Preliminary Notations:

- (1) Let PN_e denote the whole VPC fate model shown in Figure 5. Let $PN_{e_{sg}}$ be a single VPC fate model shown in Figure 6 whose six copies are embedded in PN_e .
- (2) Let threshold_1 be the criterion of PN_e for determining the 1° fate. Let threshold_2 be the criterion for determining the 2° fate.
- (3) The *interval* is a variable used for the comparison with *interval_1* and *interval_2*.
- (4) A time course from the time epoch τ_i to $\tau_{i+interval}$ is denoted as $[\tau_i, \tau_{i+interval})$. τ_i is the first time epoch inducing such an over-threshold state whose length *interval_1* is longer than or equal to the given *interval*; τ_j is the first time epoch inducing such an over-threshold state whose length *interval_2* is longer than or equal to the given *interval_2* is longer than or equal to the given *interval_2* is longer than or equal to the given *interval_2* is longer than or equal to the given *interval_2*.
- (5) Let *simulation_time* be a given simulation time period.

Rule I is a biological fate determination rule to determine the final VPC fate of $PN_{e_{sg}}$, where

In the case of *lin-12wt* or *lin-12ko* existing:

	′1°:	$\begin{split} &((m_{18}^{[\tau_i,\tau_i+interval_1}) \geq threshold_1) \land (m_{30}^{[\tau_j,\tau_j+interval_2}) \geq threshold_2) \land (m_{18}^{\tau_i} \leq m_{30}^{\tau_j}) \land \\ &(interval_1 \geq interval) \land (interval_2 \geq interval)) \lor ((m_{18}^{[\tau_i,\tau_i+interval_1}) \geq threshold_1) \land (m_{30}^{[\tau_j,\tau_j+interval]} \leq threshold_2) \land (interval_1 \geq interval)) \\ &(interval_1 \geq interval) \land (interval_2 \geq interval)) \lor ((m_{30}^{[\tau_j,\tau_j+interval]} \leq threshold_2) \land (interval_1 \geq interval)) \\ &(if both the concentrations of 1^{\circ} (m_{18}) \text{ and } 2^{\circ} (m_{30}) \text{ are not less than} \\ &the threshold values (modeled to two entities: threshold_1 and threshold_2), \\ ∧ the over-threshold states are maintained longer than or equal to a given \\ &time length (modeled as interval), the corresponding cell fate will \\ &be adopted according to the time epoch that the threshold is firstly exceeded; \\ ∨ the concentration of m_{30} has ever decreased below threshold_2 \\ &during [\tau_j, \tau_{j+interval}) \text{ while } m_{18} \text{ is kept over threshold_1 at} \\ &all times during [\tau_i, \tau_{i+interval_1}), then the 1^{\circ} fate will be adopted.) \\ \end{aligned}$
Cell fate=	2° :	$\begin{split} &((m_{18}^{[\tau_i,\tau_i+interval_1}) \geq threshold_1) \land (m_{30}^{[\tau_j,\tau_j+interval_2]} \geq threshold_2) \land (m_{18}^{\tau_i} > m_{30}^{\tau_j}) \land \\ &(interval_1 \geq interval) \land (interval_2 \geq interval)) \lor \\ &((m_{18}^{[\tau_i,\tau_i+interval]} \leq threshold_1) \land (m_{30}^{[\tau_j,\tau_j+interval_2]} \geq threshold_2) \land \\ &(interval_2 \geq interval)) \end{split}$ $(if \ m_{18} \ and \ m_{30} \ exceed \ threshold_1 \ and \ threshold_2, \ respectively, \\ &each \ over-threshold \ state \ is \ maintained \ longer \ than \ or \ equal \ to \ the \ given \ interval, \ and \ the \ time \ epoch \ that \ m_{30} \ exceeds \ threshold_2 \\ &is \ earlier \ than \ the \ one \ of \ m_{18}; \ or \ the \ concentration \ of \ m_{18} \ has \ ever \ decreased \ below \ threshold_1 \ during \ [\tau_i, \tau_{i+interval}] \ while \ m_{30} \ is \ kept \ in \ an \ over-threshold \ state \ during \ [\tau_j, \tau_{j+interval_2}], \ then \ the \ 2^\circ \ fate \ will \ be \ adopted.)$

 $\int 3^\circ$: otherwise;

In the case of *lin-12gf* existing:

$$\text{Cell fate} \left\{ \begin{array}{l} 1^{\circ}: & ((m_{18}^{[\tau_i,\tau_i+interval_{-1}]} \geq threshold_{-1}) \wedge (m_{30}^{[\tau_j,\tau_j+interval_{-2}]} \geq threshold_{-2}) \wedge \\ & (interval_{-1} \geq interval) \wedge (interval_{-2} \geq interval)) \vee \\ & ((m_{18}^{[\tau_i,\tau_i+interval_{-1}]} \geq threshold_{-1}) \wedge (m_{30}^{[\tau_j,\tau_j+interval]} \leq threshold_{-2}) \wedge \\ & (interval_{-1} \geq interval)) \\ & (if \ m_{18} \ \text{is greater than or equal to } threshold_{-1}, \ \text{and the} \\ & \text{over-threshold state is maintained longer than or equal to} \\ & \text{interval without respect to the time course expression of } 2^{\circ}, \\ & \text{the } 1^{\circ} \ \text{fate will be adopted.} \right) \\ 2^{\circ}: & (m_{18}^{[\tau_i,\tau_i+interval]} \leq threshold_{-1}) \wedge (m_{30}^{[\tau_j,\tau_j+interval_{-2}]} \geq threshold_{-2}) \wedge \\ & (interval_{-2} \geq interval) \\ & (if \ m_{30} \ \text{exceed } threshold_{-2} \ \text{and is kept in an over-threshold state all the times} \\ & \text{during } [\tau_j, \tau_{j+interval}), \ \text{and once the concentration of } 1^{\circ} \ \text{is} \\ & \text{less than } threshold_{-1} \ \text{during } [\tau_i, \tau_{i+interval}), \ \text{the } 2^{\circ} \ \text{fate will be adopted.} \end{array} \right.$$

Rule II is another biological fate determination rule to determine the final VPC fate of $PN_{e_{sg}}$, where

In the case of *lin-12wt* or *lin-12ko* mutant existing:

	$ \begin{array}{ll} & 1^{\circ}: & ((m_{18}^{\tau_i} \geq threshold_1) \land (m_{30}^{\tau_j} \geq threshold_2) \land (m_{18}^{\tau_i} \leq m_{30}^{\tau_j})) \\ & \qquad \lor ((m_{18}^{\tau_i} \geq threshold_1) \land (m_{30}^{[\tau_j, simulation_time)} < threshold_2)) \end{array} $		
Cell fate= \langle	(Once m_{18} firstly exceeds threshold_1, the 1° fate will be adopted no matter how m_{30} changes.)		
	$\begin{array}{lll} 2^{\circ}:&((m_{18}^{\tau_{i}}{\geq}threshold_1) \wedge (m_{30}^{\tau_{j}}{\geq}threshold_2) \wedge (m_{18}^{\tau_{i}}{>}m_{30}^{\tau_{j}})) \\ & \lor ((m_{18}^{[\tau_{j},simulation_time)}{<}threshold_1) \wedge (m_{30}^{\tau_{j}}{\geq}threshold_2)) \end{array}$		
	(Once m_{30} firstly exceeds threshold_2, the 2° fate will be adopted no matter how m_{18} changes.)		
	3° : otherwise;		
In the case of <i>lin-12gf</i> existing:			
	$(1^\circ:\ m_{18}^{ au_i}{\geq}threshold_1$		
Cell fate= \langle	(1°: $m_{18}^{\tau_i} \ge threshold_1$ (Once m_{18} exceeds $threshold_1$, the 1° fate will be adopted.)		
	$2^{\circ}: m_{18}^{[au_i, simulation_time)} < threshold_1$ (if m_{18} keeps a low concentration less than threshold_1 until the end of		
	(if m_{18} keeps a low concentration less than threshold_1 until the end of simulation_time, the 2° fate will be adopted.)		

 3° : otherwise;