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Requirements for functional fusion proteins 
 

 The addition of a fluorescent protein tag may affect the functionality of the 

original protein. This is especially true when the target protein forms many functional 

contacts with other proteins, such as the dense arrangement of chemotaxis receptors. 

Therefore it is important to measure functionality for each fusion protein. For example, 

we observe that Tar-tdEos is non-functional as measured by chemotaxis swarm plates, 

yet Tar-mEos is partially functional. In this case, tdEos may be too bulky to allow 

functional interactions between chemotaxis receptors.  In general, tags must not sterically 

interfere with specific surfaces of the protein, including binding sites. The tag must not 

aggregate or form higher ordered structures such as dimers which may affect the function 

or location of the protein. Tags must fold properly and should not affect the folding or 

stability of the protein. Finally, tags must not target the protein for degradation or 

modification. Predicting whether a particular fusion protein will be functional is not yet 

possible, therefore it is necessary to test combinations of different photoactivatable 

proteins fused to either the N- or C- termini of proteins, with or without a linker.  
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The mean localization precision of all proteins is 15 ± 9 nm and 

the mean Nyquist resolution within clusters is 27 ± 8 nm  
 

When the background noise is negligible compared to the signal, the error in the 

fitted position for a single protein is Nsyx =),(σ , where s is the standard deviation of a 

Gaussian approximating the true point-spread function, and N is the total number of 

detected photons. Since N varies for different proteins (Figures S2B and S2D), the 

localization error will also vary. We display PALM images with all proteins that have 

been localized to 40 nm or less, based on our signal-to-background analysis (Figure S7). 

With this threshold, the mean localization error is 15 nm with 90% of Tar proteins 

localized between 4 and 31 nm and 90% of CheW proteins localized between 3 and 34 

nm (Figures S2A and S2C).  

It is important to distinguish the localization precision of single proteins from the 

resolution of an image. Localization precision refers to how well the locations of 

individual proteins are known, whereas resolution is the ability to distinguish multiple 

proteins from each other. The Nyquist criterion offers a rigorous definition of resolution 

and specifies that, for any signal, the sampling interval must be smaller than half the 

desired resolution [1]. For a 2D PALM image, the Nyquist-defined spatial resolution is 

therefore related to the density of proteins: 2)/2( T≥ρ , where T is the resolution (in nm) 

and ρ is the density of proteins localized to T or better (in nm-2). The Nyquist resolution 

is highest for the densest regions of an image, which in our case, are the large polar 

clusters. These large clusters (> 100 fluorescent fusion proteins) each have a Nyquist 

resolution that varies from cluster to cluster depending on the density of labeled proteins 

and how well they are localized. These resolutions vary from 10 to 40 nm, with a mean 

resolution of 30 nm for Tar clusters and 24 nm for CheW clusters. For all large clusters, 

the mean Nyquist resolution is 27 nm with a standard deviation of 8 nm. 
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Our resolution is insufficient to observe regular protein 

packing within clusters  
 

Based on crystal structures of membrane receptors [2] and cryo-electron 

micrographs of arrays of receptors [3,4], chemotaxis receptors are believed to assemble 

into tightly packed arrays of trimers of dimers [5]  or hedgerows of dimers [2]. To search 

for repeating arrays of proteins, we first plotted the position of each protein as the center 

of its 2D Gaussian representation observed in the PALM image. This leads to a 

representation of the PALM image in which proteins are located at their most likely 

position (Figure S3B). We then examined these representations of dense clusters of Tar 

proteins and visually compared the images with two different models for how chemotaxis 

receptors arrange in the membrane (trimers of dimers [5]  and hedgerow of dimers [2]). 

In each case, we did not observe any obvious arrays. We then compared radial 

distribution functions for clusters (example shown in Figure S3C) to the radial 

distribution of the ideal trimers of dimers configuration (Figure S3E top) as well as the 

ideal hedgerow of dimers arrangement (Figure S3G top) and found that the peaks of the 

measured radial distribution functions did not match the peaks of the radial distribution 

functions for the ideal array in either case. There was considerable variation among the 

Tar clusters we examined, so we compared many individual cluster radial distribution 

functions to the two models. We also averaged the radial distribution function from > 100 

lateral clusters imaged in TIR illumination to the two models but observed no convincing 

alignment of peaks.  

To determine whether further analysis should be performed, we estimated the 

resolution required to distinguish between the two models. We performed Monte Carlo 

simulations in which the positions of proteins in the two models were randomly moved to 

simulate localization error. We added random offsets to the ideal protein position array 

for each model by sampling errors from a scaled version of our observed error 

distribution (see Figure S2C). The position of the proteins as well as the radial 

distribution functions for simulations of σ = 1 nm and σ = 2 nm error for each model is 

shown (Figures S3D-G). As the error in position of the protein increases, the ideal 
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ordered array becomes difficult to observe. In the trimers of dimers model, σ = 1 nm of 

error is sufficient to obscure the array and the radial distribution function, such that 

neither coincides with the ideal model. The hedgerow of dimers model is distinguishable 

until σ = 3 nm of error in protein position, and has more obvious peaks in the radial 

distribution that correspond to the ideal model than in the trimers of dimers model. Our 

mean localization precision of 15 ± 9 nm is larger than our estimate of the required 

localization precision necessary to distinguish between the two models. With the 

invention of brighter genetically encoded fluorophores and ultra-low drift microscopes it 

may be possible to observe regular protein spacing in clusters, especially if clusters 

contain only one type of receptor. 
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Quantification of PALM signal background (false-positive 

rate) 
 

Even a ‘bare,’ extensively cleaned coverslip will fluoresce. Additional spurious 

fluorescence is introduced by the cell growth medium. To quantify our general false-

positive rate, we subjected the areas between cells to the same analysis we did for the 

cells themselves. The cell-free regions should not contain any photoactivatable proteins. 

This false-positive rate was 3-15 events/μm2.  

To determine the additional background from cellular autofluorescence, we 

counted the number of falsely-detected proteins in cells lacking fluorescent proteins. We 

find this background to be 4 proteins/μm2 above the 3-15 events/μm2. 

In cells with photoactivatable proteins, such as Tar-mEos and tdEos-CheW, we 

count hundreds or thousands of proteins per μm2. By comparing these numbers, we find 

that our false-positive rate is 0.3-1.5% of the average density of Tar proteins, and 0.6-3% 

of the average density of CheW proteins per cell (Figure S7). The background rate is this 

low because in PALM, non-photoactivatable background is bleached prior to image 

acquisition.  
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Derivation of the chemoreceptor stochastic self-assembly 

model 
 

To understand how the distribution of cluster sizes arises within a genetically 

identical population of cells, we constructed a simple model. We assume that receptors 

are inserted into the membrane at random locations, form dimers (or trimers of dimers), 

and diffuse in the membrane until they are captured by a pre-existing cluster (Figure 

S9A).  At any moment, a given cell has a particular arrangement of clusters with various 

sizes, and the growth of a given cluster will depend on the competition for receptors with 

other nearby clusters. Initially, we will assume that the clusters within a cell are 

stationary and do not diffuse. We would like to determine how the radius of a cluster 

affects the probability that a newly expressed receptor diffusing inside the membrane will 

be captured by that cluster.  

Consider the rate of growth of a particular compact cluster of radius a . For 

simplicity, we treat the surrounding clusters as an absorbing boundary at radius R (Figure 

S9B), where R is the typical distance between clusters within the cell. Receptors (or 

receptor dimers) will be deposited in the annulus between a cluster of radius a  and the 

effective absorbing boundary at radius R . Each receptor will diffuse until it is absorbed, 

either by the inner absorbing boundary at a  or by the outer absorbing boundary at R  

(representing the surrounding clusters). The rate of growth of the cluster with radius a  is 

therefore determined by the total rate at which receptors are deposited in the annulus 

times the fraction of receptors absorbed by the inner boundary. To solve for this fraction, 

consider the diffusion equation for receptors, 0)()( 2 =+∇=
∂

∂ γrCD
t
rC (at steady-state) 

where )(rC is the concentration of receptors at radius r within the annulus, D  is the 

diffusion coefficient of the receptors, and γ  is the insertion rate per unit area of the 

receptors into the membrane.   

Solving the differential equation for )(rC  at steady state, one obtains 

2
12 )ln(

4
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D
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γ  , where 1c  and 2c  are constants. After applying the 
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appropriate boundary conditions, 0)()( == RCaC , the solution is 
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aRJ πγ . Note that the current, J , is independent of the 

diffusion coefficient D  but rather depends on the radius a  of the cluster and the typical 

distance R  to the surrounding clusters. These two parameters define a “basin of 

attraction” for a given cluster, which determines whether new receptors inserted near a 

given cluster will diffuse onto that cluster and be captured, or instead diffuse away to be 

captured by one of the surrounding clusters. When the distance between clusters is large 

compared to the cluster size, aR >> , the current is approximately ( )aR
RJ

ln2

2πγ
≈ . If 

receptors are added to clusters but do not leave clusters, the growth rate of a cluster is 

simply the current of receptors onto that cluster, 

( )aR
RJ

dt
dN

ln2

2πγ
≈= .        (1) 

From the above instantaneous rate of growth of a cluster we can learn how 

clusters grow over time. The number N of receptors in a cluster is related to the cluster 

radius by AaN Δ= 2π , where AΔ  is the area per receptor. We can therefore use 

πANa Δ= to obtain the following expression for the growth rate of a cluster,  

( ) )ln()ln(ln)ln(2

2

NNAR
R

dt
dN

−
=

−Δ−
=

β
α

π
γπ ,      (2) 

where we have defined constants 2Rγπα =  and ( )πβ AR Δ−= ln)ln(2 . Integrating 

dt
dN , we obtain the expression [ ]∫ ∫=−

N

N

t

t

dtdNN
0 0

)ln( αβ , which has the solution 

)ln()ln())(1()( 0000 NNNNNNtt +−−+=− βα . The term )( 0tt −  is simply the age of a 

cluster, )(Nt , which we can rewrite as 
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[ ])ln()ln())(1(1)( 000 NNNNNNNt +−−+= β
α

.    (3) 

This expression relates the age of a cluster with its size; the relevant parameters are the 

typical distance between clusters R , the area of a receptor AΔ , the rate of insertion of 

new receptors into the membrane γ , and the number of receptors at nucleation 0N . 

From the above relation between cluster age and cluster size, we can now estimate 

the distribution of cluster sizes in growing cells.  In an exponentially growing population 

of cells, the number of cells at time t is τt
cells etN ∝)( , where τ1 is the growth rate, and 

the total membrane surface area grows with the same exponential dependence as well. 

New clusters continuously nucleate such that the average number of clusters per cell is 

constant at steady state. Therefore, the total number of clusters also grows exponentially, 

such that τt
clusters etN ∝)( . At a particular time 0t the number of clusters with a given age 

tage is the number of clusters produced at time 0t -tage, or ( ) τagett
ageclusters ettN −∝− 0)( 0 . 

Thus, there are more young clusters than old clusters. The probability that a given cluster 

is tage old is τaget
age etP −∝)( , since τ0te is constant. We write this as  

τ

τ
tetP −=

1)( ,          (4) 

where ( )tP is the probability that a cluster is of age t and τ1  is the growth rate. The 

distribution of cluster sizes, measured by the number of proteins in a cluster, is  

))(()( NtP
dN
dtNP = ,         (5) 

where )(Nt  is the age of a cluster of size N receptors. Substituting Eq. 1 and 4 into Eq. 5 

results in  

( ) τ

γπτ
)(

2

ln2)( Nte
R

aRNP −≈ .         (6) 

Finally, substituting Eq. 3 into Eq. 6 results in an expression for the distribution of cluster 

sizes as a function of N , the number of receptors in a cluster,  

[ ] [ ] ατβπ
τα

)ln()ln())(1( 000ln)ln(2)( NNNNNNeANRNP +−−+−Δ−≈ ,   (7) 



 10

where the approximation holds when the distance between clusters is large compared to 

the size of a cluster, and for clusters large enough to not diffuse appreciably. 

 However, small clusters in particular would be expected to diffuse within the cell 

membrane, leading to the attrition of some clusters of size N as they aggregate with other 

clusters. To account for this loss of clusters by diffusion and aggregation, Eq. 6 is 

modified by a survival probability, survP , such that  

)()()( NPNPNP survtot = .         (8)  

If a cluster of size N  has an attrition rate of )(Nμ , then   

( ) ( )∫
=

∫
=

−

⎟
⎠
⎞

⎜
⎝
⎛−−

N

N

Nt
dN

dt
dNNdttN

surv eeP 0

'
1)(

0

''
'
'')( μμ

.      (9) 

Substituting the expression for dtdN /  (Eq. 2) into Eq. 9, we obtain 

( )( )[ ] '

0

'ln'

)(
dNNN

surv

N

NeNP
∫

=
−− αβμ

.       (10) 

To determine the attrition rate ( )Nμ , we assume that the rate of attrition via 

cluster diffusion and aggregation is the inverse of the typical time for a cluster of size 

N to diffuse to the boundary at R , so that 2)()( RNDN =μ , where )(ND  is the 

diffusion coefficient for a cluster of size N . For diffusion in a two-dimensional 

membrane, kTbD = , where k  is the Boltzmann constant, T is temperature, the motility 

is ))ln((
4

1 al
h

b c −=
πη

 (see [6]), η is the viscosity of the membrane, h is the thickness of 

the membrane, a  is the cluster radius, and cl  is a cutoff set by the dimensions of the cell. 

Therefore,  

( )π
ηπ

μ ANl
Rh

kT
R

NDN c Δ−== ln
4

)()( 22 .      (11) 

Substituting Eq. 11 into Eq. 10,  
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0
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where ( )πAlc c Δ−= ln2 . Performing the integral in the exponent yields 
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Recall that the probability, )(NPtot , of observing a cluster of size N  is given by 

the product of )(NP and )(NPsurv . While some of the parameters in )(NPtot  are not 

known, from the above analysis the functional dependence of )(NPtot on N is known to 

be 
2

432 ))(ln()ln(
1)( NNcNNcNc

tot ecNP −+−≈ ,       (14) 

where we neglect a weak (logarithmic) N  dependence of 1c . We can use Eq. 14 to fit our 

histograms of cluster sizes. Normalizing the distribution fixes the constant 1c . We fit 

)(NPtot to our normalized distribution using unconstrained nonlinear optimization with 

the free parameters 2c , 3c , and 4c .  

The good fit of our model (Figures 4A and 4B) to the data strongly suggests that 

cluster growth is the result of simple receptor aggregation, not complex biological 

regulation. Importantly, the distribution of sizes does not result from an equilibrium 

partitioning of receptors among clusters, but rather from the continuous growth and 

aggregation of clusters in an exponentially growing and dividing population of bacteria. 
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