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Figure S1. Membrane potential and firing rate responses underlying size tuning

(A and B) Cycle-averaged firing rate and membrane potential responses for a simple cell. Responses to 
stimuli of different outer diameters are shown in black; responses to annular stimuli of different inner 
diameters (20 degrees outer diameter) are shown in cyan. Dashed lines in (B) represent the mean of the 
blank response.

(C) Size-tuning curves for firing rate (F1 component) and membrane potential (DC and F1 components). 
Colors correspond to those in (A) and (B). Error bars and shading indicate the s.e.m. Increasing the grating 
size beyond the classical receptive field (2 degrees diameter) decreased the membrane potential 
modulation by approximately 30%, the mean depolarization by 40-50%, and the spike responses by 80-
90%. Stimulation of the surround alone with an annular grating of 2 degrees inner diameter evoked no 
hyperpolarization, but instead evoked a small, modulated subthreshold depolarization, which is consistent 
with that receptive field defined by synaptic input and membrane potential response being larger than that 
defined by spike response (Bringuier et al., 1999; Moore and Nelson, 1998; Tan et al., 2004).

(D) Normalized and averaged size tuning curves for the population of 26 simple cells. The cells were 
divided into two groups: 18 cells that responded maximally to stimuli of 2 degrees diameter (closed 
symbols) and 8 cells that responded maximally to stimuli of 4 degrees diameter (open symbols). The 20-
degree diameter, center-plus-surround stimulus caused a reduction of center-only response by 71% ± 4% 
in firing rate F1 (mean ± s.e.m.), 41% ± 4% in membrane potential DC, and 36% ± 3% in membrane 
potential F1.
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Figure S2. The effects of surround stimulation on the contrast-response function

(A-C) Firing rate and membrane potential responses to center gratings of different contrasts are shown for 
a simple cell, with (cyan) and without (black) an annular grating of 64% contrast present. Dashed lines 
represent the mean of the blank response. At lower center contrasts, the surround grating caused a slight 
mean depolarization and reduction in modulation amplitude of the membrane potential responses to the 
center stimulus. At higher center contrasts, the surround grating suppressed both the mean and the 
modulation components of the center responses with a consequent downward shift of the entire 
sinusoidally-modulated membrane potential response.

(D) Averaged contrast-response curves for the population of 19 simple cells, normalized to the center-only 
response at 64% contrast. For a center stimulus at 64%, the surround caused a reduction of the center 
response by 72% ± 5% in firing rate F1 (mean ± s.e.m.), 42% ± 6% in membrane potential DC, and 37% ± 
4% in membrane potential F1. The net effect of surround stimulation on firing rate responses was an 
almost complete suppression at lower center contrasts and a scaling at higher center contrasts (Cavanaugh 
et al., 2002; Sengpiel et al., 1998), whereas the surround stimulus on its own caused a noticeable 
depolarization that could be a cortical mechanism underlying a contrast-dependent increase in spatial 
summation (Anderson et al., 2001; Sceniak et al., 1999).
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Figure S3. Amplification of surround suppression by the threshold nonlinearity

(A) Suppression index (SI = 1 – Rcenter+surround/Rcenter) measured for firing rate (F1 component) plotted 
against that for membrane potential (peak depolarization) for 26 simple cells. SI is a measure of the 
percentage by which the surround stimulus decreases the response to the center stimulus (SI = 1 represents 
complete suppression; SI = 0 represents no suppression). These 26 cells (same as Figure S1) showed 
statistically significant suppression in firing rate F1. The mean SI (mean ± s.e.m.): 0.44 ± 0.05 for 
membrane potential and 0.71 ± 0.04 for firing rate.

(B) The relationship between mean membrane potential and mean firing rate is shown for 30-ms epochs of 
the responses to a variety of visual stimuli from one example cell (gray points). Open symbols show the 
averages of the points in 1-mV bins (mean ± s.e.m.). Black line is a power-law fit to the individual points 

by R(Vm )  a Vm Vrest 
p
, where R is firing rate, Vm is membrane potential, Vrest is resting potential, and 

the subscript + indicates a rectification at 0 (Anderson et al., 2000; Hansel and van Vreeswijk, 2002; 
Miller and Troyer, 2002). The power law fit (p = 4.5) lies close to the averaged points.

(C) Prediction of the firing rate responses to the center and center-plus-surround gratings by applying the 
power law to the membrane potential at each point in time during the responses. The cycle averages of 
membrane potential (top), recorded firing rate (middle), and predicted firing rate (bottom) are shown for 
the same cell in (B). The SI for membrane potential, measured firing rate, and predicted firing rate: 0.35, 
0.83, and 0.89.

(D) For the population of 26 cells, SI derived from the recorded firing rate is plotted against that derived 
from the predicted firing rate. The points cluster around a line of slope 1, indicating that threshold is likely 
the major mechanism accounting for the increase in suppression between membrane potential and firing 
rate.
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Figure S4. The effects of spiking on conductance estimates

Stimulus-evoked changes in conductance were measured by injecting steady currents of 3 different 
amplitudes during repeated visual stimulation (Anderson et al., 2000; Boudreau and Ferster, 2005). 
Electrode resistance, measured by injection of brief current pulses (–0.1 nA; 250 ms), was compensated 
off-line. At each point during the visual responses, membrane conductance was derived from the slope of 
the I-V curve. We derived the excitatory and inhibitory components of the visually-evoked conductance 
from the membrane equation:

Vvisual (t)  ge (t) Ve  gi(t) Vi  grest Vrest /g(t),

where Vvisual (t) is the response without injected current, Vrest is the resting potential, g(t) is the total 
conductance, and grest is the resting conductance. ge (t) and gi(t) are the visually-evoked changes in 
excitatory and inhibitory conductances relative to the resting, unstimulated level, and can be either 
positive or negative. Ve and Vi are reversal potentials for excitatory and inhibitory conductances. Vi is 
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assumed to arise from GABAA- and GABAB-mediated inhibition. For K+-gluconate solution, Ve and Vi are 
0 mV and –80 mV; for Cs+-based solution (which blocks GABAB receptors), Ve and Vi are 0 mV and –70 
mV.

This method has been strongly criticized on the grounds that action potentials and their underlying 
voltage-gated conductance changes could distort somatic measurement of synaptic conductance 
(Guillamon et al., 2006). In real cells, however, spikes likely originate in the first node of the axon and 
spike-related conductances in the soma are likely small (Yu et al., 2008). The similarity of the results with 
and without QX-314 and Cs+ (which block voltage-gated Na+ and K+ channels) support this conclusion 
(see Figure 3 in the main text). As an additional test of the possibility that spiking conductances distort our 
measurements, in 14 simple cells we have made two separate estimates of conductance from two sets of 
records. Estimate 1 was made from the full set of records at three current levels (0 pA and two different 
hyperpolarizing currents). Estimate 2 was made only from the records at the two hyperpolarizing currents, 
which contained few or no action potentials. As shown in this figure, these two estimates are effectively 
identical, suggesting strongly that the presence of action potentials does not distort our estimates of 
synaptic conductance.

(A) Cycle-averaged firing rate responses of a simple cell (same as Figure 2 in the main text) to a blank 
stimulus and 4 different visual stimuli, recorded with three different levels of injected current (0 pA, 
black; 150 pA, cyan; 300 pA, light blue).

(B) Corresponding membrane potential responses. For each of the 3 currents, two or three sets of traces 
are superimposed, but are so closely identical that only one trace is easily visible. The first set of traces are 
the recordings themselves, color coded as in (A). These are lying underneath the second set of traces 
(gray), which are the reconstructions of membrane potential made from Estimate 1 of synaptic 
conductances (using all currents). The third set of traces (magenta) are reconstructions of membrane 
potential made from Estimate 2 of the synaptic conductances (excluding the 0-current recordings). If the 
conductances derived from Estimate 1 had been distorted by the presence of spikes in the 0-current 
records, the two reconstructions of membrane potential would not overlap so closely.

(C) I-V relationship constructed at the peak (top) and trough (bottom) of membrane potential responses for 
each stimulus. Symbols show mean and s.e.m. for the three injected currents. Linear fits are made using 
either all three currents (gray), or only the two hyperpolarizing currents (magenta).

(D-F) Similar to (A)-(C) for a second simple cell, which did not spike during the injection of 
hyperpolarizing currents (cyan and light blue).

(G) Input resistance (slope of the I-V relationship) derived from the two hyperpolarizing currents alone 
plotted against input resistance derived from all three currents. The 70 points represent 5 stimulus 
conditions for 14 cells; 7 cells were recorded with Cs+ plus QX-314 in the recording electrode (squares) 
and 7 cells with K+ (circles). Measurements were made at the time of peak membrane potential for each 
stimulus. There is little difference between the two estimates of resistance, again indicating that the 
presence of spikes has little effect on conductance measurements.

(H) Same as (G), but for trough of the membrane potential response when no action potentials were 
evoked for any stimulus.

(I) Ratios of 3-point and 2-point measurements of input resistance plotted against firing rate in 0-current 
records at the peak membrane potential. Large firing rates are not associated with a strong decrease in 
measured input resistance. That is, ranges of input resistance recorded with and without spikes present 
(that is, with K+ and with Cs+/QX-314) are comparable.
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Figure S5. Orientation dependence of surround suppression of synaptic conductances

Surround suppression of both excitation and inhibition were significantly orientation tuned (one-sided 
paired t-test, p < 0.0001 for excitation; p<0.03 for inhibition).

(A) Change in peak excitatory conductance evoked by center-plus-surround stimulus with the surround at 
the preferred orientation plotted against the change in peak excitatory conductance evoked when the 
surround was rotated by 90 degrees. Circle and square symbols indicate simple and complex cells; open 
and closed symbols indicate cells recorded with K+-gluconate and Cs+-gluconate/methanesulfonate
solution in the recording pipette.

(B) Same as (A) for inhibitory conductance.
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Figure S6. Surround suppression in the LGN

(A) Cycle-averaged firing rate responses of 18 LGN cells in response to center only (black) and center-
plus-surround stimuli with the surround at the same orientation as the center (green) and at the orthogonal 
orientation (gray). Normalized to the center-only responses. The size of the center stimuli (2 or 4 degrees 
diameter) was optimal for cortical cells, and not for geniculate cells (see main text); the size of surround 
annuli (20 degrees diameter) was identical to that for cortical experiments. 

(B) Responses from (A), averaged across all geniculate cells.
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Figure S7. Orientation tuning of excitatory and inhibitory suppression

We asked whether orientation-dependent surround suppression in membrane potential is created by 
orientation-independent reduction of LGN input combined with orientation-dependent, suppressive 
intracortical input. In this scenario, the excitatory input would be maximally suppressed by the iso-
oriented surround and the inhibitory input would be maximally suppressed by the cross-oriented 
surround. When we compared the orientation dependence of suppression in excitation and inhibition, 
however, the two are significantly correlated (r = 0.46, p < 0.03), rather than anti-correlated as would 
have been predicted by this scenario.

Here we plot the difference of suppression in the presence of the iso- and cross-oriented surround: SIiso –
SIcross. Circle and square symbols indicate simple and complex cells; open and closed symbols indicate 
cells recorded with K+-gluconate and Cs+-gluconate/methanesulfonate solution in the recording pipette. 
Regression line: slope, 0.66; intercept, –0.04.
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Supplemental Text

1  The linearized ISN model

We begin with Equations 1 and 2 of the main text (Beer, 1995, 2006; Ermentrout, 1998; Pinto et 

al., 1996; Tsodyks et al., 1997; Wilson and Cowan, 1972), which we repeat here for convenience:

 E

d

dt
rE  rE  fE rE ,rI , iE 

 I

d

dt
rI  rI  fI rE ,rI ,iI 

. (1)

It is worth noting that these equations can be derived starting from equations for a spiking-neuron 

network, and that the resulting rate-model dynamics reasonably approximate the spiking-neuron 

dynamics (e.g., Pinto et al., 1996; Ermentrout, 1998; Shriki et al., 2003). In the vicinity of a fixed 

point, these equations can in turn be well approximated by linear equations (Hirsch and Smale, 

1974), which allow for more precise mathematical conclusions that apply when the perturbations 

away from the fixed point are sufficiently small. This section is provided for review; results are 

either explicit or implicit in Tsodyks et al. (1997).

1.1  The linearized equations

If we linearize the model about the fixed point, Equation 1 becomes:

 E

d

dt
rE  rE  jEErE  jEI rI  iE , (2)

 I

d

dt
rI  rI  jIErE  jII rI  iI , (3)

where jEE 
 fE

rE

,  jEI 
 fE

rI

, jIE 
 fI

rE

,  jII 
 fI

rI

, with all partial derivatives taken at the 

fixed point. The conditions on fE and fI – that they are increasing functions of excitatory input and 

decreasing functions of inhibitory input – ensure that the four jXY are all >0. Note the meanings of 

some quantities have changed somewhat relative to Equation 1: rE and rI are now defined to be 

zero at the fixed point and so represent deviations from the fixed-point rates, rather than absolute 

rates. The inputs iX (X = E or I) are now defined to be fX /iX times the deviation of the input 

from the fixed-point input.

Equations 2 and 3 can be re-expressed as the matrix equations:

T
d

dt
r  r  Jr  i   1  J r  i , (4)

or
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d

dt
r  T1 1  J r  T1i , (5)

where the vector of firing rates r 
rE

rI









, the vector of external inputs i 

iE

iI









, the connectivity 

matrix J 
jEE  jEI

jIE  jII











, 1
1 0

0 1









, τI = kτE for some constant k > 0, τ = τE, and T 

1 0

0 k









.

1.2  Conditions under which the model operates as an ISN

A network is an ISN if the following two criteria are satisfied:

(a) Excitatory instability: the network, linearized about the fixed point, would be unstable in the 

absence of feedback inhibition.

(b) Overall stability: the strength of feedback inhibition is sufficient to stabilize the network.

The network is stable if and only if both eigenvalues of T1 1 J  have real parts less than 0, 

and is unstable if and only if at least one eigenvalue has real part >0.

Condition (a) requires that jEE  1 : Without feedback inhibition, the weight matrix would be

J 
jEE 0

jIE  jII











, and the eigenvalues of T1 1 J would be jEE 1 and  jII 1 / k . For a 

linear network, instability is equivalent to having an eigenvalue greater than 0, which is true 

precisely when jEE  1 . The condition jEE  1 is in turn equivalent to the condition found in the 

main text for instability of the excitatory subnetwork, namely that the excitatory nullcline have a 

positive slope at the fixed point: from Equation 2, the equation for the excitatory nullcline (drE/dt

= 0), omitting the external input (which does not alter the slope), is 1 jEE rE  jEIrI  0 , giving 

the slope rI / rE  jEE 1 / jEI .

Condition (b) can be restated as the eigenvalues of T1 1 J  having positive real part, and, 

because this matrix is 2x2, it in turn is equivalent to two conditions: the determinant of this 

matrix is positive, and the trace of this matrix is positive. The determinant condition reduces to 

det 1 J  0 , or 1 jEE  1 jII  jEI jIE  0 . The trace condition is 1 jII  k jEE 1 .
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The equation for the inhibitory nullcline, omitting the external input, is 

 jIErE  1 jII rI  0 , so its slope is rI / rE  jIE / 1 jII  . Rearranging the determinant 

condition, one finds jIE / 1 jII  jEE 1 / jEI , that is, the determinant condition is equivalent 

to the condition that the slope of the inhibitory nullcline is greater than the slope of the excitatory 

nullcline. Thus, as stated in the main text, a requirement for stability of the overall network is that 

the inhibitory nullcline have greater (more positive) slope than the inhibitory nullcline at the 

fixed point, where they cross.

The trace condition is always met if the inhibitory time constant is sufficiently fast relative 

to the excitatory time constant, that is, if k is sufficiently small. In this regard, it is worth noting 

that the time constant in a rate model typically corresponds to the synaptic time constant rather 

than the cellular RC time constant (Ermentrout, 1994; Shriki et al., 2003). Given the strength of 

NMDA receptors, which have a slow time course, at intracortical excitatory synapses (Gil and 

Amitai, 1996), and the paucity of the slow GABAB form of inhibition in somatically-targeted 

inhibition (Tamas et al., 2003), the inhibitory time constant may be considerably faster than the 

excitatory time constant.

1.3  The fixed point for a given input

From Equation 4, the equation for the fixed point rFP, where dr/dt = 0, is rFP  1  J 1
i . We can 

compute 1  J 1
=

1

det(1  J)

1 jII  jEI

jIE 1 jEE











. As just noted, stability requires 

that det 1 J  0 . The two entries in the left column of the matrix are always positive, meaning 

that an increase in external input to excitatory cells raises both rE and rI. The upper right entry is 

always negative, meaning that an increase in external input to inhibitory cells lowers rE. The sign 

of the lower right entry depends on whether jEE  1 or jEE  1 , that is, whether the network is an 

ISN or a non-ISN. If it is an ISN, this term is negative, so an increase in external input to 

inhibitory cells lowers rI.

2  The changes in firing rates and synaptic inputs to E and I populations after changes in 

external inputs

In this section, we will derive in general the changes in E cell and I cell firing rates and the 

changes in synaptic input (total excitation and total inhibition) received by E cells and by I cells, 
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as a function of arbitrary changes in external inputs, and determine the key ways in which ISN 

and non-ISN behavior are distinct. This is an extension of the analysis presented in the main text 

in the section “Alternative models of the surround input”. 

As in the main text, we now use a more specific form of nonlinearity, defining the nonlinear 

functions as fE rE ,rI , iE  gE wEErE  wEIrI  iE  and fI rE ,rI , iE  gI wIErE  wII rI  iI , where 

gE and gI are nonlinear, monotonically increasing functions of a scalar argument. We let 

DE  wEErE  wEIrI  iE be the argument of gE , i.e. the drive to the E cells, and similarly 

DI  wIErE  wIIrI  iI is the drive to the I cells. We let EE and IE represent the external excitatory 

and inhibitory input to the E cells, and similarly let EI and II represent external excitatory and 

inhibitory input to I cells, with iE  EE  IE and iI  EI  II . We assume the network is at the 

center-only fixed point, and we add surround input. Changes induced by the surround input are 

indicated with a prefix of .

In the main text, we separated rI into the sum of two components (each dependent on 

changes in inputs to, and firing rates of, the E cells): the change associated with the vertical 

movement of the excitatory nullcline, and the change associated with the movement along the 

excitatory nullcline from the value of rE at the center-only fixed point to the new, center-plus-

surround fixed point.  We can similarly determine rE in terms of inputs to and firing rates of the 

I cells. In response to a change in external inputs to I cells, the inhibitory nullcline is moved 

horizontally by rE1  
EI  II

wIE

, which is the change in rE that preserves the value of DI for 

fixed rI and thus preserves the relationship that defines the nullcline, rI  gI (DI ) . The change in 

rE associated with movement along the new inhibitory nullcline from the center-only value of rI

to the new fixed point is rE2 
rI

 I

where  I is the average slope of the inhibitory nullcline 

between the two values of rI (the values at the old and new fixed points). Letting  E be the 

average slope of the excitatory nullcline between the two values of rE (which was simply called 

 in the main text), we arrive at the two equations

rE  
EI  II

wIE


rI

 I

(6)

  rI 
EE  IE

wEI

 ErE (7)

These equations in turn can be solved to give rE and rI as functions of the changes in external 

inputs to the circuit:
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rE 
 I

 I  E

EE  IE

 IwEI


EI  II

wIE









     (8)

       rI 
 I

 I  E

EE  IE

wEI


 E (EI  II )

wIE









       (9)                              

We know that  I  0 , while  E is positive for an ISN and negative for a non-ISN.  All of the w’s 

are positive. Thus, we see the expected results, that in any network, a decrease in external drive to 

E cells (that is, in EE  IE ) lowers both rE and rI , and an increase in external drive to I cells 

(in EI  II ) lowers rE ; whereas an increase in external drive to I cells raises rI in a non-ISN 

and lowers rI in an ISN. 

Note also that the factor 
 I

 I  E

is >1 in an ISN and <1 in a non-ISN. From this 

relationship we can derive the two “paradoxical” ISN synaptic input properties (and non-

paradoxical non-ISN properties) discussed in the text. Equation 8 implies that an increase in 

external excitation to I cells of EI causes a decrease of feedback excitation to I cells, wIErE , 

that is larger in magnitude than EI in an ISN (i.e., the total excitation received by I cells is 

reduced), but smaller in magnitude than EI in a non-ISN (total excitation received by I cells is 

increased).  This underlies the paradoxical result that addition of external excitation to I cells 

lowers rI in an ISN, while it raises it in a non-ISN (Tsodyks et al., 1997). Similarly, Equation 9 

shows that an increase in external inhibition to E cells, IE , causes a decrease of feedback 

inhibition to E cells, wEIrI , that is larger in magnitude than IE in an ISN, reducing the total 

inhibition received by E cells, but is smaller in magnitude in a non-ISN, raising the total 

inhibition received by E cells. In both ISN and non-ISN, however, such an increase in IE

causes a decrease in rE . (In an ISN, rE can decrease despite a net decrease of inhibition, because 

this decrease is balanced by the excess withdrawal of recurrent excitation, beyond the level that 

would just support the decrease in rE , as discussed in the main text.) 

Equations 8 and 9 are not closed-form solutions for rE and rI , because  E depends on 

rE (which defines the region over which the nullcline slope is averaged) and similarly  I

depends on rI . Rather, they are self-consistent equations for rE and rI . Our conclusions, 

however, only depend on the signs of  E and  I . Thus, as long as we assume that the sign of the 

slope of the E nullcline does not change between the two fixed-point values of rE , our

conclusions will hold.  Alternatively, we can allow arbitrary changes in the E nullcline slope, and 

simply define an ISN as a network in which  E , the average E nullcline slope between the two 



15

fixed-point values of rE , is positive and a non-ISN as one in which it is negative, and our 

conclusions will hold for networks so defined.

We next consider the surround-induced changes in the total excitatory and total inhibitory 

input received by the cells. We define [E  E] to be the change in total excitation received by 

excitatory cells, given by [E  E]  EE  wEErE ; and [I  E] to be the change in total 

inhibition received by excitatory cells, [I  E]  IE  wEIrI ([I  E] was referred to as 

I TOT in the main text). That is, the excitation and inhibition received are defined to be the 

corresponding elements inside the nonlinearity, while the nonlinearity converts this input to 

target firing rate.  Then, using equations 6-9, we find

          [E  E]  EE  wEErE (10)

                             EE  wEE

 I

 I  E

EE  IE

 IwEI


EI  II

wIE









 (11)

                    [I  E]  IE  wEIrI  EE  wEI ErE (12)                                    

 EE  EwEI

 I

 I  E

EE  IE

 I wEI


EI  II

wIE









 (13)

Comparing equations 10 and 12, or 11 and 13, we see that [X  E] , where X is a variable that 

takes the values E or I, is given by [X  E]  EE  AX , where the additional term AX has the 

same sign for X  E and X  I in an ISN, but opposite signs in a non-ISN. Thus, in a non-ISN, 

for [E  E] and [I  E] to both be negative, as observed, it must be the case that EE is 

negative and is larger in absolute value than max(AE , AI ) .  We also see that changes in all 

external inputs except EE – that is, changes in any external drive to I cells or in inhibition to E 

cells – together make a contribution that, in a non-ISN, has opposite signs for [E  E] and

[I  E] , but in an ISN has the same sign for [E  E] and [I  E] . EE always 

contributes with the same sign to both [E  E] and [I  E] , in both ISNs and non-ISNs (for 

[I  E] for a non-ISN, EE is multiplied by 1
 E

 I  E

 1
| E |

 I  | E |
 0 ). 

Similarly, we define [E  I ]  EI  wIErE and [I  I ]  I I  wIIrI , and find

                     [E  I ]  EI  wIErE  II 
wIE

 I

rI

                                       I I 
wIE

 I  E

EE  IE

wEI

 E

EI  II

wIE
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                       [I  I ]  I I  wIIrI

                                       I I 
wII I

 I  E

EE  IE

wEI

 E

EI  II

wIE











Here we see the expected results that decreasing the external drive to E cells decreases both the 

total excitation and the total inhibition that I cells receive (because it decreases both rE and rI , 

Equations 8-9), and that increasing external excitation to I cells increases both the total excitation 

and the total inhibition I cells receive in a non-ISN, but lowers both the total excitation and the 

total inhibition I cells receive in an ISN.  Thus, for I cells as for E cells, addition of external 

excitation to the local circuit can cause a decrease in both the inhibition and the excitation the 

cells receive in an ISN but not in a non-ISN. Decreasing external inhibition to I cells also lowers 

both the total excitation and the total inhibition I cells receive in an ISN, and decreases the total 

excitation received by I cells in a non-ISN, but can either raise or lower the total inhibition 

received by I cells in a non-ISN.

3  Multi-neuron ISN model

We have thus far considered models that describe only the mean dynamics of the excitatory and 

inhibitory cell populations. Here, we develop a model with the same mean behavior, but in which 

each population has many neurons with varied connectivity. We find that the variability in 

behavior among the individual neurons mimics, at least qualitatively, what is seen in 

experiments. For a network of N excitatory and N inhibitory neurons, the dynamics are described 

by the matrix equation:

 d

dt
rN  rN  WNrN  iN . (21)

Here, 



rN 

rE
1



rE
N

rI
1



rI
N



























is the 2N-dimensional vector of firing rates at a given time (the superscripts 

indicate the neuron’s identity among the N excitatory or inhibitory neurons). WN is the 2N-

dimensional connectivity matrix, which is composed of 4 NN blocks: the top left, top right, 

bottom left, and bottom right blocks correspond to the E  E , I  E , E  I , and I  I

connections. The Experimental Procedures in the main text explain how the matrix WN and the 
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inputs iN were generated. Note that if N = 1 and the variance in weights and inputs is zero, 

Equation 21 becomes equivalent to the 2-dimensional model with τE = τI. For simplicity, we make 

 equal for all cells, which does not affect the fixed point (though it can affect its stability). It can 

be shown analytically that with no variance in the weight matrix (all entries within a block 

identical), the stability of this model and the mean response of each population at the fixed point 

is identical to that of the 2-d model whose four weights are given by N times the values of the 

weights in the corresponding block of the 2N-d model, and inputs to E and I populations given by 

the mean of inputs to E cells and to I cells, respectively, in the 2N-d model. Thus, we can put the 

mean model behavior roughly where we want it by finding a 2-d model with the behavior we 

desire, and then choosing the mean weight in each block and the mean inputs to E and I cells so 

that the 2N-d model, if weights were uniform, would have fixed point and mean response given 

by this 2-d model.

Adding variance to the weights (see Experimental Procedures in the main text) can in 

principle cause the model to lose stability. To help prevent this, the sum of excitatory and sum of 

inhibitory weights to each cell were preserved (described in Experimental Procedures), and we 

verified (by numerical computation of eigenvalues) that with this procedure stability was 

maintained.

4  Conditions under which the cortex may operate in the ISN regime

Latham et al. (2000) (Appendix B) argued that cortical fixed points with firing rates larger than a 

fraction of a Hz, i.e., most cortical activity states, should exist on the positive-sloping portion of 

the excitatory nullcline. This calculation relied on two uncertain assumptions. First, the gain of 

cortical cells was set to a value observed in responses to suprathreshold DC current injections in 

slices (McCormick et al., 1985). Because cortical cells in vivo typically fire in response to voltage 

fluctuations starting from a mean potential below threshold (Anderson et al., 2000), their gain is 

lower than the gain measured above threshold, and lower still at low firing rates (Hansel and van 

Vreeswijk, 2002; Miller and Troyer, 2002). Second, a value must be chosen for NEE, the average 

number of neurons in the excitatory assembly from which a single neuron in the assembly 

receives excitatory input (convergence). If the assembly’s firing rate is rE, then the average rate 

of unitary EPSPs originating from within the assembly is NEErE . Letting VEPSP be the amplitude 

of unitary EPSPs, Latham et al. (2000) assumed that NEEVEPSP 1000 mV, e.g., NEE = 2000 for

VEPSP = 1/2 mV. While cat V1 neurons receive 1000s of excitatory synapses (Beaulieu and 

Colonnier, 1985), they receive excitatory inputs from a smaller number of distinct neurons and a 

still smaller number from within the local circuit. It is estimated that within rat whisker barrel 
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cortex each layer 4 excitatory neuron receives input from only about 200 other layer 4 excitatory 

neurons (Lubke et al., 2003). Furthermore it is not clear how many of these participate in the 

equivalent of a single excitatory neural assembly, as in Figure 6A (main text). For example, 

during stimulus-driven activity in V1, such an assembly might be restricted to cells of similar 

preferred orientation.

We can repeat the calculation of Latham et al. (2000) with an in vivo gain function as 

follows. We assume fE  k(V V0) for V > V0, where V0 is the resting potential, and k and α are 

constants, with V  wEErE wEI rI  iE (Anderson et al., 2000; Hansel and van Vreeswijk, 2002; 

Miller and Troyer, 2002; Priebe et al., 2004). Assuming inhibition maintains stability, the cortex 

becomes an ISN when fE /rE 1 (with the derivative taken at the fixed point). We compute

fE /rE wEE k1/ fE

1

 . We can replace fE with rE on the right-hand side, because rE  fE on the 

excitatory nullcline and so in particular at the fixed point. Thus, the requirement fE /rE 1

becomes rE 
1

wEEk1/












1

. As representative numbers for cortical gain, we choose k =

.0075Hz/mV3, α = 3, which produces a 60 Hz response for a 20 mV depolarization and 104 Hz 

for 24 mV (compare Figure 2 of Priebe et al., 2004). wEE is the change in mean voltage produced 

per change in rE. If individual EPSP’s are 1/2 mV in amplitude, with a time constant of 10 ms, 

then wEE  NEE (5 mV ms) 
NEE  mV

200 Hz
. Using these numbers, we obtain the estimate that cortex 

should operate as an ISN for rE 
6300 Hz

NEE
1.5

. For NEE = 25, 50, 100, 200, 400, or 800, cortex 

should operate as an ISN at fixed points that have excitatory firing rates greater than 50, 18, 6.3,

2.2, 0.8, or 0.3 Hz. It is therefore plausible that V1 operates as an ISN in some or all 

physiologically relevant ranges. Given our lack of knowledge of the value of NEE, however, the

calculation cannot go beyond demonstrating plausibility; the question must be decided by 

empirical evidence, such as we present here.
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