CH₃); ¹³C NMR \delta 200.5, 163.9, 154.5, 148.7, 147.3, 132.4, 122.8, 114.4, 41.2, 40.9, 40.5, 35.0, 29.4, 20.2; MS** *m/z* **258 (MH⁺, 60%), 242 (10); HRMS calcd for C₁₄H₁₆N₃O₂ (MH⁺)** *m/z* **258.1243, found 258.1242.**

Reductive Amination of 3-(7-Methyl-1-oxido-7,8-dihydro-6H-indeno[5,6-

e][1,2,4]triazin-3-vl)propanal (161). Morpholine (0.64 mL, 7.3 mmol) was added to a solution of aldehyde **161** (0.47 g, 1.8 mmol) in EtOH (20 mL) at 0 °C and the solution stirred for 30 min. NaCNBH₃ (0.35 g, 5.5 mmol) was added and the mixture stirred at 0 °C for 30 min, then HOAc (0.5 mL) was added and the mixture stirred at 20 °C for 30 min. The solvent was evaporated and the residue partitioned between DCM and water, the organic phase was dried, the solvent evaporated and the residue purified by chromatography, eluting with a gradient (0-10%) of MeOH/EtOAc, to give (i) starting material 161 (83 mg, 17%) and (ii) 3-(7-methyl-1-oxido-7,8-dihydro-6H-indeno[5,6e][1,2,4]triazin-3-yl)propanol (162) (134 mg, 28%) as a white solid: mp (MeOH/EtOAc) 70–71 °C; ¹H NMR δ 8.21 (s, 1 H, H-9), 7.71 (s, 1 H, H-5), 3.78 (t, J = 6.1 Hz, 2 H, CH₂O), 3.20–3.28 (m, 2 H, CH₂), 3.15 (t, *J* = 7.2 Hz, 2 H, CH₂), 2.64–2.78 (m, 3 H, H-7, CH₂), 2.35 (br s, 1 H, OH), 2.12–2.19 (m, 2 H, CH₂), 1.19 (d, J = 6.4 Hz, 3 H, CH₃); ¹³C NMR 8 165.7, 154.6, 148.7, 147.3, 132.3, 122.6, 114.4, 62.1, 41.2, 40.9, 35.0, 30.6, 24.7, 20.2. Anal. Calcd for C₁₄H₁₇N₃O₂·¹/₄H₂O: C, 63.7; H, 6.7; N, 15.9. Found: C, 63.7; H, 6.6; N, 15.9%; and (iii) 7-methyl-3-[3-(4-morpholinyl)propyl]-7,8-dihydro-6Hindeno[5,6-e][1,2,4]triazine 1-oxide (163) (331 mg, 55%) as a yellow gum: ¹H NMR δ 8.22 (s, 1 H, H-9), 7.70 (s, 1 H, H-5), 3.60 (br t, J = 4.7 Hz, 4 H, 2 × CH₂O), 3.21–3.28 (m, 2 H, CH₂), 3.05 (br t, J = 7.4 Hz, 2 H, CH₂), 2.65–2.77 (m, 3 H, H-7, CH₂), 2.47–2.54 (m, 6 H, $3 \times CH_2N$), 2.11 (p, J = 7.3 Hz, 2 H, CH₂), 1.19 (d, J = 6.4 Hz, 3 H, CH₃); ¹³C NMR 8 165.7, 154.4, 148.5, 147.5, 132.3, 122.7, 114.4, 66.7 (2), 55.1, 53.5 (2), 41.2, 40.9, 35.2, 35.0, 24.7, 20.2; MS m/z 392 (MH⁺, 100%), 311 (20); HRMS calcd for C₁₈H₂₅N₄O₂ (MH⁺) *m/z* 329.1978, found 329.1978.

3-(7-Methyl-1,4-dioxido-7,8-dihydro-6*H***-indeno[5,6-***e***][1,2,4]triazin-3-yl)-1-propanol (33). Method D. Oxidation of 1-oxide 162 (130 mg, 0.5 mmol) with CF₃CO₃H (ca. 5 mmol) gave 1,4-dioxide 33 (68 mg, 49%) as a red solid: mp (EtOAc/pet. ether) 130–131 °C; ¹H NMR \delta 8.30 (s, 1 H, H-9), 8.22 (s, 1 H, H-5), 3.69 (br t,** *J* **= 5.8 Hz, 2 H, CH₂O), 3.24–3.35 (m, 4 H, 2 × CH₂), 3.10 (br s, 1 H, OH), 2.68–2.83 (m, 3 H, H-7, CH₂), 2.10–2.17 (m, 2 H, CH₂), 1.21 (d,** *J* **= 6.5 Hz, 3 H, CH₃); ¹³C NMR \delta 155.2, 155.0, 150.5,**

138.9, 134.0, 115.9, 114.2, 61.2, 41.4, 40.9, 34.9, 29.6, 26.8, 20.1. Anal. Calcd for C₁₄H₁₇N₃O₃: C, 61.1; H, 6.2; N, 15.3. Found: C, 61.4; H, 6.3; N, 15.0%.

7-Methyl-3-[3-(4-morpholinyl)propyl]-7,8-dihydro-6*H***-indeno[5,6-***e***][1,2,4]triazine 1,4-Dioxide (34). Method D.** Oxidation of 1-oxide **163** (320 mg, 1.0 mmol) with CF₃CO₃H (ca. 10 mmol) gave 1,4-dioxide **34** (148 mg, 44%) as a red solid: mp (MeOH/DCM) 119–121 °C; ¹H NMR δ 8.27 (s, 1 H, H-9), 8.23 (s, 1 H, H-5), 3.45 (br t, *J* = 4.5 Hz, 4 H, 2 × CH₂O), 3.21–3.33 (m, 4 H, 2 × CH₂), 2.68–2.81 (m, 3 H, H-7, CH₂), 2.48 (t, *J* = 6.5 Hz, 2 H, CH₂N), 2.37 (br t, *J* = 4.5 Hz, 4 H, 2 × CH₂N), 2.06–2.13 (m, 2 H, CH₂), 1.20 (d, *J* = 6.4 Hz, 3 H, CH₃); ¹³C NMR δ 155.2, 154.7, 150.2, 139.1, 133.8, 115.9, 113.9, 67.0 (2), 58.0, 53.5 (2), 41.4, 40.8, 35.0, 28.8, 21.8, 20.1. Anal. Calcd for C₁₈H₂₄N₄O₃·¹/₄CH₃OH: C, 62.2; H, 7.2; N, 15.9. Found: C, 62.3; H, 7.0; N, 16.0%.

5-Nitro-2-indanecarboxylic Acid (164). Diethyl malonate (9.10 mL, 60 mmol) was added to a stirred suspension of NaH (60% in oil, 3.02 g, 126 mmol) in dry Et₂O (500 mL) at 20 °C under N₂ and the mixture was stirred for 30 min. 1,2-Bis(bromomethyl)-4-nitrobenzene (**146**) (18.5 g, 60 mmol) was added and the mixture was stirred at 20 °C for 24 h. The reaction was diluted with EtOAc (200 mL) and washed with 1 M HCl. The solvent was evaporated to give a brown oil that was treated with 2 M NaOH (100 mL) in EtOH (100 mL) at 20 °C for 15 h. Most of the solvent was evaporated and DCM (300 mL) was added and the mixture was acidified with 1 M HCl. The organic fraction was dried and the solvent evaporated to give a brown solid that was suspended in xylene (200 mL) and stirred at reflux temperature for 90 min. The solvent was evaporated to give a brown oil which was purified by chromatography, eluting with a gradient (0–20%) of EtOAc/pet. ether, to give acid **164** (2.44 g, 20%) as a pale yellow solid: mp (EtOAc/pet.

ether) 115–117 °C; ¹H NMR δ 9.10 (br s, 1 H, CO₂H), 8.06–8.11 (m, 2 H, H-4, H-6), 7.36 (d, *J* = 9.0 Hz, 1 H, H-7), 3.30–3.56 (m, 5 H, H-1, H-2, H-3); ¹³C NMR δ 180.0, 149.0, 147.6, 143.1, 124.8, 122.7, 119.6, 43.3, 35.9, 35.7. Anal. Calcd for C₁₀H₉NO₄: C, 58.0; H, 4.4; N, 6.8. Found: C, 58.2; H, 4.5; N, 6.8%.

(5-Nitro-2,3-dihydro-1*H*-inden-2-yl)methanol (165). BH₃·DMS (10 M, 1.30 mL, 13.0 mmol) was added to a stirred solution of acid 164 (2.07 g, 10.0 mmol) in dry THF (30 mL) at 20 °C under N₂ and the mixture was stirred at 20 °C for 30 min. The reaction was quenched with MeOH and the solvent evaporated to give a brown oil which was purified by chromatography, eluting with a gradient (0–20%) of EtOAc/pet. ether, to give alcohol 165 (1.13 g, 59%) as an oil: ¹H NMR δ 8.01–8.07 (m, 2 H, H-4, H-6), 7.32 (d, *J* = 8.0 Hz, 1 H, H-7), 3.68 (d, *J* = 5.8 Hz, 2 H, CH₂O), 3.09–3.20 (m, 2 H, CH₂), 2.76–2.91 (m, 3 H, CH₂, CH), OH not observed; HRMS (EI⁺) calcd for C₁₀H₁₁NO₃ (M⁺) *m/z* 193.0739, found 193.0733.

[5-(Acetylamino)-2,3-dihydro-1*H*-inden-2-yl]methyl Acetate (166). A solution of nitroindane 165 (0.54 g, 2.77 mmol) in MeOH (70 mL) and 5% Pd/C (100 mg) was stirred under H₂ (60 psi) for 16 h. The mixture was filtered through Celite, washed with MeOH and the solvent evaporated to give the corresponding aniline derivative, which was treated with Ac₂O (5 mL, 53.0 mmol) and Et₃N (5 mL, 36.0 mmol) in DCM (50 mL) at 20 °C for 28 h. The mixture was partitioned between EtOAc and water, and the organic fraction was washed with water, dried and the solvent evaporated to give a brown oil which was purified by chromatography, eluting with a gradient (30–50%) of EtOAc/pet. ether, to give acetate 166 (0.38 g, 56%) as an oil: ¹H NMR δ 7.44 (s, 1 H, H-4), 7.26 (br s, 1 H, NH), 7.09–7.17 (m, 2 H, H-6, H-7), 4.08 (d, *J* = 7.0 Hz, 2 H, CH₂O), 2.99–3.09 (m, 2 H, CH₂), 2.65–2.87 (m, 3 H, CH, CH₂), 2.16 (s, 3 H, COCH₃) 2.06 (s, 3 H, CH₃); ¹³C NMR δ 171.2, 168.2, 143.3, 138.4, 136.4, 124.7, 118.5, 116.7, 67.5, 38.5, 36.0, 35.4, 24.5, 20.9; HRMS (EI⁺) calcd for C₁₄H₁₇NO₃ (M⁺) *m/z* 247.1208, found 247.1204.

[5-(Acetylamino)-6-nitro-2,3-dihydro-1*H*-inden-2-yl]methyl Acetate (167). cHNO₃ (70%, 3.0 mL, 33 mmol) was added dropwise (over 20 min) to a stirred solution of 166 (1.45 g, 5.9 mmol) in TFA (30 mL) at 20 °C and the reaction mixture stirred for 15 min at 20 °C. The mixture was poured into ice/water (300 mL), stirred 30 min and extracted with DCM (3×100 mL). Evaporation of the solvent gave crude acetate 167 (1.60 g, 94%), containing ca. 8% of the 4-nitro isomer which was removed by recrystallisation from ether, to give acetate 167 as a tan solid: mp (ether) 106–107 °C; ¹H NMR δ 10.36 (br s, 1 H, NH), 8.58 (s, 1 H, H-7), 8.03 (s, 1 H, H-4), 4.05–4.13 (m, 2 H, CH₂O), 3.06–3.22 (m, 2 H, CH₂), 2.73–2.94 (m, 3 H, CH₂, CH), 2.27 (s, 3 H, COCH₃), 2.06 (s, 3 H, COCH₃); ¹³C NMR δ 171.0, 169.0, 152.3, 137.9, 135.5, 134.0, 121.4, 117.8, 66.7, 38.5, 36.5, 35.1, 25.6, 20.8. Anal. Calcd for C₁₄H₁₆N₂O₅: C, 57.5; H, 5.5; N, 9.6. Found: C, 57.7; H, 5.4; N, 9.7%.

(5-Amino-6-nitro-2,3-dihydro-1*H*-inden-2-yl)methanol (168). A mixture of acetate 167 (5.60 g, 19.2 mmol) and 5 M HCl (80 mL) in MeOH (80 mL) was stirred at reflux temperature for 30 min. The solvent was evaporated to give the hydrochloride salt of 168

(4.42 g, 94%) as an orange solid: mp (MeOH) 143–145 °C; ¹H NMR [(CD₃)₂SO] δ 7.73 (s, 1 H, H-7), 7.43 (br s, 4 H, NH₂, OH, HCl), 6.84 (s, 1 H, H-4), 3.31–3.38 (m, 2 H, CH₂O), 2.77–2.90 (m, 2 H, CH₂), 2.44–2.64 (m, 3 H, CH₂, CH); ¹³C NMR [(CD₃)₂SO] δ 153.2, 145.7 131.4, 129.1, 119.8, 113.7, 63.8, 41.5, 35.2, 33.6; HRMS (EI⁺) calcd for C₁₀H₁₂N₂O₃ (M⁺) *m/z* 208.0848, found 208.0850. Anal. Calcd for C₁₀H₁₂N₂O₃·HCl: C, 49.1; H, 5.4; N, 11.5. Found: C, 49.4; H, 5.4; N, 11.5%.

(3-Amino-1-oxido-7,8-dihydro-6*H*-indeno[5,6-*e*][1,2,4]triazin-7-yl)methanol (169). Method A. Reaction of nitroaniline 168 (4.43 g, 17.8 mmol) and cyanamide (3.51 g, 83.6 mmol) gave 1-oxide 169 (3.67 g, 89%) as a green-yellow solid: mp (DCM/MeOH) 255–257 °C; ¹H NMR [(CD₃)₂SO] δ 7.93 (s, 1 H, H-9), 7.33 (s, 1 H, H-5), 7.10 (s, 2 H, NH₂), 4.67 (t, *J* = 5.2 Hz, 1 H, OH), 3.40 (dd, *J* = 6.5 Hz, 5.2 Hz, 2 H, CH₂O), 2.99–3.10 (m, 2 H, CH₂), 2.73–2.85 (m, 2 H, CH₂), 2.52–2.63 (m, 1 H, CH); ¹³C NMR [(CD₃)₂SO] δ 159.9, 153.5, 148.6, 141.9, 128.8, 120.1, 114.1, 63.7, 41.6, 35.3, 34.6. Anal. Calcd for C₁₁H₁₂N₄O₂·¹/₄CH₃OH: C, 56.2; H, 5.5; N, 23.3. Found: C, 56.7; H, 5.4; N, 23.2%.

7-({[tert-Butyl(dimethyl)silyl]oxy}methyl)-7,8-dihydro-6H-indeno[5,6-

e][1,2,4]triazin-3-amine 1-Oxide (170). iPr₂NEt (22.1 mL, 127 mmol) was added dropwise (over 30 min) to a mixture of alcohol 169 (8.56 g, 37 mmol) and TBDMSCl (8.34 g, 55 mmol) in DMF (100 mL) at 20 °C and the mixture was stirred at 20 °C for 1 h. The solvent was evaporated, the residue suspended in water (400 mL) and stirred at 0 °C for 1 h. The solid was filtered, washed with water (3×50 mL) and dried to give silylether 170 (12.10 g, 94%): mp (MeOH/EtOAc) 169–171 °C; ¹H NMR [(CD₃)₂SO] δ 7.93 (s, 1 H, H-9), 7.34 (s, 1 H, H-5), 7.10 (s, 2 H, NH₂), 3.55–3.63 (m, 2 H, CH₂O), 3.20–3.12 (m, 2 H, CH₂), 2.72–2.84 (m, 2 H, CH₂), 2.58–2.68 (m, 1 H, H-7), 0.83 [s, 9 H, SiC(CH₃)₃], 0.02 [s, 6 H, Si(CH₃)₂]; ¹³C NMR [(CD₃)₂SO] δ 159.8, 153.2, 148.6, 141.6, 128.7, 120.1, 114.1, 65.2, 41.3, 35.1, 34.3, 25.6 (3), 17.8, -5.52 (2). Anal. Calcd for C₁₇H₂₆N₄O₂Si: C, 58.9; H, 7.6; N, 16.2. Found: C, 58.7; H, 7.6; N, 16.6%.

7-({[tert-Butyl(dimethyl)silyl]oxy}methyl)-3-iodo-7,8-dihydro-6H-indeno[5,6e][1,2,4]triazine 1-Oxide (171) and 7-({[tert-Butyl(dimethyl)silyl]oxy}methyl)-7,8dihydro-6H-indeno[5,6-e][1,2,4]triazine 1-Oxide (172). tert-Butyl nitrite (3.26 mL, 27.4 mmol) was added to a stirred suspension of amine 170 (2.82 g, 8.2 mmol) in THF (100 mL) at 20 °C and the mixture stirred for 5 min. Diiodomethane (3.26 mL, 40 mmol) and CuI (164 mg, 0.8 mmol) were added and the mixture was stirred at reflux temperature for 95 min. The mixture was cooled and partitioned between EtOAc and water. The organic solution was dried and the solvent evaporated to give a brown oil which was purified by chromatography, eluting with a gradient (0-10%) of EtOAc/pet. ether, to give (i) iodide 171 (2.27 g, 61%) as a yellow solid: mp (EtOAc/pet. ether) 108-109 °C; ¹H NMR δ 8.15 (s, 1 H, H-9), 7.70 (s, 1 H, H-5), 3.59–3.67 (m, 2 H, CH₂O), 3.13-3.25 (m, 2 H, CH₂), 2.93-3.05 (m, 2 H, CH₂), 2.73-2.84 (m, 1 H, H-7), 0.86 [s, 9 H, SiC(CH₃)₃], 0.04 [s, 6 H, Si(CH₃)₂]; ¹³C NMR δ 155.2, 149.6, 147.6, 133.5, 122.5, 121.7, 114.6, 65.3, 41.9, 36.0, 35.7, 25.8 (3), 18.2, -5.43 (2). Anal. Calcd for C₁₇H₂₄IN₃O₂Si: C, 44.6; H, 5.3; N, 9.2. Found: C, 45.1; H, 5.4; N, 9.2%; and (ii) 1-oxide **172** (0.32 g, 12%) as a yellow solid: mp (EtOAc/pet. ether) 120–122 °C; ¹H NMR δ 8.91 (s, 1 H, H-3), 8.26 (s, 1 H, H-9), 7.80 (s, 1 H, H-5), 3.61–3.69 (m, 2 H, CH₂O), 3.16–3.27 (m, 2 H, CH₂),

2.96–3.07 (m, 2 H, CH₂), 2.74–2.85 (m, 1 H, H-7), 0.86 [s, 9 H, SiC(CH₃)₃], 0.04 [s, 6 H, Si(CH₃)₂]; ¹³C NMR δ 154.2, 153.0, 149.4, 147.3, 134.6, 123.4, 114.6, 65.3, 41.9, 35.9, 35.6, 25.8 (3), 18.2, -5.43 (2). Anal. Calcd for C₁₇H₂₅N₃O₂Si·¹/₄H₂O: C, 60.8; H, 7.7; N, 12.5. Found: C, 60.8; H, 7.4; N, 12.5%.

7-({[*tert***-Butyl(dimethyl)silyl]oxy}methyl)-3-ethyl-7,8-dihydro-6***H***-indeno[5,6***e***][1,2,4]triazine 1-Oxide (173). Method E. Stille coupling of iodide 171 (2.27 g, 5.0 mmol) and Et₄Sn (1.47 mL, 7.5 mmol) with Pd(PPh₃)₄ (154 mg, 1.0 mmol) gave 1-oxide 173 (1.57 g, 88%) as a yellow solid: mp (EtOAc/pet. ether) 63–65 °C; ¹H NMR \delta 8.23 (s, 1 H, H-9), 7.72 (s, 1 H, H-5), 3.59–3.66 (m, 2 H, CH₂O), 3.14–3.24 (m, 2 H, CH₂), 2.92–3.06 (m, 4 H, H-6, H-8), 2.72–2.83 (m, 1 H, H-7), 1.43 (t,** *J* **= 7.5 Hz, 3 H, CH₃), 0.87 [s, 9 H, SiC(CH₃)₃], 0.04 [s, 6 H, Si(CH₃)₂]. Anal. Calcd for C₁₉H₂₉N₃O₂Si: C, 63.5; H, 8.1; N, 11.7. Found: C, 63.3; H, 8.2; N, 11.4%.**

(3-Ethyl-1,4-dioxido-7,8-dihydro-6*H*-indeno[5,6-*e*][1,2,4]triazin-7-yl)methanol (35). Method D. Oxidation of 1-oxide 173 (273 mg, 0.76 mmol) with CF₃CO₃H (ca. 30 mmol) gave 1,4-dioxide 35 (35 mg, 18%) as a yellow solid: mp (MeOH/DCM) 157–158 °C; ¹H NMR δ 8.31 (s, 1 H, H-9), 8.26 (s, 1 H, H-5), 3.72 (br d, *J* = 5.8 Hz, 2 H, CH₂O), 3.25–3.35 (m, 2 H, CH₂), 3.20 (q, *J* = 7.5 Hz, 2 H, CH₂), 3.00–3.10 (m, 2 H, CH₂), 2.81–2.92 (m, 1 H, H-7), 1.43 (t, *J* = 7.5 Hz, 3 H, CH₃), OH not observed; HRMS (EI⁺) calcd for C₁₃H₁₅N₃O₃ (M⁺) *m*/z 261.1113, found 261.1115. Anal. Calcd for C₁₃H₁₅N₃O₃: C, 59.8; H, 5.8; N,16.1. Found: C, 59.6; H, 5.9; N, 15.9%.

Alternative Preparation of [5-(Acetylamino)-6-nitro-2,3-dihydro-1*H*-inden-2-yl]methyl Acetate (167).

2-Indanecarboxylic Acid (175). A mixture of 2-indanecarbonitrile¹⁷ (**174**) (55.1 g, 385 mmol), cHCl (100 mL) and dioxane (500 mL) was stirred at 60–70 °C for 41 h. The mixture was cooled and dioxane evaporated to give a residue, which was suspended in 1 M HCl (300 mL) and stirred at 20 °C for 15 h. The solid was filtered, washed with water and dried to give acid **175** (54.1 g, 87%) as a white solid: mp (EtOAc/pet. ether) 128 °C (lit.¹⁸ mp 130.2 °C); ¹H NMR δ 10.50 (br s, 1 H, CO₂H), 7.14–7.25 (m, 4 H, H-4, H-5, H-6, H-7), 3.21–3.43 (m, 5 H, H-1, H-2, H-3).

Nitration of 2-Indanecarboxylic Acid (175). 70% HNO_3 (46 mL, 798 mmol) was added dropwise (over 2 h 40 min) to a stirred solution of acid **175** (21.6 g, 133 mmol) in TFA (240 mL) at 0 °C and the solution stirred at 0 °C for 2 h 30 min. The mixture was poured onto ice (1.5 L) and stirred for 30 min. The mixture was extracted with DCM (3 ×

200 mL), the combined organic fraction dried and the solvent evaporated. The residue was purified by chromatography, eluting with a gradient (0–30%) of EtOAc/pet. ether, to give a mixture (2.2:1 ratio) of 5-nitro-2-indanecarboxylic acid (**164**) and 4-nitro-2-indanecarboxylic acid (**176**) isomers (23.4 g, 85%) as a yellow solid. Chromatography of a small sample gave (i) 5-nitro-2-acid **164** as a yellow solid: spectroscopically identical to that prepared above; and (ii) 4-nitro-2-acid **176** as needles: mp (EtOAc/pet. ether) 151–153 °C; ¹H NMR δ 8.04 (dd, *J* = 8.2 Hz, 0.6 Hz, 1 H, H-5), 7.52 (dd, *J* = 7.4 Hz, 0.6 Hz, 1 H, H-7), 7.36 (br t, *J* = 7.8 Hz, 1 H, H-6), 3.72–3.86 (m, 2 H, H-3), 3.31–3.52 (m, 3 H, H-1, H-2), CO₂H not observed. Anal. Calcd for C₁₀H₉NO₄: C, 58.0; H, 4.4; N, 6.8. Found: C, 58.1; H, 4.4; N, 6.8%.

Reduction of 5-Nitro and 4-Nitro-2-indanecarboxylic Acids (164) and (176).

BH₃·DMS (10 M, 14.7 mL, 147 mmol) was added dropwise (over 20 min) to a stirred solution of acids **164** and **176** (ratio 2.2:1) (23.4 g, 113 mmol) in THF (150 mL) at 20 °C under N₂ and the solution was stirred for 90 min. The reaction was quenched with MeOH (150 mL) and the solvent evaporated. The residue was purified by chromatography, eluting with a gradient (10–30%) of EtOAc/pet. ether, to give a mixture (2.0:1 ratio) of (5-nitro-2,3-dihydro-1*H*-inden-2-yl)methanol (**165**) and (4-nitro-2,3-dihydro-1*H*-inden-2-yl)methanol (**167**) (20.9 g, 96%) as an oil which was used without further purification.

[5-(Acetylamino)-6-nitro-2,3-dihydro-1*H*-inden-2-yl]methyl Acetate (167). A solution of nitroindanes 165 and 177 (20.9 g, 109 mmol) in MeOH (200 mL) in two batches were stirred with 5% Pd/C (500 mg) under H₂ (60 psi) for 16 h. The mixtures were combined and filtered through Celite, washed with MeOH and the solvent evaporated to give the corresponding aniline derivative, which was treated with Ac₂O (103 mL, 1.09 mol) and Et₃N (182 mL, 1.31 mol) in DCM (400 mL) at 20 °C for 25 h. The solvent was evaporated and the residue partitioned between EtOAc and water. The organic fraction was washed with water, dried and the solvent evaporated. The residue was dissolved in TFA (200 mL) and 70% HNO₃ (20 mL, 222 mmol) was added dropwise (over 1 h) at 0 °C and the reaction mixture was stirred at 20 °C for a further 30 min. The mixture was poured into ice/water (800 mL) and extracted with DCM (3 × 200 mL). The combined organic fraction was dried and the solvent evaporated. The residue was purified by chromatography, eluting with a gradient (0–25%) of EtOAc/pet. ether, to give acetate 167 (16.5 g, 52%) as a tan solid: spectroscopically identical to the sample prepared above.

3-Ethyl-7-(4-morpholinylmethyl)-7,8-dihydro-6*H*-indeno[5,6-*e*][1,2,4]triazine 1,4-Dioxide (36).

(3-Ethyl-1-oxido-7,8-dihydro-6*H*-indeno[5,6-*e*][1,2,4]triazin-7-yl)methanol (178). A solution of silylether 173 (1.57 g, 4.37 mmol), and 1 N HCl (5 mL) in MeOH (40 mL) was stirred at 20 °C for 1 h. The solution was partitioned between EtOAc and water. The organic layer was dried, the solvent evaporated and the residue was purified by chromatography, eluting with a gradient (0–2%) of MeOH/DCM, to give alcohol 178 (0.84 g, 79%) as a yellow solid: mp (MeOH/EtOAc) 122–123 °C; ¹H NMR [(CD₃)₂SO] δ 8.13 (s, 1 H, H-9), 7.77 (s, 1 H, H-5), 4.71 (t, *J* = 5.2 Hz, 1 H, OH), 3.42 (dd, *J* = 6.4 Hz, 5.2 Hz, 2 H, CH₂O), 3.11–3.20 (m, 2 H, CH₂), 2.86–2.96 (m, 4 H, CH₂), 2.59–2.71 (m, 1 H, H-7), 1.32 (t, *J* = 7.5 Hz, 3 H, CH₃); ¹³C NMR [(CD₃)₂SO] δ 165.9, 153.9, 148.1, 146.8, 131.6, 122.5, 113.8, 63.5, 41.6, 35.3, 35.0, 29.6, 11.8. Anal. Calcd for C₁₃H₁₅N₃O₂: C, 63.7; H, 6.2; N, 17.1. Found: C, 63.9; H, 6.2; N, 17.4%.

3-Ethyl-7-(4-morpholinylmethyl)-7,8-dihydro-6H-indeno[5,6-e][1,2,4]triazine 1-

Oxide (179). Methanesulfonyl chloride (0.14 mL, 1.7 mmol) was added dropwise to a stirred solution of alcohol 178 (347 mg, 1.4 mmol) and iPr₂NEt (0.49 mL, 2.8 mmol) in DCM (25 mL) at 0 °C, and the solution was stirred at 0 °C for 1 h. Water (25 mL) was added and the mixture extracted with EtOAc (3×30 mL). The organic fraction was washed with dilute Na₂CO₃ solution (25 mL) and water (25 mL). The organic solution was dried and the solvent evaporated to give a vellow solid, which was treated with morpholine (0.37 mL, 4.3 mmol) in DMF (10 mL) at 100-110 °C for 10 h. The solution was diluted with EtOAc (200 mL) and washed with Na₂CO₃ solution (50 mL) and water (30 mL). The organic solution was dried and the solvent evaporated. The residue was purified by chromatography, eluting with a gradient (50–70%) of EtOAc/pet. ether, to give 1-oxide **179** (398 mg, 89%) as a pale yellow solid: mp (EtOAc) 111–112 °C; ¹H NMR δ 8.24 (s, 1 H, H-9), 7.73 (s, 1 H, H-5), 3.73 (t, J = 4.6 Hz, 4 H, 2 × CH₂O), 3.19– $3.29 (m, 2 H, CH_2), 3.02 (q, J = 7.6 Hz, 2 H, CH_2), 2.88-2.99 (m, 2 H, CH_2), 2.77-2.88$ (m, 1 H, H-7), 2.47 (t, J = 4.6 Hz, 4 H, 2 × CH₂N), 2.38 (d, J = 7.6 Hz, 2 H, CH₂), 1.43 (t, J = 7.6 Hz, 3 H, CH₃); ¹³C NMR δ 167.1, 153.6, 147.7, 147.6, 132.3, 123.1, 114.7, 67.0 (2), 63.3, 53.9 (2), 37.6, 37.3, 36.7, 30.6, 12.3. Anal. Calcd for C₁₇H₂₂N₄O₂: C, 65.0; H, 7.1; N, 17.8. Found: C, 64.9; H, 7.1; N, 17.9%.

3-Ethyl-7-(4-morpholinylmethyl)-7,8-dihydro-*6H***-indeno[5,6-***e***][1,2,4**]**triazine 1,4-Dioxide (36). Method D.** Oxidation of 1-oxide **179** (503 mg, 1.6 mmol) with CF₃CO₃H (ca 16 mmol) gave 1,4-dioxide **36** (87 mg, 21%) as a yellow solid: mp (MeOH/DCM) 164–165 °C; ¹H NMR δ 8.31 (s, 1 H, H-9), 8.25 (s, 1 H, H-5), 3.72 (t, *J* = 4.6 Hz, 4 H, 2 × CH₂O), 3.17–3.34 (m, 4 H, CH₂), 2.80–2.95 (m, 3 H, CH₂, H-7), 2.45 (t, *J* = 4.6 Hz, 4 H, 2 + 2 × CH₂N), 2.38 (d, *J* = 7.7 Hz, 2 H, CH₂), 1.43 (t, *J* = 7.5 Hz, 3 H, CH₃); ¹³C NMR δ 155.7, 154.1, 149.5, 139.2, 134.0, 116.3, 114.3, 67.0 (2), 63.1, 53.9 (2), 37.7, 37.2, 36.6, 23.8, 9.2. Anal. Calcd for C₁₇H₂₂N₄O₃: C, 61.8; H, 6.7; N, 17.0. Found: C, 62.1; H, 6.7; N, 16.8%.

{3-[3-(4-Morpholinyl)propyl]-1-oxido-7,8-dihydro-6*H*-indeno[5,6-*e*][1,2,4]triazin-7-yl}methanol (37).

3-Allyl-7-({[*tert*-butyl(dimethyl)silyl]oxy}methyl)-7,8-dihydro-6*H*-indeno[5,6*e*][1,2,4]triazine 1-Oxide (180). Method E. Stille coupling of iodide 171 (5.88 g, 12.9 mmol) and allyltributyltin (4.35 mL, 14.1 mmol) with Pd(PPh₃)₄ (0.72 g, 0.64 mmol) gave alkene 180 (4.75 g, 99%) as a yellow solid: mp (EtOAc/pet. ether) 49–52 °C; ¹H NMR δ 8.23 (s, 1 H, H-9), 7.74 (s, 1 H, H-5), 6.17–6.24 (m, 1 H, CH), 5.20–5.34 (m, 2 H, CH₂), 3.75–3.80 (m, 2 H, CH₂), 3.59–3.67 (m, 2 H, CH₂O), 3.13–3.25 (m, 2 H, CH₂), 2.92–3.04 (m, 2 H, CH₂), 2.72–2.84 (m, 1 H, H-7), 0.87 [s, 9 H, SiC(CH₃)₃], 0.04 [s, 6 H, Si(CH₃)₂]; ¹³C NMR δ 164.1, 154.1, 148.3, 147.6, 133.0, 132.4, 123.0, 118.2, 114.5, 65.4, 42.0, 41.7, 35.8, 35.5, 25.8 (3), 18.3, -5.41 (2); HRMS calcd for C₂₀H₃₀N₃O₂Si (MH⁺) *m/z* 372.2107, found 372.2110. Anal. Calcd for C₂₀H₂₉N₃O₂Si·¹/4H₂O: C, 63.9; H, 7.9; N, 11.2. Found: C, 63.9; H, 7.7; N, 10.8%.

3-[7-({[tert-Butyl(dimethyl)silyl]oxy}methyl)-1-oxido-7.8-dihydro-6H-indeno[5.6e][1,2,4]triazin-3-yl]-1-propanol (181). A solution of 9-BBN (0.5 M, 32.5 mL, 16.3 mmol) in THF was added to a stirred solution of alkene 180 (4.02 g, 10.8 mmol) in THF (50 mL) at 20 °C under N₂ and the mixture was stirred at 20 °C for 30 min. The mixture was cooled to 0 °C, a solution of sodium acetate (3 M, 25 mL, 75 mmol) and then H_2O_2 (70%, 25 mL, 468 mmol) were added carefully and stirred for 10 min. MeOH (100 mL) was added and the mixture stirred at 20 °C for 20 min. The mixture was partitioned between aqueous Na₂CO₃ solution and EtOAc. The combined organic fraction was dried and the solvent evaporated. The residue was purified by chromatography, using a gradient (50-70%) of EtOAc/pet. ether, to give alcohol 181 (2.08 g, 49%) as a pale vellow solid: mp (EtOAc/pet. ether) 93–94 °C; ¹H NMR δ 8.22 (s, 1 H, H-9), 7.72 (s, 1 H, H-5), 3.79 (br q, J = 5.1 Hz, 2 H, CH₂O), 3.59–3.67 (m, 2 H, CH₂OSi), 3.12–3.24 (m, 4 H, CH₂), 2.93–3.03 (m, 2 H, CH₂), 2.73–2.84 (m, 1 H, H-7), 2.30 (br s, 1 H, OH), 2.11– 2.21 (m, 2 H, CH₂), 0.87 [s, 9 H, SiC(CH₃)₃], 0.04 [s, 6 H, Si(CH₃)₂]; ¹³C NMR δ 165.7, 154.2, 148.3, 147.3, 132.3, 122.8, 114.5, 65.4, 62.2, 42.0, 35.8, 35.5, 34.0, 30.6, 25.8 (3), 18.3, -5.41 (2). Anal. Calcd for C₂₀H₃₁N₃O₃Si·¹/₄H₂O: C, 61.7; H, 8.0; N, 10.8. Found: C, 61.5; H, 7.8; N, 10.9%.

7-({[*tert***-Butyl(dimethyl)silyl]oxy}methyl)-3-[3-(4-morpholinyl)propyl]-7,8-dihydro-6H-indeno[5,6-e][1,2,4]triazine 1-Oxide (182).** Methanesulfonyl chloride (54 μL, 1.3 mmol) was added dropwise to a stirred solution of alcohol **181** (467 mg, 1.2 mmol), and iPr₂NEt (0.42 mL, 2.4 mmol) in DCM (15 mL) at 0 °C, and the solution was stirred at 0 °C for 20 min. Water (15 mL) was added and the mixture extracted with EtOAc (3 × 30 mL). The organic fraction was washed with dilute Na₂CO₃ solution (30 mL) and water (30 mL). The organic solution was dried and the solvent evaporated to give a brown oil to which morpholine (1.05 mL, 12.0 mmol) in DMF (10 mL) was added and the solution stirred at 20 °C for 70 h. The solution was diluted with EtOAc (200 mL) and washed with Na₂CO₃ solution (30 mL) and water (30 mL). The organic solution was diluted with EtOAc (200 mL) and washed with Na₂CO₃ solution (30 mL) and water (30 mL). The organic solution was dried and the solvent evaporated. The residue was purified by chromatography, eluting with a gradient (0–30%) of EtOAc/DCM, to give 1-oxide **182** (492 mg, 67%) as an oil: ¹H NMR δ 8.23 (s, 1 H, H-9), 7.70 (s, 1 H, H-5), 3.55–3.67 (m, 6 H, CH₂OSi, 2 × CH₂O), 3.14–3.24 (m, 2 H, H-8), 2.93–3.07 (m, 4 H, CH₂, H-6), 2.72–2.84 (m, 1 H, H-7), 2.38–2.51 (m, 6 H, 2 × CH₂N), 2.03–2.14 (m, 2 H, CH₂), 0.87 [s, 9 H, SiC(CH₃)₃], 0.04 [s, 6 H, Si(CH₃)₂]; HRMS calcd for C₂₄H₃₉N₄O₃Si (MH⁺) *m/z* 459.2791, found 459.2784.

{3-[3-(4-Morpholinyl)propyl]-1-oxido-7,8-dihydro-6*H***-indeno[5,6-***e***][1,2,4]triazin-7yl}methanol (183). A solution of silyl ether 182 (488 mg, 1.1 mmol), and 1 M HCl (1.18 mL) in MeOH (30 mL) was stirred at 20 °C for 3 h. The solvent was evaporated and the residue was crystallized from MeOH/EtOAc to give alcohol 183** (357 mg, 88%) as the hydrochloride salt: mp (MeOH/EtOAc) 210–212 °C; ¹H NMR [(CD₃)₂SO] δ 11.19 (s, 1 H, HCl), 8.16 (s, 1 H, H-9), 7.80 (s, 1 H, H-5), 4.70 (br s, 1 H, OH), 3.75–3.99 (m, 4 H, 2 × CH₂O), 3.41 (d, *J* = 6.6 Hz, 2 H, CH₂O), 3.33–3.51 (m, 2 H, CH₂N), 3.11–3.27 (m, 4 H, CH₂N, H-8), 2.87–3.11 (m, 6 H, 2 × CH₂N, CH₂), 2.59–2.71 (m, 1 H, H-7), 2.22–2.32 (m, 2 H, CH₂); ¹³C NMR [(CD₃)₂SO] δ 163.6, 154.2, 148.4, 146.7, 131.8, 122.5, 113.8, 63.5, 63.0 (2), 55.0, 50.9 (2), 41.6, 35.4, 35.1, 33.1, 20.8. Anal. Calcd for C₁₈H₂₄N₄O₃·HCl·¹/₄CH₃OH: C, 56.4; H, 6.7; N, 14.4. Found: C, 56.3; H, 6.4; N, 14.6%.

{3-[3-(4-Morpholinyl)propyl]-1,4-dioxido-7,8-dihydro-6*H*-indeno[5,6-

e][1,2,4]triazin-7-yl}methanol (37). Method D. Oxidation of 1-oxide 183 (292 mg, 0.8 mmol) with CF₃CO₃H (ca. 8 mmol) gave 1,4-dioxide 37 (169 mg, 61%) as a dull orange solid: mp (MeOH/DCM) 112–114 °C; ¹H NMR δ 8.30 (s, 1 H, H-9), 8.26 (s, 1 H, H-5), 3.73 (d, *J* = 6.4 Hz, 2 H, CH₂O), 3.45 (br s, 4 H, 2 × CH₂O), 3.21–3.37 (m, 4 H, H-8, CH₂), 3.00–3.09 (m, 2 H, CH₂), 2.83–2.92 (m, 1 H, H-7), 2.50 (t, *J* = 6.4 Hz, 2 H, CH₂N), 2.39 (br s, 4 H, 2 × CH₂N), 2.07–2.15 (m, 2 H, CH₂), OH not observed; ¹³C NMR [(CD₃)₂SO] δ 154.1, 153.7, 149.3, 138.7, 133.5, 115.3, 113.3, 66.0 (2), 63.4, 57.2, 53.0 (2), 41.5, 35.6, 35.1, 28.0, 21.0. HRMS calcd for C₁₈H₂₅N₄O₄ (MH⁺) *m/z* 361.1876, found 361.1878.

2-(3-Ethyl-1,4-dioxido-7,8-dihydro-6*H*-indeno[5,6-*e*][1,2,4]triazin-7-yl)ethanol (38).

(*E*)-2-(1-Oxo-1*H*-inden-2(3*H*)-ylidene)acetic Acid (185). A mixture of 1-indanone (184) (25 g, 190 mmol), glyoxylic acid (50% aqueous solution, 70 g, 470 mmol), and cH₂SO₄ (6.25 mL) in dioxane (25 mL) were stirred at reflux temperature for 4 h. The mixture was cooled, the product filtered off, washed with water and dried to give acid 185 (32.8 g, 92%) as a white solid: mp 201–203 °C (lit.¹⁹ mp 205–206 °C); ¹H NMR [(CD₃)₂SO] δ 12.00 (br s, 1 H, OH), 7.73–7.80 (m, 2 H, H-5, H-7), 7.68 (br d, *J* = 7.7 Hz, 1 H, H-4), 7.49 (t, *J* = 7.9 Hz, 1 H, H-6), 6.55 (t, *J* = 2.4 Hz, 1 H, CHCO₂), 4.08 (d, *J* = 1.8 Hz, 2 H, H-3).

2-(2,3-Dihydro-1*H***-inden-2-yl)acetic Acid (186).** A solution of acid **185** (10.0 g, 53 mmol) in MeOH (45 mL) and dioxane (150 mL) with Pd/C (10%, 1.0 g) was stirred under H₂ (40 psi) for 16 h. The mixture was filtered through Celite and the solvent evaporated to give acid **186** as an off-white solid: mp 85–88 °C (lit.¹⁹ mp 89–91 °C); ¹H NMR δ 8.47 (br s, 1 H, OH), 7.08–7.18 (m, 4 H, H-4, H-5, H-6, H-7), 2.99–3.06 (m, 2 H, H-1, H-3), 2.69–2.74 (m, 1 H, H-2), 2.53–2.60 (m, 2 H, H-1, H-3), 2.48 (d, *J* = 7.4 Hz, 2 H, CH₂CO₂).

Ethyl 2-(2,3-Dihydro-1*H*-inden-2-yl)acetate (187). A solution of acid 186 (32.0 g, 180 mmol) in dry EtOH (250 mL) and cH₂SO₄ (2.0 mL) was stirred at reflux temperature under N₂ for 16 h. The solvent was evaporated, the residue partitioned between ice/water (200 mL) and DCM (50 mL) and the aqueous layer extracted with DCM (2 × 40 mL). The combined organic layer was washed with saturated aqueous NaHCO₃ solution and water, dried and the solvent evaporated to yield ester²⁰ 187 (33.3 g, 90%) as a brown oil: ¹H NMR δ 7.10–7.21 (m, 4 H, H-4, H-5, H-6, H-7), 4.15 (q, *J* = 7.1 Hz, 2 H, CH₂), 3.10–3.45 (m, 2 H, H-1, H-3), 2.82–2.94 (m, 1 H, H-2), 2.62–2.68 (m, 2 H, H-1, H-3), 4.48 (d, *J* = 7.4 Hz, 2 H, CH₂CO₂), 1.27 (t, *J* = 7.1 Hz, 2 H, CH₃).

2-(2,3-Dihydro-1*H***-inden-2-yl)ethanol (188).** A solution of ester **187** (68.8 g, 337 mmol) in dry THF (250 mL) was added to dropwise to a suspension of LiAlH₄ (20.0 g,

501 mmol) in dry THF (500 mL) at 0 °C and the resulting mixture was stirred for 1.5 h. EtOAc was added to quench excess LiAlH₄ and then aqueous H₂SO₄ solution (10%, 1 L) was added and the organic fraction separated. The aqueous solution was extracted with EtOAc (3 × 250 mL), and the combined organic fraction dried and the solvent evaporated to give alcohol²⁰ **188** (54.5 g, 100%) as a yellow oil: ¹H NMR δ 7.16–7.25 (m, 2 H, H_{arom}), 7.09–7.14 (m, 2 H, H_{arom}), 3.74 (t, *J* = 6.8 Hz, 2 H, CH₂O), 3.03–3.10 (m, 2 H, CH₂), 2.53–2.66 (m, 3 H, CH₂, CH), 1.82 (q, *J* = 6.8 Hz, 2 H, CH₂), OH not observed.

2-(2,3-Dihydro-1*H***-inden-2-yl)ethyl Acetate (189).** Ac₂O (47 mL, 505 mmol) in DCM (50 mL) was added over 1 h to a stirred solution of alcohol **188** (54.5 g, 337 mmol), pyridine (52 mL, 981 mmol) and DMAP (1.65 g, 13 mmol) in DCM (400 mL) and the resulting solution was stirred at 20 °C for 16 h. H₂O (200 mL) was added, and the mixture stirred for 1 h. The organic fraction was washed with aqueous HCl solution (1 M, 100 mL) and H₂O (150 mL), dried and the solvent evaporated to give acetate **189** (68.4 g, 99%) as a pale brown oil: ¹H NMR δ 7.16–7.19 (m, 2 H, H_{arom}), 7.09–7.14 (m, 2 H, H_{arom}), 4.16 (t, *J* = 6.8 Hz, 2 H, CH₂O), 3.04–3.10 (m, 2 H, CH₂), 2.48–2.66 (m, 3 H, CH₂, CH), 2.05 (s, 3 H, COCH₃), 1.85 (q, *J* = 6.8 Hz, 2 H, CH₂); ¹³C NMR δ 171.1, 143.0 (2), 126.2 (2), 124.4 (2), 63.5, 39.1 (2), 37.0, 34.3, 21.0. Anal Calcd for C₁₃H₁₆O₂: C, 76.4; H, 7.9. Found: C, 76.6; H, 7.9%.

Nitration of 2-(2,3-Dihydro-1*H*-inden-2-yl)ethyl Acetate (189). $Cu(NO_3)_2 \cdot 3H_2O$ (71 g, 294 mmol) was added in portions to a stirred solution of the acetate 189 (30 g, 147 mmol) in DCM (500 mL) and Ac₂O (500 mL) at 0 °C, the resulting mixture allowed to warm to 20 °C and stirred for 16 h. The reaction mixture was poured into ice-water/cNH₃ (2.5:1, 3.5 L) and the layers separated. The aqueous layer was extracted with EtOAc (2 × 500 mL), the combined organic layer dried, the solvent evaporated and the residue was purified by chromatography, eluting with 20% EtOAc/pet. ether, to give an inseparable mixture of 2-(5-nitro-2,3-dihydro-1*H*-inden-2-yl)ethyl acetate (190) and 2-(4-nitro-2,3-dihydro-1*H*-inden-2-yl)ethyl acetate (191) (ratio 190:191 = 3:1) (26.5 g, 72%) as a yellow oil which was used without further purification: Anal. Calcd for C₁₃H₁₅NO₄: C, 62.6; H, 6.1; N, 5.6. Found: C, 62.9; H, 6.1; N, 5.4%.

Reduction and Acetylation of 2-(5-Nitro-2,3-dihydro-1*H*-inden-2-yl)ethyl Acetate (190) and 2-(4-Nitro-2,3-dihydro-1*H*-inden-2-yl)ethyl Acetate (191). A solution of the nitro-compounds (190 and 191) (13.0 g, 52 mmol) in EtOH (50 mL) and MeOH (50 mL) with Pd/C (10%, 250 mg) was stirred under H₂ (45 psi) for 5 h. The solution was filtered through Celite and the solvent evaporated. The residue was dissolved in dioxane (130 mL), Ac₂O (12.3 mL, 130 mmol) added, and the mixture stirred at 20 °C for 16 h. H₂O (60 mL) and then aqueous NH₃ solution (ca 7 M, ca. 50 mL) was added until the solution was basic. The mixture was extracted with EtOAc (3 × 120 mL), the combined organic layer dried and the solvent evaporated to give an inseparable mixture of 2-(5-acetamido-2,3-dihydro-1*H*-inden-2-yl)ethyl acetate (192) and 2-(4-acetamido-2,3-dihydro-1*H*-inden-2-yl)ethyl acetate (193) (ratio 192:193 = 3:1) (13.5 g, 99%) as an orange oil which was used without further purification: HRMS calcd for C₁₅H₂₀NO₃ (MH⁺) *m/z* 262.1443, found 262.1443.

2-(5-Acetamido-6-nitro-2,3-dihydro-1*H***-inden-2-yl)ethyl Acetate (194).** cHNO₃ (70%, 13.6 mL, 214 mmol) was added dropwise to a solution of the acetates (**192** and **193**) (27 g, 103 mmol) in TFA (120 mL) at 0 °C and the solution allowed to warm to 20 °C over 1.5 h. The mixture was poured into ice/water (500 mL) and made basic with cNH₃ (ca. 150 mL). The mixture was extracted with DCM (3×250 mL), the combined organic layer dried and the solvent evaporated. The residue was filtered through a plug of silica, eluting with 50% EtOAc/pet. ether, the solvent evaporated and the residue recrystallized from EtOAc/pet. ether to give acetamide **194** (18.2 g, 55%) as a pale yellow solid: mp 89–91 °C; ¹H NMR δ 10.36 (br s, 1 H, NH), 8.55 (s, 1 H, H-4), 8.01 (s, 1 H, H-7), 4.16 (t, *J* = 6.6 Hz, 2 H, CH₂O), 3.06–3.18 (m, 2 H, H-1, H-3), 2.57–2.73 (m, 3 H, H-1, H-2, H-3), 2.27 (s, 3 H, COCH₃), 2.07 (s, 3 H, COCH₃), 1.85 (q, *J* = 6.6 Hz, 2 H, CH₂); ¹³C NMR δ 171.0, 167.0, 153.0, 138.6, 135.4, 133.9, 121.1, 117.6, 63.1, 39.7, 38.2, 37.4, 34.1, 25.6, 21.0. Anal Calcd for C₁₅H₁₈N₂O₅: C, 58.8; H, 5.9; N, 9.1. Found: C, 59.2; H, 6.0; N, 8.9%.

2-(5-Amino-6-nitro-2,3-dihydro-1*H***-inden-2-yl)ethanol (195).** Acetamide **194** (24.0 g, 78 mmol) was suspended in MeOH (350 mL), H₂O (180 mL) and cHCl (150 mL), and stirred at reflux temperature for 1 h. The resulting orange solution was cooled to 20 °C and the solvent evaporated to give nitroaniline **195** (17.4 g, 100%) as an orange solid: mp 89–91 °C; ¹H NMR δ 7.90 (s, 1 H, H-4), 6.62 (s, 1 H, H-7), 6.02 (br s, 2 H, NH₂), 3.74 (t, *J* = 6.6 Hz, 2 H, CH₂O), 2.96–3.04 (m, 2 H, H-1, H-3), 2.49–2.60 (m, 3 H, H-1, H-2, H-3), 1.77 (q, *J* = 6.6 Hz, 2 H, CH₂), 1.40 (br s, 1 H, OH); ¹³C NMR δ 153.4, 144.3, 133.0, 131.2, 120.9, 113.5, 61.7, 39.3, 38.2, 37.7, 37.2. Anal. Calcd for C₁₁H₁₄N₂O₃: C, 59.5; H, 6.4; N, 12.6. Found: C, 59.7; H, 6.3; N, 12.2%.

2-(3-Amino-1-oxido-7,8-dihydro-6*H***-indeno[5,6-***e***][1,2,4]triazin-7-yl)ethanol (196). Method A.** Reaction of nitroaniline **195** (17.6 g, 79 mmol) and cyanamide (19.8 g, 471 mmol) gave 1-oxide **196** (18.4 g, 94%) as a yellow-green solid: mp 230–235°C; ¹H NMR [(CD₃)₂SO] δ 7.92 (s, 1 H, H-9), 7.33 (s, 1 H, H-5), 7.11 (br s, 2 H, NH₂), 4.45 (br s, 1 H, OH), 3.49 (t, *J* = 6.6 Hz, 2 H, CH₂O), 3.06–3.15 (m, 2 H, H-6, H-8), 2.59–2.69 (m, 2 H, H-6, H-8), 2.49–2.54 (m, 1 H, H-7), 1.63 (q, *J* = 6.6 Hz, 2 H, CH₂); HRMS (EI⁺) calcd for C₁₂H₁₄N₄O₂ (M⁺) *m/z* 246.1117, found 246.1115.

2-(3-Iodo-1-oxido-7,8-dihydro-6*H***-indeno[5,6-***e***][1,2,4]triazin-7-yl)ethanol (197).** *tert***-BuNO₂ (4.0 mL, 30.6 mmol) was added to a suspension of 1-oxide 196** (2.5 g, 10.2 mmol), CuI (2.04 g, 10.7 mmol) and I₂ (1.42 g, 5.6 mmol) in THF (50 mL) and the mixture stirred at reflux temperature for 4 h. The mixture was cooled to 20 °C, filtered and the solvent evaporated. The residue was dissolved in EtOAc (50 mL), washed with aqueous Na₂S₂O₄ (5%, 2 × 25 mL), dried, and the solvent evaporated. The residue was purified by chromatography, eluting with 5% MeOH/DCM, to give iodide **197** (1.49 g, 41%) as a pale yellow solid: mp 96–99 °C; ¹H NMR δ 8.15 (s, 1 H, H-9), 7.70 (s, 1 H, H-5), 3.79 (t, *J* = 6.5 Hz, 2 H, CH₂O), 3.25–3.33 (m, 2 H, H-6, H-8), 2.68–2.86 (m, 3 H, H-6, H-7, H-8), 1.84 (q, *J* = 6.5 Hz, 2 H, CH₂), 1.42 (br s, 1 H, OH); ¹³C NMR δ 155.1, 149.4, 147.6, 133.5, 122.4, 121.8, 114.5, 61.4, 39.5, 39.2, 37.8, 37.5; HRMS calcd for C₁₂H₁₃IN₃O₂ (MH⁺) *m/z* 358.0053, found 358.0053.

3-Iodo-7-(2-(tetrahydro-2*H***-pyran-2-yloxy)ethyl)-7,8-dihydro-6***H***-indeno[5,6***e***][1,2,4]triazine 1-Oxide (198). Dihydropyran (2.6 mL, 28.6 mmol) was added dropwise to a solution of alcohol 197 (3.4 g, 9.5 mmol) and PPTS (0.60 g, 2.4 mmol) in DCM (150 mL) and the resulting solution stirred at 20 °C for 1 h. The solvent was evaporated and the residue purified by chromatography, eluting with 50% EtOAc/pet. ether, to give a mixture of diasteroisomers of iodide 198 (4.1 g, 98%) as a pale yellow solid: mp 80–82 °C; ¹H NMR \delta 8.15 (s, 1 H, H-9), 7.70 (s, 1 H, H-5), 4.58–4.60 (m, 1 H, CHO), 3.84– 3.86 (m, 2 H, CH₂O), 3.48–3.54 (m, 2 H, CH₂O), 3.24–3.29 (m, 2 H, H-6, H-8), 2.72– 2.86 (m, 3 H, H-6, H-7, H-8), 1.72–1.88 (m, 4 H, CH₂), 1.52-1.61 (m, 4 H, CH₂); ¹³C NMR \delta 155.2, 149.6, 147.6, 133.5, 122.41 and 122.40, 121.8, 114.52 and 114.50, 99.1, 66.0, 62.6, 39.7 and 39.5, 39.4 and 39.2, 38.0, 35.1, 30.8, 25.4, 19.7; HRMS calcd for C₁₇H₂₁IN₃O₃ (MH⁺)** *m/z* **442.0628, found 442.0630.**

3-Ethyl-7-(2-(tetrahydro-2H-pyran-2-yloxy)ethyl)-7,8-dihydro-6H-indeno[5,6-

e][1,2,4]triazine 1-Oxide (199). Method E. Stille coupling of iodide 198 (2.5 g, 5.7 mmol) and SnEt₄ (1.7 mL, 8.5 mmol) with Pd(PPh₃)₄ (0.65 g, 0.57 mmol) gave a mixture of diastereoisomers of 1-oxide 199 (1.56 g, 80%) as a pale green oil: ¹H NMR δ 8.22 (s, 1 H, H-9), 7.71 (s, 1 H, H-5), 4.59–4.61 (m, 1 H, OCH), 3.85–3.89 (m, 2 H, OCH₂), 3.49–3.53 (m, 2 H, CH₂), 3.24–3.31 (m, 2 H, H-6, H-8), 3.02 (q, *J* = 7.6 Hz, 2 H, CH₂), 2.64–2.87 (m, 3 H, H-6, H-7, H-8), 1.53–1.87 (m, 8 H, 4 × CH₂), 1.43 (t, *J* = 7.6 Hz, 3 H, CH₃); ¹³C NMR δ 166.5, 153.4, 147.5, 147.1, 131.7, 122.16 and 122.15, 113.8, 98.5, 65.6, 62.0, 39.0 and 38.9, 38.6 and 38.5, 37.4, 34.6, 30.2, 30.1, 24.9, 19.2, 11.8.

2-(3-Ethyl-1-oxido-7,8-dihydro-6*H***-indeno[5,6-***e***][1,2,4]triazin-7-yl)ethanol (200). Methanesulfonic acid (3 drops) was added to a stirred solution of tetrahydropyranyl ether 199** (1.10 g, 3.2 mmol) in MeOH (30 mL) and the mixture was stirred at 20 °C for 1 h.

199 (1.10 g, 3.2 mmol) in MeOH (30 mL) and the mixture was stirred at 20 °C for 1 h. The solvent was evaporated and the residue purified by chromatography, eluting with 5% MeOH/DCM, to give 1-oxide **200** (783 mg, 94%) as a yellow solid: mp 96–99 °C; ¹H NMR δ 8.23 (s, 1 H, H-9), 7.72 (s, 1 H, H-5), 3.80 (t, *J* = 6.5 Hz, 2 H, CH₂O), 3.25–3.33 (m, 2 H, H-6, H-8), 3.02 (q, *J* = 7.6 Hz, 2 H, CH₂), 2.68–2.86 (m, 3 H, H-6, H-7, H-8), 1.84 (q, *J* = 6.5 Hz, 2 H, CH₂), 1.43 (t, *J* = 7.6 Hz, 3 H, CH₃), 1.40–1.45 (m, 1 H, OH); ¹³C NMR δ 167.1, 153.8, 147.9, 147.6, 132.3, 122.7, 114.3, 61.5, 39.4, 39.1, 37.9, 37.5, 30.6, 12.3; HRMS calcd for C₁₄H₁₈N₃O₂ (MH⁺) *m/z* 260.1399, found 260.1397.

2-(3-Ethyl-1,4-dioxido-7,8-dihydro-6*H***-indeno[5,6-***e***][1,2,4]triazin-7-yl)ethanol (38). Method D. Oxidation of 1-oxide 200 (144 mg, 0.56 mmol) with CF₃CO₃H (ca. 5.6 mmol) gave (i) starting material 200 (35 mg, 24%) and (ii) 1,4-dioxide 38 (92 mg, 60%) as a yellow solid: mp 152–155 °C; ¹H NMR \delta 8.29 (s, 1 H, H-9), 8.24 (s, 1 H, H-5), 3.77–3.82 (m, 2 H, CH₂O), 3.29–3.38 (m, 2 H, H-6, H-8), 3.20 (q,** *J* **= 7.5 Hz, 2 H, CH₂), 2.73–2.90 (m, 3 H, H-6, H-7, H-8), 1.84 (q,** *J* **= 6.6 Hz, 2 H, CH₂), 1.43 (t,** *J* **= 7.5 Hz, 3 H, CH₃), 1.34 (t,** *J* **= 4.9 Hz, 1 H, OH); ¹³C NMR \delta 155.8, 154.3, 149.8, 139.2, 133.8, 115.9, 113.9, 61.3, 39.6, 39.1, 37.8, 37.5, 23.9, 9.3. Anal. Calcd for C₁₄H₁₇N₃O₃: C, 61.1; H, 6.2; N, 15.3. Found: C, 60.8; H, 6.3; N, 14.9%.**

3-Ethyl-7-[2-(4-morpholinyl)ethyl]-7,8-dihydro-6*H*-indeno[5,6-*e*][1,2,4]triazine 1,4-Dioxide (39).

3-Ethyl-7-[2-(4-morpholinyl)ethyl]-7,8-dihydro-6H-indeno[5,6-e][1,2,4]triazine 1-**Oxide** (201). Methanesulfonyl chloride (0.18 mL, 2.3 mmol) was added to a solution of alcohol 200 (457 mg, 1.76 mmol) and Et₃N (0.37 mL, 2.6 mmol) in DCM (30 mL) at 0 °C, and the mixture was stirred for 1 h. Saturated aqueous KHCO₃ solution (20 mL) was added and the aqueous layer extracted with DCM (20 mL). The combined organic layer was dried and the solvent evaporated to give a pale yellow solid (560 mg, 94%) that was used without further purification. The mesvlate (560 mg, 1.7 mmol) was dissolved in dry DMF (15 mL), and morpholine (0.22 mL, 2.5 mmol) and Et₃N (0.35 mL, 2.5 mmol) added. The solution was stirred at 100 °C for 3.5 h, cooled and the solvent evaporated. The residue was purified by chromatography, eluting with 5% MeOH/DCM, to give 1oxide **201** (265 mg, 50%) as a brown oil: ¹H NMR δ 8.22 (s, 1 H, H-9), 7.71 (s, 1 H, H-5), 3.73 (t, J = 4.7 Hz, 4 H, $2 \times CH_2O$), 3.23-3.30 (m, 2 H, H-6, H-8), 3.01 (q, J = 7.6 Hz, 2 H, CH₂), 2.75–2.84 (m, 2 H, H-6, H-8), 2.58–2.62 (m, 1 H, H-7), 2.43–2.48 (m, 6 H, 3 × CH₂N), 1.73–1.79 (m, 2 H, CH₂), 1.43 (t, J = 7.6 Hz, 3 H, CH₃); ¹³C NMR δ 167.1, 153.8, 147.9, 147.6, 132.3, 122.7, 114.4, 66.9 (2), 57.5, 53.8 (2), 39.4, 39.1, 38.8, 32.0, 30.6, 12.3; HRMS (EI⁺) calcd for $C_{18}H_{24}N_4O_2$ (M⁺) m/z 328.1899, found 328.1899.

3-Ethyl-7-[2-(4-morpholinyl)ethyl]-7,8-dihydro-6*H***-indeno[5,6-***e***][1,2,4]triazine 1,4-Dioxide (39). Method D. Oxidation of 1-oxide 201 (265 mg, 0.8 mmol) with CF₃CO₃H (ca. 8 mmol) gave (i) starting material 201 (62 mg, 23%) and (ii) 1,4-dioxide 39 (83 mg, 30%) as a yellow solid which was converted to the hydrochloride salt: mp 131–133 °C; ¹H NMR [(CD₃)₂SO] \delta 13.40 (br s, 1 H, HCl), 8.30 (s, 1 H, H-9), 8.25 (s, 1 H, H-5), 4.32 (t,** *J* **= 12.0 Hz, 2 H, CH₂), 4.00 (dd,** *J* **= 12.0, 3.0 Hz, 2 H, H-6, H-8), 3.48 (d,** *J* **= 12.0 Hz, 2 H, H-6, H-8), 3.32–3.39 (m, 2 H, CH₂), 3.20 (q,** *J* **= 7.5 Hz, 2 H, CH₂), 3.06–3.09 (m, 2 H, CH₂), 2.88–2.94 (m, 4 H, 2 × CH₂), 2.67–2.73 (m, 1 H, H-7), 2.25–2.28 (m, 2 H, CH₂), 1.43 (t,** *J* **= 7.5 Hz, 3 H, CH₃); ¹³C NMR [(CD₃)₂SO] \delta 156.0, 152.6, 148.2, 139.3, 133.9, 116.3, 114.3, 63.6 (2), 56.5, 52.0 (2), 39.1, 38.6, 37.8, 28.5, 23.9, 9.3; HRMS calcd for C₁₈H₂₅N₄O₃ (MH⁺)** *m/z* **344.1848, found 344.1846.**

3-[3-(4-Morpholinyl)propyl]-7,8-dihydrofuro[2,3-*g*][1,2,4]benzotriazine 1,4-Dioxide (40).

3-Iodo-7,8-dihydrobenzofuro[6,5-*e*][**1,2,4**]**triazine 1-Oxide (202).** *tert*-BuNO₂ (90%, 3.8 mL, 28.8 mmol) was added to a stirred solution of 1-oxide **108** (2.0 g, 9.8 mmol), CH₂I₂ (3.8 mL, 46.7 mmol) and CuI (1.87 g, 9.8 mmol) in THF (40 mL), and the mixture was stirred at reflux temperature for 7 h. The mixture was cooled to 20 °C, the solvent was evaporated and the residue purified by chromatography, eluting with a gradient (2–10%) of MeOH/DCM, to give iodide **202** (1.50 g, 49%) as a pale yellow solid: mp 192–194 °C; ¹H NMR δ 8.19 (t, *J* = 1.6 Hz, 1 H, H-9), 7.10 (s, 1 H, H-5), 4.83 (t, *J* = 8.4 Hz, 2 H, H-7), 3.44 (dt, *J* = 8.4, 1.6 Hz, 2 H, H-8); ¹³C NMR δ 167.0, 150.4, 136.2, 123.3, 116.4, 105.8, 103.7, 73.4, 29.0; HRMS (EI⁺) calcd for C₉H₆IN₃O₂ (M⁺) *m/z* 314.9505, found 314.9501.

3-(1-Oxido-7,8-dihydrofuro[2,3-g][1,2,4]benzotriazin-3-yl)propanal (203). Pd(OAc)₂ (53 mg, 0.24 mmol) was added to a N₂-purged solution of iodide **202** (1.50 g, 4.8 mmol), allyl alcohol (0.91 mL, 13.3 mmol), nBu₄NBr (1.38 g, 4.3 mmol) and NaHCO₃ (880 mg, 10.5 mmol) in dry DMF (40 mL) and the solution was stirred at 60 °C for 24 h under N₂. The mixture was quenched with saturated aqueous NH₄Cl solution (150 mL) and filtered. The filtrate was extracted with EtOAc (5 × 50 mL), dried and the solvent evaporated. The residue was purified by chromatography, eluting with a gradient (20–50%) of EtOAc/pet. ether, to give aldehyde **203** as a dark oil, which was crystallised from MeOH (532 mg, 45%) as a pale purple solid: mp 140–142 °C; ¹H NMR δ 9.92 (s, 1 H, CHO), 8.26 (t, *J* = 1.5 Hz, 1 H, H-9), 7.10 (s, 1 H, H-5), 4.80 (t, *J* = 8.4 Hz, 2 H, H-7), 3.43 (dt, *J* = 8.4, 1.5 Hz, 2 H, H-8), 3.29–3.33 (m, 2 H, CH₂), 3.06–3.10 (m, 2 H, CH₂); ¹³C NMR δ 200.4, 166.5, 165.0, 150.3, 135.2, 129.0, 116.2, 104.0, 73.1, 40.5, 29.4, 29.0; HRMS calcd for C₁₂H₁₂N₃O₃ (MH⁺) *m/z* 246.0879, found 246.0881.

3-[3-(4-Morpholinyl)propyl]-7,8-dihydrofuro[2,3-g][1,2,4]benzotriazine 1-Oxide

(204). Morpholine (0.22 mL, 2.52 mmol) was added to a solution of aldehyde 203 (220 mg, 0.90 mmol) in MeOH (10 mL) and DMF (10 ml), and the solution stirred for 30 min. NaCNBH₃ (176 mg, 2.80 mmol) was added, followed by HOAc (0.12 mL) and the mixture stirred at 20 °C for 30 min. The solvent was evaporated and the residue partitioned between DCM (40 mL) and water (40 mL). The aqueous phase was extracted with DCM (2 × 40 mL), the combined organic phase was dried and the solvent evaporated. The residue was purified by chromatography, eluting with 10% MeOH/EtOAc, to give 1-oxide 204 (210 mg, 74%) as a pale brown solid: mp 96–99 °C; ¹H NMR δ 8.27 (t, *J* = 1.6 Hz, 1 H, H-9), 7.11 (s, 1 H, H-5), 4.80 (t, *J* = 8.4 Hz, 2 H, H-8), 3.59 (t, *J* = 4.6 Hz, 4 H, 2 × CH₂O), 3.43 (dt, *J* = 8.4, 1.6 Hz, 2 H, H-7), 2.97–3.01 (m, 2 H, CH₂), 2.44–2.48 (m, 2 H, CH₂), 2.41 (t, *J* = 4.5 Hz, 4 H, 2 × CH₂N), 2.03–2.11 (m, 2 H, CH₂); ¹³C NMR δ 167.1, 166.4, 150.5, 134.8, 128.9, 116.2, 103.9, 73.0, 67.0 (2), 58.3, 53.5 (2), 53.4, 27.0, 24.9. Anal. Calcd for C₁₆H₂₀N₄O₃: C, 60.8; H, 6.4; N, 17.7. Found: C, 60.7; H, 6.5; N, 17.7%.

3-[3-(4-Morpholinyl)propyl]-7,8-dihydrofuro[2,3-*g*]**[1,2,4]benzotriazine 1,4-Dioxide (40). Method D.** Oxidation of 1-oxide **204** (200 mg, 0.63 mmol) with CF₃CO₃H (ca. 6 mmol) gave 1,4-dioxide **40** (88 mg, 43%) as a dark yellow solid: mp 150–154 °C; ¹H NMR δ 8.28 (t, *J* = 1.6 Hz, 1 H, H-9), 7.68 (s, 1 H, H-5), 4.87 (t, *J* = 8.5 Hz, 2 H, H-7), 3.48 (dt, *J* = 8.5, 1.5 Hz, 2 H, H-8), 3.44 (t, *J* = 4.4 Hz, 4 H, 2 × CH₂O), 3.22 (t, *J* = 7.2

Hz, 2 H, CH₂), 2.49 (t, J = 6.5 Hz, 2 H, CH₂), 2.38 (t, J = 4.4 Hz, 4 H, 2 × CH₂N), 2.06– 2.13 (m, 2 H, CH₂); ¹³C NMR δ 166.7, 156.1, 141.7, 136.3, 130.2, 117.8, 96.1, 73.5, 67.0 (2), 58.0, 53.5 (2), 29.0, 28.8, 21.8. Anal. Calcd for C₁₆H₂₀N₄O₄: C, 57.8; H, 6.1; N, 16.9. Found: C, 57.8; H, 6.1; N, 16.6%.

3-Ethyl-7-methyl-6,7,8,9-tetrahydro[1,2,4]triazino[6,5-g]isoquinoline 1,4-Dioxide (41).

3-Ethyl-7-methyl-6,7,8,9-tetrahydro[**1,2,4**]**triazino**[**6,5-***g*]**isoquinoline 1-Oxide (205). Method E.** Stille coupling of chloride **158** (750 mg, 3.0 mmol) and Et₄Sn (1.2 mL, 6.0 mmol) with Pd(PPh₃)₄ (350 mg, 0.3 mmol) gaive 1-oxide **205** (590 mg, 81%) as a brown solid: mp 129–131 °C; ¹H NMR δ 8.21 (s, 1 H, H-10), 7.63 (s, 1 H, H-5), 3.79 (s, 2 H, H-6), 3.16 (t, *J* = 6.0 Hz, 2 H, H-8), 3.02 (q, *J* = 7.6 Hz, 2 H, CH₂), 2.77 (t, *J* = 6.0 Hz, 2 H, H-9), 2.51 (s, 3 H, NCH₃), 1.43 (t, *J* = 7.6 Hz, 3 H, CH₃); ¹³C NMR δ 167.3, 145.8, 144.6, 138.2, 131.7, 125.0, 118.8, 58.1, 52.3, 45.9, 30.7, 29.6, 12.2; MS (APCI) *m/z* 245 (MH⁺, 100%). Anal. Calcd for C₁₃H₁₆N₄O·¹/₄H₂O: C, 62.5; H, 6.7; N, 22.4. Found: C, 62.6; H, 6.6; N, 22.4%.

3-Ethyl-7-methyl-6,7,8,9-tetrahydro[1,2,4]triazino[6,5-*g*]isoquinoline 1,4-Dioxide (41). Method D. Oxidation of 1-oxide 205 (590 mg, 2.4 mmol) with CF₃CO₃H (ca. 25 mmol) gave 1,4-dioxide 41 (107 mg, 17%) as a yellow solid: mp 124–128 °C; ¹H NMR δ 8.23 (s, 1 H, H-10), 8.18 (s, 1 H, H-5), 3.83 (s, 2 H, H-6), 3.15–3.24 (m, 4 H, CH₂, H-8), 2.78 (t, *J* = 6.0 Hz, 2 H, H-9), 2.51 (s, 3 H, NCH₃), 1.43 (t, *J* = 7.5 Hz, 3 H, CH₃); ¹³C NMR δ 149.3, 145.5, 136.5, 135.3, 129.3, 120.5, 116.3, 58.1, 51.9, 45.8, 29.6, 23.9, 9.3; MS (APCI) *m*/*z* 261 (MH⁺, 100%). Anal. Calcd for C₁₃H₁₆N₄O₂·¼CH₂Cl₂: C, 56.5; H, 5.9; N, 19.9. Found: C, 56.6; H, 5.9; N, 19.7%.

3-Ethyl-9-methyl-7,8,9,10-tetrahydro[1,2,4]triazino[5,6-*h*]isoquinoline 1,4-Dioxide (42).

9-Methyl-7,8,9,10-tetrahydro[1,2,4]triazino[5,6-*h*]isoquinolin-3-amine 1-Oxide (206). Method A. Reaction of 8-nitroaniline 155 (510 mg, 2.5 mmol) and cyanamide (460 mg, 10.9 mmol) gave 1-oxide 206 (360 mg, 63%) as a brown solid: mp 226–229 °C; ¹H NMR [(CD₃)₂SO] δ 7.50 (d, *J* = 8.6 Hz, 1 H, H-5), 7.32 (d, *J* = 8.6 Hz, 1 H, H-6), 7.09 (br s, 2 H, NH₂), 4.09 (s, 2 H, H-10), 2.88 (t, *J* = 5.7 Hz, 2 H, H-7), 2.58 (t, *J* = 5.7 Hz, 2

H, H-8), 2.40 (s, 3 H, NCH₃); MS (APCI) *m/z* 232 (MH⁺, 100%). Anal. Calcd for C₁₁H₁₃N₅O·¹/₄CH₃OH: C, 56.5; H, 5.9; N, 29.3. Found: C, 56.6; H, 5.6; N, 29.1%.

3-Chloro-9-methyl-7,8,9,10-tetrahydro[1,2,4]triazino[5,6-*h*]isoquinoline 1-Oxide (207). Method B. Reaction of 1-oxide 206 (295 mg, 1.3 mmol) NaNO₂ (105 mg, 1.5 mmol), with subsequent chlorination with DMF/POCl₃, gave chloride 207 (240 mg, 75%) as a yellow solid: mp 200–205 °C; ¹H NMR δ 7.75 (d, *J* = 8.6 Hz, 1 H, H-5), 7.69 (d, *J* = 8.6 Hz, 1 H, H-6), 4.32 (s, 2 H, H-10), 3.07–3.13 (m, 2 H, H-7), 2.74 (t, *J* = 5.9 Hz, 2 H, H-8), 2.57 (s, 3 H, NCH₃); ¹³C NMR δ 155.9, 148.1, 138.7, 138.1, 132.5, 130.4, 125.7, 57.2, 50.3, 45.8, 30.9; MS (APCI) *m*/*z* 251 (MH⁺, 100%), 253 (MH⁺, 35%). Anal. Calcd for C₁₁H₁₁ClN₄O: C, 52.7; H, 4.4; N, 22.4; Cl, 14.1. Found: C, 52.7; H, 4.4; N, 22.2; Cl, 14.4%.

3-Ethyl-9-methyl-7,8,9,10-tetrahydro[1,2,4]triazino[5,6-*h*]isoquinoline 1-Oxide (208). Method E. Stille coupling of chloride 207 (225 mg, 0.9 mmol) and Et₄Sn (0.36 mL, 1.8 mmol) with Pd(PPh₃)₄ (108 mg, 0.09 mmol) gave 1-oxide 208 (130 mg, 60%) as a brown solid: mp (MeOH) 99–102 °C; ¹H NMR δ 7.75 (d, *J* = 8.6 Hz, 1 H, H-5), 7.62 (d, *J* = 8.6 Hz, 1 H, H-6), 4.38 (s, 2 H, H-10), 3.05–3.11 (m, 2 H, H-7), 2.98 (q, *J* = 7.6 Hz, 2 H, CH₂), 2.73 (t, *J* = 5.9 Hz, 2 H, H-8), 2.57 (s, 3 H, NCH₃), 1.42 (t, *J* = 7.6 Hz, 3 H, CH₃); ¹³C NMR δ 167.1, 148.4, 137.1, 136.9, 136.3, 129.7, 126.1, 57.4, 50.5, 45.9, 30.7, 30.2, 12.2; MS (APCI) *m*/*z* (MH⁺, 100%). HRMS calcd for C₁₃H₁₇N₄O (MH⁺) *m*/*z* 245.1402, found 245.1403.

3-Ethyl-9-methyl-7,8,9,10-tetrahydro[**1,2,4**]**triazino**[**5,6-***h***]isoquinoline 1,4-Dioxide** (**42**). **Method D.** Oxidation of 1-oxide **208** (120 mg, 0.5 mmol) with CF₃CO₃H (ca. 5 mmol) gave 1,4-dioxide **42** (24 mg, 19%) as a red solid: mp 117–121 °C; ¹H NMR δ 8.35 (d, *J* = 8.8 Hz, 1 H, H-5), 7.70 (d, *J* = 8.8 Hz, 1 H, H-6), 4.41 (s, 2 H, H-10), 3.18 (q, *J* = 7.5 Hz, 2 H, CH₂), 3.12 (br t, *J* = 5.8 Hz, 2 H, H-7), 2.74 (t, *J* = 5.8 Hz, 2 H, H-8), 2.58 (s, 3 H, NCH₃), 1.42 (t, *J* = 7.5 Hz, 3 H, CH₃); MS (APCI) *m*/*z* 261 (MH⁺, 100%); HRMS calcd for C₁₃H₁₇N₄O₂ (MH⁺) *m*/*z* 261.1352, found: 261.1354.

General Method F. Partition coefficients. Octanol-water partition coefficients ($P_{7.4}$) were measured using the shake flask method, using GPR-grade octanol (BDH Laboratory Supplies).²¹ Briefly, lipophilic drugs were dissolved directly in octanol-saturated PBS (137 mM NaCl, 2.68 mM KCl, 1.47 mM KH₂PO₄, 8.10 mM Na₂HPO₄, pH 7.4), and hydrophilic drugs in PBS-saturated octanol, to 25–100 μ M. Equal volumes of PBS and octanol were mixed on a Bellco roller drum (Bellco Glass, Inc., New Jersey) at 20 rpm for 3 h at ambient temperature. The two solvent layers were separated after a brief spin and analyzed by HPLC directly (aqueous layer), or after addition of 4 volumes of methanol (organic layer).

General Method G. MCL cultures. MCLs were grown from human HT29 colon carcinoma cells as described elsewhere.²² In brief, 1×10^6 cells were seeded on collagencoated Teflon microporous support membranes (BioporeTM; average thickness 30 µm) in Millicell-CMTM cell culture inserts (Millipore Corporation, Bedford, MA) and grown for 3 days submerged in stirred culture medium (α MEM; GIBCO BRL, Grand Island, NY) supplemented with 10% heat-inactivated fetal calf serum (GIBCO BRL, Auckland), penicillin (100 U/mL), streptomycin (100 µg/mL) and 2 mM L-glutamine.

General Method H. Determination of diffusion coefficient, D, in MCLs. Flux through MCLs was measured in a diffusion chamber as described.²³ using MCLs equilibrated for 60 min with 95% $O_2/5\%$ CO_2 at 37 °C in the same medium as above. BTOs were added to the "donor" compartment to 50 μ M, along with [¹⁴C]urea (Amersham Pharmacia Biotech; 40 MBg/mmol, 7.5 kBg/mL), D-[2-³H]mannitol (ICN Pharmaceuticals Inc., Irvine, CA; 40 MBq/mmol, 20 kBq/mL) and 9(10H)-acridone (Sigma-Aldrich, Castle Hill, NSW; 10 µM). Samples were taken from both the donor and receiver compartment for up to 5 h. An aliquot was assayed for radioactivity by duallabel liquid scintillation counting in a Packard Tri-Carb 1500 Liquid Scintillation Analyzer (Packard Instrument Company, Meriden, CT) using Emulsifier-Safe wateraccepting scintillant (Packard), and the balance frozen for subsequent HPLC analysis. The concentration-time profiles of $[{}^{14}C]$ urea in the donor and receiver compartments were numerically fitted to Fick's second law to estimate the average thickness of each MCL (ca 175 μ m), using the measured value of D for [¹⁴C]urea in HT29 MCLs.²² The effective diffusion coefficient of each compound was also determined in the collagencoated Teflon porous support membrane (D_s) without an MCL present. This latter parameter also takes into account the effect of the unstirred boundary layers on each side of the membrane or MCL. D was then determined by fitting the concentration-time profile in both the donor and receiver simultaneously to a Fickian diffusion model with the support membrane and MCL in series as described previously,²³ with addition of reaction terms in the MCL when necessary.

General Method I. HPLC. Samples (200 μ L) were deproteinized by addition of 4 μ L of 70% (v/v) perchloric acid and chilling on ice followed by centrifugation (12,000 × *g* for 5 min at 4 °C) and subsequent neutralization of the supernatant with 50% (v/v) ammonia (31.5 μ L/mL supernatant). Concentrations of the BTOs were determined by reversed-phase HPLC (Alltima C₈ 5 μ column, 150 × 2.1 mm; Alltech Associated Inc, Deerfield, IL) using an Agilent HP1100 equipped with a diode-array detector. Mobile phases were gradients of 80% acetonitrile/20% H₂O (v/v) in 450 mM ammonium formate, pH 4.5, at 0.3 mL/min. Quantitation was based on calibration curves in mobile phase (0.1–100 μ M), corrected for recovery from medium with serum determined by assaying known concentrations (0.1–100 μ M) for each compound under the same conditions.

General Method J. IC₅₀ Assays. IC₅₀ assays were determined for BTOs under aerobic and hypoxic conditions as previously described.²⁴ For each experiment, compounds were simultaneously tested under both oxic and hypoxic conditions against the HT29 and SiHa cell lines using a 4 hr drug exposure, and included TPZ as an independent internal control. In all cases, 8-methyl-5-nitroquinoline was used as a second internal control to confirm that strict hypoxia was present during the experiment.²⁵ Plates were stained as described previously²⁶ and IC₅₀ values determined. Final data was pooled from a series of seven independent experiments and is calculated using inter-experimental means.

General Method K. Metabolism experiments. The potency of BTOs towards anoxic HT29 cells was also assessed using loss of colony forming potential (clonogenicity) as the endpoint, and metabolic consumption of the compounds was assessed in the same experiments as described previously for TPZ.²² Suspensions of HT29 cells (10 mL at 1 or 2×10^{6} cells/mL) were incubated in α MEM without serum in magnetically stirred 20 mL bottles under flowing 5% CO₂/95% N₂ for 90 min. Drugs were then introduced using deoxygenated DMSO stock solutions to give initial concentrations in the medium (C_0) providing approximately 10% cell survival after one hour. DMSO-only controls were included in each experiment. Samples (0.5 mL) were removed at intervals (typically 5 min, 30 min, 1, 2, 3 h), centrifuged to remove cells, and supernatant stored at -80 °C for subsequent HPLC analysis. The cell pellet was resuspended in fresh aMEM with 5% FBS and serial dilutions made into 5 mL of this medium in 60 mm diameter cell culture dishes. These were incubated at 37 °C for 14 days, stained with methylene blue and colonies (> 50 cells) counted to determine the plating efficiency (PE). Surviving fraction was calculated for each time as PE(treated)/PE(controls). Cell viability was checked with a hemocytometer at the end of drug exposure by their ability to exclude 0.4% trypan blue, and was >85% in all experiments. Oxygen in solution was checked using an OxyLite 2000 O₂ luminescent fiber optic probe (Oxford Optronix Ltd, UK) by methods previously described²² and oxygen concentrations were $< 0.1 \mu M O_2$ in all cases. A reference vial with TPZ (30 μM) was also included in all experiments for quality control.

References

- 1. Mason, J. C.; Tennant, G. Heterocyclic N-oxides. Part VI. Synthesis and nuclear magnetic resonance spectra of 3-aminobenzo-1,2,4-triazines and their mono- and di-N-oxides. *J. Chem. Soc.* (*B*) **1970**, 911–916.
- 2. Hay, M. P.; Hicks, K. O.; Pruijn, F. B.; Pchalek, K.; Siim, B. G.; Wilson, W. R.; Denny, W. A. Pharmacokinetic/pharmacodynamic model-guided identification of hypoxia-selective 1,2,4-benzotriazine 1,4-dioxides with antitumor activity: The role of extravascular transport. *J. Med. Chem.* **2007**, 50, 6392–6404.
- 3. Schroeder, E.; Lehmann, M.; Rufer, C.; Boettcher, I. Non-steroidal antiinflammatory agents. 6. Antiinflammatory methanesulfonamides. I. *European J. Med. Chem.* **1982**, *17*, 35–42.
- Murray, R. J.; Cromwell, N. H. Mobile keto allyl systems. 18. Synthesis and charge-transfer interactions of 2-(α-aminobenzyl)-1-indenones. *J. Org. Chem.* 1976, 41, 3540–3545.
- 5. Daly, C. M.; Iddon, B.; Suschitzky, H.; Jordis, U.; Sauter, F. Synthesis of novel 2,3-dihydro-8H-thieno[2,3-d]azepines and 1,2,3,4-tetrahydro-1H-3-benzazepines via photolysis of 6-azido-2,3-dihydrobenzo[b]thiophene and 6-azido-1,2,3,4-tetrahydronaphthalene. *J. Chem. So. Perkin Trans 1* **1988**, 1933–1338.
- 6. Ward, E. R.; Coulson, T. M. 2,3-Derivatives of naphthalene. II. Preparation of 2,3-dinitronaphthalene and 3-nitro-2-naphthylamine. *J. Chem. Soc.* **1954**, 4545–4547.
- 7. Ward, E. R.; Pearson, B. D. Isomer ratios in the nitration of 6-acylamino-1,2,3,4-tetrahydronaphthalenes. *J. Chem. Soc.* **1959**, 3635–3638.

- 8. Dunn, J. P.; Ackerman, N. A.; Tomolonis, A. J. Analgetic and antiinflammatory 7-aroylbenzofuran-5-ylacetic acids and 7-aroylbenzothiophene-5-ylacetic acids. *J. Med. Chem.* **1986**, *29*, 2326–2329.
- 9. Blade-Font, A.; de Mas Rocabayera, T. Synthesis of dihydrobenzofurans from phenolic Mannich bases and their quaternized derivatives. *J. Chem. Soc. P1* **1982**, 814–848.
- 10. Schroeder, E.; Lehman, M.; Clemens, R. Benzofuran derivatives and their use. US *Patent 4,411,910*, **1983**.
- 11. Krasso, A.; Ramuz, H. Tricyclic imidazole derivatives and their therapeutic use. *US Patent 4599347*, **1986**.
- 12. Hach, V. Local anesthetics. XI. Simple chroman derivatives. *Coll. Czech. Chem. Commun.* **1959**, *24*, 3136–3140.
- 13. Brancaccio, G.; Lotteiri, G.; Viterbo, R. Nitration of substituted chromans. J. Het. Chem. **1973**, 10, 623–629.
- 14. Kleinschmidt, E. G.; Braeuniger, Harald. Bromination with N-bromosuccinimide. II. Reactions with 3,4-dimethylnitrobenzene. *Pharmazie* **1969**, *24*, 29–32.
- (a) Tercel, M.; Wilson W. R.; Anderson, R. F.; Denny, W. A. Hypoxia-selective antitumor agents. 12. Nitrobenzyl quaternary salts as bioreductive prodrugs of the alkylating agent mechlorethamine. *J. Med. Chem.* 1996, *39*, 1084–1094; (b) Zhu, Z.; Furr J.; Buolamwini J. K. Synthesis and flow cytometric evaluation of novel 1,2,3,4-tetrahydroisoquinoline conformationally constrained analogues of nitrobenzylmercaptopurine riboside (NBMPR) designed for probing its conformation when bound to the es nucleoside transporter. *J. Med. Chem.* 2003, *46*, 831–837.
- 16. Lusinchi, X.; Durand, S.; Delaby, R. Synthesis of some derivatives of N-methyl-1,2,3,4-isoquinoline. Compt. rend. **1959**, *248*, 426–428.
- Ksander, G. M.; deJesus, R.; Yuan, A.; Fink, C.; Moskal, M.; Carlson, E.; Kukkola, P.; Bilci, N.; Wallace, E.; Neubert, A.; Feldman, D.; Mogelesky, T.; Poirier, K.; Jeune, M.; Steele, R.; Wasvery, J.; Stephan, Z.; Cahill, E.; Webb, R.; Navarrete, A.; Lee, W.; Gibson, J.; Alexander, N.; Sharif, H.; Hospattankar, A. Diaminoindanes as microsomal triglyceride transfer protein inhibitors. *J. Med. Chem.* 2001, 44, 4677–4687.
- 18. Baeyer, A.; Perkin W.H. Jr. On some derivatives of hydrindonaphthene. *Chem. Ber.* **1884**, *17*, 122.
- 19. Nagasawa M.; Nishioka, H.; Okubo, A.; Arai, H. Preparation of substituted benzocycloalkanoyl-2-acetic acids. *Japanese Patent 04338358*, **1992**.
- Tanaka, Y.; Niwa, S.; Nishioka, H.; Yamanaka, T.; Torizuka, M.; Yoshinaga, K.; Kobayashi, N.; Ikeda, Y.; Arai, H. New Potent Prolyl Endopeptidase Inhibitors: Synthesis and Structure-Activity Relationships of Indan and Tetralin Derivatives and Their Analogs. J. Med. Chem. 1994, 37, 2071–2078.
- Siim, B. G.; Hicks, K. O.; Pullen, S. M.; van Zijl, P. L.; Denny, W. A.; Wilson, W. R. Comparison of aromatic and tertiary amine N-oxides of acridine DNA intercalators as bioreductive drugs – cytotoxicity, DNA binding, cellular uptake, and metabolism. *Biochem. Pharmacol.* 2000, *60*, 969–978.
- 22. Hicks, K. O.; Pruijn, F. B.; Sturman, J. R.; Denny, W. A.; Wilson, W. R. Multicellular resistance to tirapazamine is due to restricted extravascular

transport: a pharmacokinetic/ pharmacodynamic study in multicellular layers. *Cancer Res.* **2003**, *63*, 5970–5977.

- Hicks, K. O.; Pruijn, F. B.; Baguley, B. C.; Wilson, W. R. Extravascular transport of the DNA intercalator and topoisomerase poison *N*-[2- (dimethylamino)ethyl]acridine-4-carboxamide (DACA): diffusion and metabolism in multicellular layers of tumor cells. *J. Pharmacol. Exp. Ther.* 2001, 297, 1088–1098.
- 24. Hay, M. P.; Gamage, S. A.; Kovacs, M. S.; Pruijn, F. B.; Anderson, R. F.; Patterson, A. V.; Wilson, W. R.; Brown, J. M.; Denny, W. A. Structure-activity relationships of 1,2,4-benzotriazine 1,4-dioxides as hypoxia-selective analogues of tirapazamine. *J. Med. Chem.* **2003**, *46*, 169–182.
- 25. Siim, B. G.; Atwell, G. J.; Wilson, W. R. Oxygen dependence of the cytotoxicity and metabolic activation of 4-alkylamino-5-nitroquinoline bioreductive drugs. *Br. J. Cancer* **1994**, *70*, 596–603.
- 26. Wilson, W. R.; Thompson, L. H.; Anderson, R.F., Denny, W.A. Hypoxiaselective antitumor agents. 2. Electronic effects of 4-substituents on the mechanisms of cytotoxicity and metabolic stability of nitracrine analogues. *J. Med. Chem.* **1989**, *32*, 31–38.
- Wilson, W. R.; Pullen, S. M.; Hogg, A.; Hobbs, S. M.; Pruijn, F. B.; Hicks, K.O. *In vitro* and *in vivo* models for evaluation of GDEPT: quantifying bystander killing in cell cultures and tumors. *In:* C. J. Springer (ed.), Suicide Gene Therapy: Methods and Protocols for Cancer. Totowa, NJ: Humana Press, 2003.

 Table 1a. Physicochemical, in vitro and modelling parameters for TPZ, BTOs 2 and TTOs 3–19.

 O^{-}
 O^{-}

No	Ring C	R_1	pKa ^a amine	logP _{7.4} calc. ^b	Sol. ^c mM	E(m	1) V	HT29 hypo	Ο IC ₅₀ x μΜ	HT HC	C29 CR	SiHa hypo:	IC ₅₀ x μM	Sil HC	Ha CR	<i>I</i> cal) c. ^d
						Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM
1	na ¹	na ¹	na ^e	-0.33	9	-456	8	5.1	0.2	71	3	2.5	0.3	107	9	4.2	1.2
2	na ¹	NMe ₂	8.5	-0.85	46	-500	8	7.7	2.2	89	29	2.9	0.29	232	32	2.9	0.8
3		na ¹	0.0	0.79	3			15.2	6	27	1.5	8.3	0.39	31	5	9.8	2.7
4		NMe ₂	8.5	-0.07	>51	-486	8	2.3	0.6	152	35	0.7	0.3	111	5	6.5	1.8
5	\nearrow	NEt ₂	9.5	0.10	48			4.1		61		1.1		133		7.4	2.1
6	$\langle \downarrow \rangle$	NPr ₂	8.7	1.60	20			2.5		77		0.7		91		19.3	5.4
7	-)	N-piperidine	8.7	0.62	1.9			5.8	2.9	49	35	1.3	0.4	143		11.7	3.3
8		CH ₂ N- morpholine	7.4	0.80	48			21.4	7.9	20	5	8.8	1.7	44	12	9.6	2.7
9		NMe ₂	8.5	0.18	>54	-480	9	3.0		67		1.6	1.1	99		8.3	2.3
10	\frown	NEt ₂	9.5	0.35	>49			4.2	1.5	17	5	0.9	0.2	64	4	9.4	2.6
11	$\langle \downarrow \rangle$	NPr ₂	8.7	1.60	40			12.4		7		3.3	0.3	23	10	19.3	5.4
12	J~	N-piperidine	8.7	0.65	36			4.9	0.6	53	11	1.0	0.1	51	1	11.9	3.3
13		CH ₂ N- morpholine	7.4	0.88	46	-510	8	38		24		13.9		33		10.3	2.9
14	\sim	NMe ₂	8.5	0.42	>49			3.5	0.4	54	14	1.4	0.3	97	33	10.2	2.9
15	IVIE	CH ₂ N- morpholine	7.4	1.29	>49			19	5.6	25	2	8.4	3.2	50	3	13.8	3.9
16	\sim	NMe ₂	8.5	0.69												12.8	3.6
17		CH ₂ N- morpholine	7.4	1.45	49			6.3	0.8	25	3	2.6	0.5	54	16	15.2	4.2

18	$\left \begin{array}{c} \\ \end{array} \right $	NMe ₂	8.5	0.69	47			3.4		18		1.0		64		12.8	3.6
19		NMe ₂	8.5	1.25	>53	-488	8	5.2	0.9	54	32	1.2	0.1	88	32	17.7	4.9

Footnotes: ^aCalculated using ACD pKa. ^bCalculated using ACD logD. ^cSolubility of HCl salts in culture medium. ^dDiffusion coefficient in HT29 MCLs $\times 10^{-7}$ cm²s⁻¹. ^eNot applicable.

Table 1b. In vitro parameters for TPZ, BTOs 2 and TTOs 3–19.

no	Ring C	R_1	М	easured I	D^{a}		k _{met} b	min ⁻¹		$D ext{ for } X_{\frac{1}{2}}^{c}$			
			Mean	CV (%)	SEM	Mean	SEM	CV (%)	N(n) ^e		Mean	Error (%)	SEM
1	na ¹	na ¹	4.04	3.2	0.13	0.58	0.04	7.1	64(278)		45	7.8	3.5
2	na ¹	NMe ₂	2.3	3.6	0.08	0.54					35		
3		na ¹				0.47					77		
4	2	NMe ₂	5.9	5.6	0.33	0.44					62		
5		NEt ₂				1.08					45		
6		NPr ₂	19.2	7.0	1.4	1.07					72		
7		N-piperidine	11.9	4.1	0.50	1.25					52		
8		CH ₂ N-morpholine				0.19					119		
9		NMe ₂	8.4	5.5	0.46	0.74					57		
10	\square	NEt ₂				0.97					53		
11		NPr ₂				0.73					87		
12	7	N-piperidine				1.60					46		
13		CH ₂ N-morpholine				0.20					122		
14	Me	NMe ₂				1.49					44		
15		CH ₂ N-morpholine				0.13					173		
16	\frown	NMe ₂											
17		CH ₂ N-morpholine				0.69					80		
18	$\left \begin{array}{c} \\ \end{array} \right $	NMe ₂				1.78					46		

19	NMe ₂		1.52			58	

Footnotes: ^aDiffusion coefficient measured in aerobic HT29 MCLs × 10⁻⁷ cm²s⁻¹. ^bFirst order rate constant for metabolism in anoxic HT29 cell suspensions, scaled to the cell density in MCLs. ^cC, calculated; M, measured. ^dPenetration half distance in anoxic HT29 tumor tissue (see text). ^eNumber of separate determinations (total number of data points) for k_{met} .

no	Ring C	R ₁	PK/PD Model	CT ₁₀ ^a	µM.h		$M_{10}{}^b\mu M$		AUC _{pred}	HCD ^d
				Mean	SEM	Mean	SEM	N(n) ^e		
1	na ¹	na ¹	C×M	24.3	1.9	1698	62	49(261)	10200	4.1
2	na ¹	NMe ₂	C×M	26.1		1635			13800	2.7
3		na ¹	C×M	106.0		7735			22100	6.3
4).	NMe ₂		16.0		815			6730	6.4
5		NEt ₂		36.3		4521			15300	3.9
6		NPr ₂		31.8		3941			7810	6.6
7		N-piperidine	C×M	15.6		2444			3700	4.6
8		CH ₂ N-morpholine		76.2		1715			9860	9.9
9		NMe ₂	C×M	26.3		2219			7630	5.1
10	\square	NEt ₂		35.1		3806			10000	5.6
11		NPr ₂		66.3		5626			13000	7.9
12		N-piperidine		27.2		5022			13900	3.8
13		CH ₂ N-morpholine	C×M	176.4		4108			23000	10.0
14		NMe ₂	C×M	23.0		3057			11000	2.9
15		CH ₂ N-morpholine		122.9		1903			13700	11.1
16		NMe ₂								
17		CH ₂ N-morpholine	C×M	41.6		3294			8700	8.2
18	$\left\langle \right\rangle$	NMe ₂	C×M	19.5		4223			11200	3.5
19		NMe ₂		30.6		5404			11900	5.1

Footnotes: ^aArea under the concentration-time curve providing 10% surviving fraction in the clonogenic assay. ^bAmount of drug metabolised (per litre of cells) for one log of cell kill when cells are exposed to the CT_{10} for 1 h. ^cPredicted area under the plasma concentration-time curve required to give 1 log of cell kill in addition to that produced by a single 20 Gy dose of gamma radiation. ^dIn vivo hypoxic cytotoxicity differential = $LCK_{hypoxic}/LCK_{oxic}$. ^eNumber of separate determinations (total number of data points) for CT_{10} and M_{10} .

Table 2a. Physicochemical and in vitro parameters for TPZ and TTOs 20–32. $O^{\uparrow}_{N_{n}}$

No	Ring C	R_1	pKa ^a amine	logP _{7.4} calc. ^b	Sol. ^c mM	E(m	(1) V	HT29 hypox	IC ₅₀ μM	H1 H0	729 CR	SiHa hypo	ι IC ₅₀ x μM	Sil HO	Ha CR	D ca	alc. ^d
						Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM
1	na ¹	Н	na ^e	-0.33	9	-456	8	5.1	0.2	71	3	2.5	0.3	107	9	4.2	1.2
20	ρ	$(CH_2)_2NMe_2$	8.5	-1.05	>48	-487	10	2.4	0.1	23	0.2	0.30	0.02	87	9	2.6	0.73
21	$\langle \rangle$	(CH ₂) ₃ N- morpholine	7.4	-0.27	>49			22	4	8	3	3.4	0.8	28	6	2.8	0.79
22		Н	na	-0.04	0.1			117		4		23				3.6	1.0
23	\sim t	$(CH_2)_2NMe_2$	8.5	-1.01	49	-541	8	5.2	0.3	46	36	1.9	0.2	128	3	2.6	0.74
24		$(CH_2)_2NEt_2$	9.4	-0.68	47			10	4	113	53	3.4	0.7	122	25	2.9	0.81
25	U j	(CH ₂) ₃ N- morpholine	7.4	-0.27	46			49	12	6	4	29	4	14	10	2.8	0.79
26		(CH ₂) ₂ NMe ₂	8.5	-1.09	>50	-541	15	13	7	26	21	5	3	53	17	2.3	0.65
27		$(CH_2)_2NMe_2$	8.5	-0.54	>45	-453	8	1.5		19		0.3		60		3.2	0.90
28	\searrow	(CH ₂) ₃ N- morpholine	7.4	0.48	40			11	3	19	5	3.6	0.5	41	10	4.8	1.3
29		(CH ₂) ₂ NMe ₂	8.5	-0.26	47			4.1		14		0.7		66		3.9	1.1
30	Me N- Me	Et	7.6	0.08	46											7.6	2.1

31	EtN		4.1	-0.57	6	-390	8	1.5				0.8		80		2.7	0.76
32	MeN Et	t	5.8	-0.29	>47	-462	7	2.6	0.03	59	7	1.1	0.5	100	2	5.4	1.5

Footnotes: ^aCalculated using ACD pKa. ^bCalculated using ACD logD. ^cSolubility of HCl salts in culture medium. ^dDiffusion coefficient in HT29 MCLs $\times 10^{-7}$ cm²s⁻¹. ^eNot applicable.

Table 2b. In vitro parameters for TPZ and TTOs 20–32.

no	Ring C	R ₁	М	easured	D^{a}		k _{met} ^b	min ⁻¹		$D ext{ for } X_{\frac{1}{2}}^{c}$		${X_{\frac{1}{2}}}{\mu m^d}$	
			Mean	CV (%)	SEM	Mean	SEM	CV (%)	N(n) ^e		Mean	Error (%)	SEM
1	na ¹	Н	4.04	3.2	0.13	0.58	0.04	7.1	64(278)		45	7.8	3.5
20	γ	$(CH_2)_2NMe_2$	4.3	1.5	0.06	3.15					20		
21	\bigvee	(CH ₂) ₃ N-morpholine				0.20					64		
22	,	Н											
23	\bigwedge	(CH ₂) ₂ NMe ₂				0.60					36		
24	ò	$(CH_2)_2NEt_2$				0.26					57		
25		(CH ₂) ₃ N-morpholine				0.23					60		
26		(CH ₂) ₂ NMe ₂				0.87					28		
27		$(CH_2)_2NMe_2$	4.5	13.3	0.61	2.43					23		
28	\searrow	(CH ₂) ₃ N-morpholine				0.97					38		
29	0	(CH ₂) ₂ NMe ₂				0.59					44		
30	Me Ne	Et											
31	EtN	Н				2.20					19		
37	Et												
----	----	--	--	--	--	--	--						
52													

Footnotes: ^aDiffusion coefficient measured in aerobic HT29 MCLs × 10⁻⁷ cm²s⁻¹. ^bFirst order rate constant for metabolism in anoxic HT29 cell suspensions, scaled to the cell density in MCLs. ^cC, calculated; M, measured. ^dPenetration half distance in anoxic HT29 tumor tissue (see text). ^eNumber of separate determinations (total number of data points) for k_{met} .

Table 2c. In vitro parameters for TPZ and TTOs 20–32.

C	° ∼N ⁺ N	
Ų	N ⁺ O ⁻	NHR ₁

no	R ₁	R ₂	PK/PD Model	CT_{10}^{a})	uM.h		$M_{10}^{b}\mu M$		AUC _{pred} ^c μM.min	HCD ^d
				Mean	SEM	Mean	SEM	N(n) ^e		
1	na ¹	Н	C×M	24.3	1.9	1698	62	49(261)	10200	4.1
20	ρ	(CH ₂) ₂ NMe ₂		18.6		6732			23300	1.8
21	$\langle \cdot \rangle$	(CH ₂) ₃ N-morpholine	С×М	116.0		2660			20300	7.4
22		Н								
23	\bigwedge	$(CH_2)_2NMe_2$	C×M	43.3		3000			22700	2.8
24	°∽,	$(CH_2)_2NEt_2$	C×M	58.0		1718			12800	6.2
25		(CH ₂) ₃ N-morpholine	C×M	82.1		2155			16700	6.6
26	\$	(CH ₂) ₂ NMe ₂	C×M	42.5		4310			41100	1.6
27		$(CH_2)_2NMe_2$		6.2		1409			14200	0.6
28		(CH ₂) ₃ N-morpholine	M^2	84.6		9422			29900	33.0
29		(CH ₂) ₂ NMe ₂	C×M	46.1		3124			16600	4.2
30	Me Ne	Et								
31	EtN	Н	C×M	8.1		2022			41000	0.4

32	MeN	Et				

Footnotes: ^aArea under the concentration-time curve providing 10% surviving fraction in the clonogenic assay. ^bAmount of drug metabolised (per litre of cells) for one log of cell kill when cells are exposed to the CT_{10} for 1 h. ^cPredicted area under the plasma concentration-time curve required to give 1 log of cell kill in addition to that produced by a single 20 Gy dose of gamma radiation. ^dIn vivo hypoxic cytotoxicity differential = LCK_{hypoxic}/LCK_{oxic}. ^eNumber of separate determinations (total number of data points) for CT_{10} and M_{10} .

Table 3a. Physicochemical, in vitro and modelling parameters for TPZ and TTOs 33–42.

parameters to P^{-} $R_1 \rightarrow V^{+} N^{+} R_2$ O^{-}

No	R ₁	R ₂	pKa ^a amine	logP _{7,4} calc. ^b	Sol. ^c mM	E(m	E(1) mV		HT29 IC ₅₀ hypox μM		HT29 HCR		ι IC ₅₀ x μM	SiHa HCR		D calc. ^d	
						Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM
1	Н	na ^e	na ^e	-0.33	9	-456	8	5.1	0.2	71	3	2.5	0.3	107	9	4.2	1.2
33	CH ₃	CH ₂ OH	0.0	1.14	10			13.0	1.3	80	2.2	8.0	0.4	104	4	21.0	5.9
34	CH ₃	CH ₂ N- morpholine	7.1	0.99	36			2.9	0.01	72	13.2	1.7	0.2	134	4	21.0	5.9
35	CH ₂ OH	Н	0.0	0.69	5	-452	7	17		45		6.5	0.2	48	8	17.7	4.9
36	CH ₂ N- morpholine	Н	7.0	0.29	43			4.8	1.3	31	2.1	2.4	0.1	62	19	17.3	4.8
37	CH ₂ OH	CH ₂ N- morpholine	7.1	-0.18	48	-408	8	2.4	0.04	121	14	1.8	0.2	206		3.8	1.1
38	$(CH_2)_2OH$	Н	na	0.50	2			7.7	1.2	102	57	2.9	0.4	86		15.4	4.3
39	(CH ₂) ₂ N- morpholine	Н	7.5	0.50	>51	-431	8	3.6	1.1	36	5.2	1.3		84		18.5	5.2
40		CH ₂ N- morpholine	7.1	-1.30	51	-468	7	8.9	0.4	25	6.1	5.1	0.01	43		3.5	0.98
41	MeN	Н	5.8	0.09	>47	-344	8	13.1	1.1	2	0.15	3.1	0.1	6		20.9	5.8

42	Me	Н	5.2	0.19						21.6	6.0
	01										

Footnotes: ^aCalculated using ACD pKa. ^bCalculated using ACD logD. ^cSolubility of HCl salts in culture medium. ^dDiffusion coefficient in HT29 MCLs $\times 10^{-7}$ cm²s⁻¹. ^eNot applicable.

Table 3b. In vitro parameters for TPZ and TTOs 33–42.

no	R ₁	R ₂	r	Measured D	a	$k_{met}^{b} \min^{-1}$					$\frac{X_{1/2}}{\mu m^d}$		
			Mean	CV (%)	SEM	Mean	SEM	CV (%)	N(n) ^e		Mean	Error (%)	SEM
1	Н	na ^e	4.04	3.2	0.13	0.58	0.04	7.1	64(278)		45	7.8	3.5
33	CH ₃	CH ₂ OH				0.24					158		
34	CH ₃	CH ₂ N- morpholine				0.96					80		
35	CH ₂ OH	Н				0.47					104		
36	CH ₂ N-morpholine	Н				0.54					96		
37	CH ₂ OH	CH ₂ N- morpholine				0.90					35		
38	(CH ₂) ₂ OH	Н				0.54					91		
39	(CH ₂) ₂ N- morpholine	Н				0.54					100		
40		CH ₂ N- morpholine				0.31					57		
41	MeN	Н											

42	Me	Н						
	J~							

Footnotes: ^aDiffusion coefficient measured in aerobic HT29 MCLs × 10^{-7} cm²s⁻¹. ^bFirst order rate constant for metabolism in anoxic HT29 cell suspensions, scaled to the cell density in MCLs. ^cC, calculated; M, measured. ^dPenetration half distance in anoxic HT29 tumor tissue (see text). ^eNumber of separate determinations (total number of data points) for k_{met} .

Table 3c. In vitro parameters for TPZ and TTOs 33-42.

no	R ₁	R ₂	PK/PD Model	$CT_{10}^{a} \mu M.h$			$M_{10}^{b}\mu M$		AUC _{pred} c	HCD ^d
				Mean	SEM	Mean	SEM	N(n) ^e		
1	Н	na ^e	C×M	24.3	1.9	1698	62	49(261)	10300	4.1
33	CH ₃	CH ₂ OH		85.3		2394			10300	10.9
34	CH ₃	CH ₂ N-morpholine		18.6		2059			4960	5.8
35	CH ₂ OH	Н	C×M	49.7		2096			4150	9.2
36	CH ₂ N-morpholine	Н	C×M	24.1		1544			3390	8.8
37	CH ₂ OH	CH ₂ N-morpholine		24.4		2533			14100	2.7
38	(CH ₂) ₂ OH	Н	C×M	41.3		2641			6130	8.6
39	(CH ₂) ₂ N-morpholine	Н	C×M	15.8		984			2560	8.7
40	ST ST	CH ₂ N-morpholine		27.6		986			6680	5.7
41	Men	Н								
42	Me	Н								

Footnotes: ^aArea under the concentration-time curve providing 10% surviving fraction in the clonogenic assay. ^bAmount of drug metabolised (per litre of cells) for one log of cell kill when cells are exposed to the CT_{10} for 1 h. ^cPredicted area under the plasma concentration-time curve required to give 1 log of cell kill in addition to that produced by a single 20 Gy dose of gamma radiation. ^dIn vivo hypoxic cytotoxicity differential = $LCK_{hypoxic}/LCK_{oxic}$. ^cNumber of separate determinations (total number of data points) for CT_{10} and M_{10} .