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1 Pairwise or Multiple Sequence Alignment?

In contrast to many existing metagenomics studies, we used pairwise sequence alignment,

instead of multiple sequence alignment (MSA), to align 16S rRNA sequences. This is a

critical issue that merits more explanations. MSA is used to infer homology segments of

input sequences. An underlying assumption is that input sequences should share some sim-

ilarities, which may not be valid for 16S rRNA based studies that target on hypervariable

regions of rRNA gene (e.g., V6 and V3 regions). It has been reported in the literature that

microbial communities are much more diverse than expected [1, 2, 3]. To further demon-

strate this, we performed a simulation study where we calculated the pairwise distances

of the sequences of a seawater sample and plotted a histogram of the distances in Figure

1. We report that only about 2% sequence pairs have a genetic distance smaller than

0.1. In other words, for every two randomly selected sequences, there is a 98% probability

that the two sequences are from two distantly related OTUs. The sequences were aligned

by using the Needleman-Wunsch algorithm. We will shortly see that if MSA is used, the

histogram will be further skewed toward the right. We then performed another simulation

study to demonstrate how the presence of a large proportion of highly diverse sequences

affects the alignment of sequences with a small genetic distance. The following describes
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in detail how the experiment was conducted. We first randomly selected two sequences

with a distance of 0.06 calculated based on pairwise alignment, then performed a multiple

sequence alignment of the two sequences along with 100 sequences randomly selected from

the data (using MUSCLE with the default parameter), and recorded the pairwise distance

of the first two sequences. In order to eliminate statistical variations, the experiment was

repeated 100 times. The so-obtained distances are plotted in Figure 2, from which we

can see that the pairwise distances computed based on MSA are much larger than 0.06.

The maximum distance is 0.22 and the average is 0.09. This can be explained by the fact

that MSA is aimed to minimize the sum of pairwise scores, and in order to align the 100

highly diverse sequences, the alignment quality of the first two sequences has to be sacri-

ficed, leading to an inflated estimate of genetic distance. Note that we include only 100

randomly selected sequences in this experiment. With more unrelated sequences and/or if

unrelated sequences are more diverse, the distance between the first two sequences would

be even larger. This leads to an interesting observation: whether two sequences are from

the same OTU (e.g., species or genus) should be physically determined by their sequence

composition. Now with the use of MSA, the distance and thus whether the two sequences

belong to the same OTU are also determined by sequencing depth (i.e., the number of

sequences sampled) and the environment from which they are extracted (i.e., how diverse

other sequences are), which is a highly undesirable property. Another interesting thing we

should point out is that the harder an MSA algorithm tries to minimize the sum of pairwise

scores by aligning highly diverse sequences, the larger the distance between the two first

sequence can be. This is exactly the reason why MUSCLE with the default parameter

yields a worse result than that obtained by using the simple parameter (Figure 3 in the

main text). From the above analysis, we conclude that MSA should not be used for the

purposes of estimating microbial diversity, even if the optimal MSA could be performed.

2 NAST and RDP-Pyro

We performed some experiments to compare the prediction performance of ESPRIT with

those obtained by using NAST [6] and Pyro [5]. Speaking strictly, NAST is not a com-

putational algorithm for taxonomy independent analysis, but a multiple sequence aligner.

We replaced the Needleman-Wunsch algorithm with NAST in our ESPRIT algorithm. Un-

like MUSCLE where input sequences are compared against each other, NAST performs

the alignment by comparing input sequences against a set of core sequences. As with all
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Figure 1: Sequence pairs with distances less than 0.10 only account for a very small fraction

of all possible pairs (2.25% for this example). The experiment was performed on the 53R

seawater sample.
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Figure 2: Pairwise distances computed based on multiple sequence alignment are much

larger than that obtained by using the Needleman-Wunsch algorithm, which is 0.06 in this

example. The maximum distance is 0.22 and the average is 0.09.
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other MSA algorithms, NAST is computationally expensive and can process only about 10

sequences per minutes [6]. Moreover, NAST is a web application that only allows at most

500 sequences per batch [6]. For a large project, one has to break the data into some small

pieces. Pyro is a recently developed 16S rRNA data analysis pipeline as a part of the well-

known RPD project. Pyro is fundamentally different from all other existing methods: it

first trains computational models using a small number of representative rRNA sequences,

and then aligns each query sequence against trained models (instead of other sequences).

Hence, the alignment module of Pyro has a linear (instead of quadratic) computational

complexity with respect to the number of sequences, and has the potential to scale to large

projects. However, as with all other model-based methods, the performance of Pyro relies

on how accurate the trained models represent a diverse microbial community. As with

NAST, Pyro is also a web application that allows users to submit sequences through the

Internet. Pyro can process a maximum of slightly more than 150K unique sequences, due

to the limitation of the clustering tool used in the algorithm [5].

Figures 3 and 4 present the numbers of OTUs as a function of distance levels, estimated

by various algorithms performed on the two benchmark datasets. Since NAST is a MSA

algorithm, the estimation results are consistent with those presented in the previous section.

We did not spend extra efforts to investigate why NAST performs worse than MUSCLE.

One possible reason is that NAST yields a better overall alignment of input sequences

measured by the sum of pairwise scores, leading to larger genetic distances among closely

related sequences, compared to MUSCLE using the simple parameter. It is interesting to

note that the numbers of OTUs estimated by Pyro are much smaller than those obtained

by all other methods when the pairwise distance is small, but larger than MUSCLE and

ESPRIT when the distance level is relatively large. We should emphasize that the number

of OTUs does not tell the whole story; what we are really interested in is how individual

sequences are grouped into OTUs. We found that Pyro assigns a distance of zero to a large

number of seemingly unrelated sequences. Since Pyro is a web application and the paper

does not provide a detailed description of the algorithm and numeric examples, we send

these sequences to the RDP staff. They were very helpful and confirmed that this issue

lies in the alignment where only one model position is shared by these sequences. When a

sequence is not represented by any model but has to find a hit, the above error will occur.

This is exactly the reason why the number of OTUs estimated by Pyro is smaller than

all other methods when the sequence variation is small. As mentioned before, microbial

communities are very diverse. For example, it is estimated by [12, 3] that the number of
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Figure 3: Numbers of OTUs as a function of distance levels estimated by using ESPRIT,

MUSCLE+DOTUR, NAST, and Pyro algorithms performed on simulation data with each

read containing up to 3% sequencing errors. The right panel is the zoom-in figure of the

left panel.

species of bacterial per gram of soil varies between 2000 to 8.3 million. Though this number

is debatable, it might not be possible to accurately represent such diverse environments

using a limited number of models. This problem is not limited to Pyro, but exists in other

model-based approaches. It is possible to improve the prediction accuracy of Pyro by using

more rRNA representative sequences for training, but in the current formulation, it seems

that Pyro performs worse than a model-free approach such as ESPRIT.

3 Preparation of Air Sample

Air filters containing particulate from over 100,000 m3 of filtered air were extracted for

DNA. The DNA was quantified by Qubit (Invitrogen) using the Quant-iT dsDNA HS

assay kit. One ng of DNA was added to each of 96 wells containing 20 µl of PCR master-

mix consisting of BioRad’s SYBR Green SuperMix and 500 nM equimolar ratio of primer

adapter Am 5’- CCATCTCATCCCTGCGTGTCCCATCTGTTCCCTCCCTGTCTCAG

(GITACCTTGTTACGACTT) -3’, and biotinylated primer adapter Bm 5’- BiotinTEG/

CCTATCCCCTGTGTGCCTTGCCTATCCCCTGTTGCGTGTCTCAG (ATTAGATAC-

CCIGGTAG) -3’. The internal 16S ribosomal RNA primer sequences (in parentheses) of

the Am and Bm adapter primers were the modified 1492r and 787f sequences, respectively,

adopted from [9] and target the 16S rRNA V6 hypervariable region. PCR reactions were
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Figure 4: Numbers of OTUs as a function of distance levels estimated by using ESPRIT,

MUSCLE+DOTUR, NAST, and Pyro algorithms performed on simulation data with each

read containing up to 5% sequencing errors. The right panel is the zoom-in figure of the

left panel.

subjected to melting at 94 ◦C for 2 min followed by 25 cycles of 94 ◦C denaturing for 45 sec,

55 ◦C annealing for 45 sec, and 72 ◦C extension for 1 min. After 25 cycles, the reactions

were subjected to additional 72 ◦C extension for 6 min. Residual primers and unincorpo-

rated NTPs were removed by Montage PCR filter units (Millipore). Cleaned elutions were

pooled, quantified as described above, and visualized on a gel to confirm a discreet 705 bp

product. The prepared 16S PCR product material was subjected to the emPCR process

to make the bead-attached single stranded templates required for 454 pyrosequencing as

described by [8].

4 Hcluster Algorithm

Hcluster is a hierarchical clustering algorithm. Conventional methods take a full distance

matrix as input. They work well when the number of sequences is small. However, given

a full run of 454 data, a full distance matrix can be as large as 1000GB. Consequently,

conventional methods can handle only a limited number of sequences. In contrast, Hcluster

uses a sparse matrix and processes distances on-the-fly, thus overcoming the memory issue

and paving the way for processing millions of reads. The idea is very simple, but it took

us considerable efforts to optimize the code. Hcluster currently only supports complete

linkage. It has been shown in [12] that complete linkage gives a more conservative result
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than average/nearest linkages for the purposes of estimating microbial diversity. However,

Hcluster can be easily extended to support average/nearest linkages. We below provide a

toy example to illustrate how it works.

Let us consider a distance matrix generated from five sequences (Table 1). We first

transform it into a sparse matrix where the distances are sorted in an ascending order, as

shown in Table 2.

A (1) 0.00 0.01 0.015 0.03 0.04

B (2) 0.01 0.00 0.03 0.02 0.05

C (3) 0.015 0.03 0.00 0.02 0.03

D (4) 0.03 0.02 0.02 0.00 0.02

E (5) 0.04 0.05 0.03 0.02 0.00

Table 1: Distance matrix of a toy example

Row Col Value

1 2 0.01

1 3 0.015

3 4 0.02

2 4 0.02

4 5 0.02

2 3 0.03

1 4 0.03

3 5 0.03

1 5 0.04

2 5 0.05

Table 2: Sparse matrix

In order to perform clustering sequentially, we introduce a cluster array to record the

state information of each cluster generated during hierarchical clustering, and a link table

to record the number of links between active clusters. The state information includes the

number of sequences (denoted by the Num Seqs field) in a cluster and the index of its

topmost parent cluster (denoted by the Parent field. If no parent exists, the field is set to

−1). The link table contains an index array storing active clusters, and a symmetry matrix

that counts the number of links between the active clusters that have been processed.
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Initially, the link table is empty and each sequence is regarded as a single cluster with no

parent. Hence, the first five unit of the cluster array is set to 1 in the Num Seqs field and

−1 in the Parent field:

Cluster Array

Index 1 2 3 4 5 0 0 0 0

Num Seqs 1 1 1 1 1

Parent -1 -1 -1 -1 -1

Link Table

∗

∗ ∗

∗ ∗ ∗

Now we begin to process the distance matrix presented in Table 2 step by step. The

following operations are repeated until the entire matrix is processed:

1. Read a pairwise distance;

2. Update the cluster array and the link table;

3. If two clusters can be merged into one, merge them;

4. If cluster merging takes place, update the cluster array and the link table;

The first input is (1, 2, 0.01). Here, the first two elements represent the indexes of two

sequences and the third one is the distance between them. We look up the link table and

recognize that neither cluster 1 nor cluster 2 was active in the previous steps. With the

new input, they become active and are added to the link table:

Cluster Array

Index 1 2 3 4 5 0 0 0 0

Num Seqs 1 1 1 1 1

Parent -1 -1 -1 -1 -1

Link Table

1 2

1 ∗ 1

2 ∗ ∗

∗ ∗ ∗

Some explanations on the link table are necessary. We use L(a, b) to denote the number

of the links between clusters a and b stored in the link table. Since the matrix is symmetry,

L(a, b) = L(b, a). We skip the trivial details of how to access L(a, b) in the matrix. By

adding clusters 1 and 2, we set L(1, 2) to 1.
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We then check if cluster merging is needed. For clusters a and b containing Num Seqs(a)

and Num Seqs(b) sequences, respectively, the maximum possible number of links between

a and b is l max = Num Seqs(a)× Num Seqs(b). If L(a, b) = l max, then the complete

linkage information between a and b is known. Since the input is sorted in an ascending or-

der and in each step only one pair of clusters is updated, we only need to examine whether

the current pair or their parents meet this criterion. If yes, they are guaranteed to be the

pair that has the minimal complete linkage distance among all unmerged clusters, and thus

can be merged together immediately.

In the above example, Num Seqs(1) × Num Seqs(2) = 1 and L(1, 2) = 1. Thus,

clusters 1 and 2 can be merged into one cluster. The cluster array is then modified by

adding a new cluster with index 6, and the Parent of clusters 1 and 2 are pointed to it.

Clusters 1 and 2 in the link table are also merged. The link information of both clusters is

passed to cluster 6.

Cluster Array

Index 1 2 3 4 5 6 0 0 0

Num Seqs 1 1 1 1 1 2

Parent 6 6 -1 -1 -1 -1

Link Table

6

6 ∗

∗ ∗

∗ ∗ ∗

Before proceeding, we describe the rule of merging the link information of two clusters

in the link table. Suppose that clusters a and b form a new cluster c. The following

operations are performed:

L(c, x)← L(x, a) + L(x, b) ∀x 6= a & x 6= b ,

L(x, a)← 0 , L(x, b)← 0 ∀x .

Then, a and b are removed from the link table, and L(a, x) and L(b, x) are no longer valid.

The clustering result is reported to the output:

Output

1 2 0.01 − > 6

Now we go to the next input (1, 3, 0.015). Because the topmost parent of sequence 1 is

6, we examine the pair (6, 3) instead. Cluster 3 becomes an active cluster and is added to

the link table with L(6, 3) set to 1:
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Cluster Array

Index 1 2 3 4 5 6 0 0 0

Num Seqs 1 1 1 1 1 2

Parent 6 6 -1 -1 -1 -1

Link Table

6 3

6 ∗ 1

3 ∗ ∗

∗ ∗ ∗

Since L(6, 3) < Num Seqs(6) × Num Seqs(3), no cluster merging happens and we

proceed to the next input (3, 4, 0.02). The link table is updated using the previous described

rules:

Cluster Array

Index 1 2 3 4 5 6 0 0 0

Num Seqs 1 1 1 1 1 2

Parent 6 6 -1 -1 -1 -1

Link Table

6 3 4

6 ∗ 1

3 ∗ ∗ 1

4 ∗ ∗ ∗

Now sequences 3 and 4 are merged into one cluster with a new index 7. By following

the rules described above, the link information L(3, 6) is passed to L(6, 7). Both the cluster

array and link table are changed into:

Cluster Array

Index 1 2 3 4 5 6 7 0 0

Num Seqs 1 1 1 1 1 2 2

Parent 6 6 7 7 -1 -1 -1

Link Table

6 7

6 ∗ 1

7 ∗ ∗

∗ ∗ ∗

and a new line is added to the output:

Output

1 2 0.01 − > 6

3 4 0.02 − > 7

We proceed to the next input (2, 4, 0.02). Since the topmost parents of clusters 2 and

4 are clusters 6 and 7, respectively, we perform the operation L(6, 7) ← L(6, 7) + 1 and

nothing else needs to be changed. The similar operations are performed for the next three

inputs (4, 5, 0.02), (2, 3, 0.03) and (1, 4, 0.03). The cluster array remains unchanged while

the link table is modified into:
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Link Table

6 7 5

6 ∗ 4

7 ∗ ∗ 1

5 ∗ ∗ ∗

Clusters 6 and 7 now have a complete link since L(6, 7) = Num Seqs(6)×Num Seqs(7),

and thus can be merged into a new cluster 8. Accordingly, all clusters whose topmost

parents were assigned to clusters 6 or 7 should be modified, as shown below:

Cluster Array

Index 1 2 3 4 5 6 7 8 0

Num Seqs 1 1 1 1 1 2 2 4

Parent 8 8 8 8 -1 8 8 -1

Link Table

8 5

8 ∗ 1

5 ∗ ∗

∗ ∗ ∗

The output is printed:

Output

1 2 0.01 − > 6

3 4 0.02 − > 7

6 7 0.03 − > 8

We skip the remaining steps. Finally, we get the following clustering result:

Output

1 2 0.01 − > 6

3 4 0.02 − > 7

6 7 0.03 − > 8

8 5 0.05 − > 9

The clustering diagram is shown in Figure 5.

From the above toy example, we can see that Hcluster demands only a link table that is

much smaller in size than a full distance matrix. When applied to real data, the link table

is usually very sparse, and thus the memory required can be further reduced significantly.

Although an additional cluster array is required, its size grows only linearly with respect

to the number of sequences, which is negligible when many sequences are processed. For

these reasons, Hcluster is capable of handling many hundreds of thousands of sequences in

a personal computer.
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4.1 Benchmark Study

The accuracy of Hcluster was benchmarked against DOTUR and the latest version of

MOTHUR (http://schloss.micro.umass.edu/mothur/Main Page). The same distance

matrix generated by using the Needleman-Wunsch algorithm was used in the three algo-

rithms to facilitate the comparison. The performance of both DOTUR and MOTHUR is

dependent on the choice of precision level (i.e., the -p flag in DOTUR and the precision pa-

rameter in MOTHUR). Using a precision level equal to that of the distance matrix, which

is 10000 in this experiment, yields an exact solution, while using a lower precision level

can significantly reduce computational time of the two algorithms but results in only an

approximate solution. By setting the precision level to 10000, the three methods generated

the exactly same result (Figure 6). This is expected since the three algorithms implement

the standard hierarchical clustering. We also performed an experiment to compare the

computational complexity of the three algorithms. The parameter -stop in DOTUR and

the cutoff value in MOTHUR were set to 0.10, and the precision level was 100. Hence, the

comparison is somehow in favor of DOTUR and MOTHUR. When applying MOTHUR, we

removed the duplicated sequences and used a sparse matrix that contains only the sequence

pairs with distances less than the cutoff value, which significantly reduced the processing

time and the size of the resulting distance matrix. We applied the three algorithms to the

FS396 dataset, which contains 17666 sequence and is the largest dataset in size among the

eight seawater samples. The running time is reported in Table 3. Since DOTUR integrated

both clustering and statistical analysis into one program, for fairness of comparison, the

running time of both MOTHUR and ESPRIT spent on statistical inference is also reported.

As can be seen from the table, Hcluster is computationally very efficient and takes about 4

and 7 seconds to cluster and statistically analyze the FS396 data, respectively. In contrast,

it takes DOTUR about 128 minutes to finish the two tasks. MOTHUR significantly im-

proves DOTUR, but performs slightly worse than HCluster. As with DOTUR, MOTHUR

loads a distance matrix into the memory before proceeding to perform clustering. Hence,

it does not fundamentally address the computational issue associated with processing mas-

sive pyrosequencing data. As mentioned in the main text, given a full run of 454 data, a

full distance matrix can be as large as 1000 GB. Even if we remove duplicated sequences

and sequence pairs that have a pairwise distance larger than a cutoff value (say 0.1), the

resulting distance matrix in a sparse format can be 20GB, which is too big to be directly

loaded into the memory in most computers. For this reason, we were unable to process the

air sample using DOTUR and MOTHUR. It should be noted that the size of a distance
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Table 3: Comparison of the running times of ESPRIT, MOTHUR, and DOTUR spent on

clustering and statistical analysis.

ESPRIT MOTHUR

data Num. of reads cluster statistical analysis cluster statistical analysis DOTUR

FS396 17666 4s 7s 52s 67s 128m

matrix grows quadratically with respect to the number of sampled sequences. Hcluster

addresses this problem by processing distances on-the-fly (i.e., process one distance at a

time).
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0 0.05 0.1 0.15 0.2
0

100

200

300

400

500

600

700

pairwise distance

N
u

m
b

er
 o

f 
O

T
U

s

 

 

DOTUR
MOTHUR
HCluster
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three methods yield the exactly same result.
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Figure 8: Lineage-through-time curves, ACE and Chao1 estimates generated by using ES-

PRIT and MUSCLE+Dotur algorithms performed on 53R, 55R, 112R and 115R datasets.
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Figure 9: Lineage-through-time curves, ACE and Chao1 estimates generated by using ES-

PRIT and MUSCLE+Dotur algorithms performed on 137, 138, FS312 and FS396 datasets.
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