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Kinase family prediction

To maximise the coverage of kinases, we combined
two existing methods for predicting the kinase fami-
lies responsible for the phosphorylation of a particular
site: the position specific scoring matrices from Scan-
site37 (http://scansite.mit.edu) and the artifi-
cial neural networks from NetPhosK21 (http://www.
cbs.dtu.dk/services/NetPhosK).

For each kinase family, we tested the sequence-
based prediction methods available from NetPhosK21

and Scansite37. To benchmark these methods, we
applied each method to all phosphorylation sites in
the Phospho.ELM database, sorted the predictions by
score, and plotted the fraction of known sites identi-
fied for the family in question as a function of the total
number of sites suggested for that family (Figure S1).
Based on the resulting performance curves, we se-
lected the best consensus sequence motif for each
protein family. In cases where only one predictor was
available it was used.

To speed up calculation, we re-implemented the
NetphosK method as a single ANSI-C program. It
provides a score between 0 and 1 for each of the
following kinase families: PIKK(ATM, DNA-PK), CK-
I, CK-II, CaM-II, GSK3, PKA, PKB, PKC, PKG, RSK,
CDK, p38 MAPK, EGFR, INSR, and SRC. Similarly,
Scansite provides a score between 0 and 1 for the
kinase families: Abl, Clk, Erk, DMPK and PDGFR.
We predict each site to be a target for all kinase fam-
ilies that receive a NetPhosK score better than 0.5 or
predicted at “high confidence” according to Scansite,
corresponding to the optimal cutoffs for these meth-
ods.

Within a proteome, kinases of each family are
identified by sequence similarity searches. 82 rep-
resentative kinase domain sequences, which have
been manually assigned to families, are searched
against the proteome using BLASTP2. Only hits with
an E-value better than 10−40 and with at least 50%
sequence identity are considered; among these, the
hit with the best bit score is used for assigning a ki-
nase family.

Detection of Rad50 phosphorylation

EBV-transformed lymphoblasts (National Institute of
General Medical Sciences Human Genetic Mu-
tant Cell Repository, Camden, NJ) from a normal
(ATMwt/wt) individual (GM02254) and from an individ-
ual with Ataxia-Telangectasia (GMO1526, ATM−/−)
were maintained in RPMI supplemented with 15%
FCS (Life Technologies, Inc., Grand Island, NY),
1% L-Glutamine, 1% penicillin and 1% streptomycin.
Cells were treated with 10 µM doxorubicin for 8 hours
and then harvested. 3x107 cells were resuspended in
a 10 mL lysis buffer containing 1% Triton X-100, 50
mM Tris pH 7.5, 150 mM sodium chloride, 50 mM β-
glycerophosphate, 10 mM sodium pyrophosphate, 30
mM sodium flouride, 1 mM benzamidine, 2 mM EDTA,
2 mM magnesium chloride, 1 mM DTT, 1 mM AEBSF,
1 mM PMSF, 100 µM sodium orthovanadate, 20 µM

Leupeptin, 15 µM E-64, 10 µM Pepstatin, 0.8 µM
Bestatin, 1 µg/ml Microcystin LR. Cells were lysed by
sonication and nucleic acids digested by the addition
of 25 units of benzonase (Novagen). Lysates were
cleared by centrifugation for 10 minutes at 19,000 g.
All lysates were first subjected to a mock immuno-
precipitation using 4 µg of mouse IgG (Santa Cruz,
sc-2025). Subsequently, Rad50 was immunoprecipi-
tated with 4 µg of a mouse monoclonal antibody (Ab-
cam, ab89). Immunoprecipitations were separated
by 8% SDS-PAGE and visualised by immunoblot-
ting. Blots were probed with antibodies to Rad50
(Abcam, ab89), Nbs1 (Abcam, ab7860), Mre11 (Ab-
cam, ab214) and an antibody that recognises the
phospho-SQ/TQ motif of the ATM and ATR kinases
(Cell Signaling Technology, 2851). Immunoblots were
visualised using a goat anti-mouse antibody conju-
gated to IRDye 700DX (Rockland) and a goat anti-
rabbit antibody conjugated to IRDye 800 (Rockland)
and the Li-Cor Odyssey Infrared Imaging System.
Immunoprecipitation prior to phospho-peptide map-
ping by mass spectroscopy was performed exactly
as described above except that 25x107 cells were
harvested for immunoprecipitation. The immuno-
precipitation was separated by 8% SDS-PAGE and
the Rad50 band cut from the gel and submitted to
phospho-peptide mapping by mass spectrometry.

Excised gel bands containing Rad50 protein were
digested with Trypsin (Promega, Madison, WI) ac-
cording to the protocol described in22. After lyophili-
sation, tryptic peptides were analysed by liquid
chromatography-mass spectrometry consisting of a
nanoflow HP1100 HPLC system (Agilent, Palo Alto,
CA) and an LTQ mass spectrometer (Thermo Elec-
tron, San Jose, CA). Peptides were separated on a
custom-made 75 µm I.D. PicoTip column packed with
Pursuit 3 µm C-18 beads (Varian, Palo Alto, CA). The
column effluent was sprayed directly into the interface
of the Mass Spectrometer. The gradient used for sep-
aration was 3–60 % of Acetonitrile for 180 minutes.
Raw mass spectrometric data were screened against
the NCBI Data Base (NCBInr version 20060227) us-
ing the Mascot Search Engine (version 2.1, Matrix-
science, London, UK). Ser/Thr phosphorylation was
set as a variable modification in Mascot Search Set-
tings. Examination of the MS/MS fragmentation spec-
tra from Rad50 confirmed that S635 (predicted ATM
site) and T690 (predicted CK2 site) on Rad50 are
phosphorylated (Figure S7), in agreement with pre-
vious data6.

Detection of 53BP1 phosphorylation

The human osteosarcoma cell line U2OS was main-
tained in DMEM, supplemented with 10% fetal calf
serum and penicillin/streptomycin. To activate the
DNA damage checkpoint, cells were treated with 0.5
µM doxorubicin (Sigma) for 1 hour and subsequently
incubated for 16 hours in the presence of 1 µM pa-
clitaxel (Sigma). Mitotic cells were detached using a
gentle shake-off after treatment with 1 µM paclitaxel
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for 16 hours. If indicated (Figure 6D) those mitotic
cells were replated in the presence of 20 µM roscov-
itine (Sigma). Cells were lysed in buffer containing
50 mM Tris pH 7.4, 1% Triton X100, 5 mM NaF, 20
mM NaVO3 supplemented with Complete protease in-
hibitor cocktail (Roche). 250 µg of cleared lysate was
used for 53BP1 immunoprecipitations using Protein-
A sepharose beads (Pharmacia). Fluorescent cell
sorting was performed on cells fixed in ice cold 70%
ethanol for 1 hour. Subsequently, mitotic cells were
stained using anti-Histone H3 (phosho-ser10) and
Alexa 647-conjugated anti-rabbit and treated with pro-
pidium iodide and RNase. We analysed 104 events
on a Becton Dickinson FACScalibur and processed
data using CellQuest software. Immunoblotting and
immunoprecipitations were performed using the fol-
lowing antibodies: Rabbit Anti-cyclin A(H432) and
mouse anti-cyclin B1 (GNS1) (SantaCruz Biotechnol-
ogy), rabbit anti-53BP1 (Novus Biologicals), mouse
anti-β-Actin(Sigma), mouse anti-MPM2 and rabbit
anti-Histone H3 (phosho-ser10) (Upstate Biotechnol-
ogy) and Alexa 647-conjugated anti-rabbit Molecular
Probes (Invitrogen).

Preparation of BCLAF1 samples

Human embryonic kidney (HEK) 293 cells were cul-
tured in DMEM supplemented with 10% fetal bovine
serum. Cells were treated with 20 mM LiCl or KCl
(control) for 2 hours and then harvested and re-
suspended in a lysis buffer containing 1% Triton X-
100, 50 mM Tris pH 7.5, 150 mM NaCl, 50 mM β-
glycerolphosphate, 10 mM sodium pyrophosphate,
30 mM NaF, 2 mM EDTA, 2 mM MgCl2, 1 mM DTT,
100 uM sodium orthovanadate, phosphatase inhibitor
cocktail 1 (Sigma), and mini complete EDTA-free pro-
tease inhibitor cocktail (Roche). Lysates were passed
through a 22.5 gauge needle and were cleared by
centrifugation for 10 minutes at 40,000 g. The
supernatant was precleared with GammaBind Plus
Sepharose (GE Healthcare) before BCLAF1 was im-
munoprecipitated with a rabbit anti-BCLAF1 antibody
(Bethyl Laboratories, A300-608A). Immunoprecipi-
tates were washed and boiled in reducing gel sam-
ple buffer prior to separation on an 8-16% SDS-PAGE
gel. Excised gel bands containing BCLAF1 protein
were digested with Trypsin (Promega, Madison, WI)
according to the protocol described in22. The tryp-
tic peptides were analysed by liquid chromatography-
mass spectrometry.

Curation of mass spectrometry datasets

By mapping sequences to full-length polypeptides
and adjusting residue numbers, we curated eight
large-scale phosphoproteome data sets from five
publications: 1) two Jurkat cell-line sets consisting of
67 sites in 31 proteins42 and 195 sites in 105 pro-
teins, respectively8 , 2) a larger set of 952 sites in 435
proteins from HeLa cells6, 3) data from Rush et al.
with 325 sites in 237 human proteins and 171 sites

(in 118 mouse proteins)40 , 4) a set of 221 sites in
114 mouse brain proteins and 269 sites in 75 synaptic
mouse proteins3;12. These data have been deposited
in the Phospho.ELM database15 .

Network topology analysis

Cytoscape-2.3.143 with the NetworkAnalyzer plu-
gin (http://med.bioinf.mpi-inf.mpg.de/
netanalyzer/index.php) was used to calculate
the topological parameters of three networks: 1) A
predicted human phosphorylation network (HPN)
which is based on the complete dataset in Phos-
pho.ELM composed of 5189 edges and 1810 nodes
(first row of Figure S5). The network was reduced to
kinase/substrate interaction level, discarding the site
specific information. Thus if a kinase phosphorylates
a substrate at multiple sites this would be repre-
sented by one edge (predicted interaction) only. 2)
An experimentally determined human protein-protein
interaction (PPI) network (second row in Figure S5),
extracted from STRING, composed of protein pairs
with a physical interaction score ≥ 0.7, which en-
compassed 6305 nodes spanning 21828 physical
interactions. 3) A human context network (third row
in Figure S5) corresponding to all protein pairs in
STRING with a functional association score ≥ 0.9, in
total 6338 nodes 43708 edges. The networks were
treated as undirected and can be downloaded as
Cytoscape files at http://networkin.info.

The degree distribution of the networks predicted
by NetworKIN (Figure S5b) approximately follows a
power law, indicating scale-free network properties as
observed for many other networks. The shortest path
distribution was downshifted in our networks with a
median of 3 vs. 4 for the PPI and context networks
(Figure S5a). The HPN had a slightly lower number
of neighbours per node than the PPI network (5.7 ver-
sus 6.9) but only half of what was seen in the context
network (13.8). The number of substrates per kinase
is shown in Figure S4. To measure overall topol-
ogy we calculated the clustering coefficient (C(k ),
Figure S5c) which measures the tendency of nodes
to form clusters in the network. C(k ) decreases as
the number of interactions per node increase, which
suggests hierarchical organisation of the HPN and
PPI networks. The fitted power-law functions were
(Figure S5c): CHPN(k) = 2.1079k−1.1516 (R2=0.6881),
CPPI(k) = 0.9125k−0.5031 (R2=0.2669) and Ccontext(k) =
0.4473k0.0105 (R2=0.0003). Thus the context network
does not show hierarchical organisation. The topo-
logical coefficient TC(k ) (Figure S5d) is a measure of
the extent to which proteins share interaction partners
in the network. As this is also a decreasing function
of the number of edges it suggests that hub proteins
do not have more common neighbours than less con-
nected proteins. Again, a higher similarity between
the HPN and PPI network is observed than between
the HPN and context network (the function is much
more dispersed in the context network).
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Figure S1: Performance curves for motif predictors. To evaluate and compare the ability of NetPhosK (blue) and Scansite (red) to
predict the kinase family for known phosphorylation sites, we applied the predictors to sites from the Phospho.ELM database 15. The
resulting predictions were sorted by score, and the fraction of known sites identified was plotted as a function of the fraction of total
number of sites suggested for each protein family. An optimal predictor would show a sharp bend in the upper left corner, meaning all
correct sites were predicted in as few suggestions as possible. The dashed black lines show the performance that would be obtained
through random guessing.
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Motif-based methods NetworKIN
Number of sites Total family Correct family Total family Correct family

(TP+FN) predictions predictions (TP) predictions predictions (TP)
(TP+FP) (TP+FP)

CDK 122 337 63 105 49
PKC 26 43 12 15 8
PIKK 88 200 67 74 60
INSR 46 113 31 39 31

Total 282 693 173 233 148

Table S1: Benchmark statistics for kinase family identification. Proteins containing the indicated number of experimentally verified
CDK (Cyclin-dependent kinase), PKC (Protein kinase C: α, δ, ε, µ, θ and ζ isoforms), and PIKK (ATM, ATR or DNA-PK) sites were
investigated using purely motif-based prediction methods (NetphosK and Scansite) or the context based NetworKIN algorithm. Prediction
accuracy is defined as TP/(TP + FP), where TP denotes true positives and FP false positives. Thus, this is the fraction of predictions
known to be correct. Sensitivity is defined as TP/(TP + FN), where FN denotes false negatives. Thus, this is the fraction of known sites
that are correctly predicted. Using only consensus motifs we obtained prediction accuracies of 19% (CDK), 28% (PKC), 34% (PIKK) and
27% (INSR) and sensitivities of 52% (CDK), 46% (PKC), 76% (PIKK) and 67% (INSR). By including contextual information the prediction
accuracies more than doubled to 47% (CDK), 53% (PKC), 81% (PIKK) and 79% (INSR), with only a small drop in sensitivities to 40%
(CDK), 31% (PKC), 68%(PIKK) and 67% (INSR). Notably, the accuracy of NetworKIN predictions is likely to be an underestimate since
not all the kinases that target each phosphorylation site in the set of test proteins may currently be known from experiments.
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Figure S2: Performance curves for kinase family identification. In Figure 2, the performance of NetworKIN was reported when always
trusting the prediction with the highest context score for each phosphorylation site. Here we assessed how the performance varies when
imposing a lower limit on the context scores. Since the sites used for benchmarking have necessarily been described in the literature,
the use of literature mining could in theory lead to overestimation of the accuracy and sensitivity; however, excluding the abstracts that
mention the phosphorylation events in question hardly affects the performance (data not shown).
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Predicted Not predicted Fraction

Cdc28p substrates 281 59 83%
Other proteins 2522 3818 40%

Table S2: Comparison of NetworKIN predictions with high-throughput screens for Cdc28p (Cdk1) substrates in S. cere-
visiae 33;48 .. Since the screens in question only identified Cdc28p substrates but not the actual phosphorylation sites, the NetworKIN
method was applied to all serines and threonines in the yeast proteome. Proteins that contain one or more sites, which we predict to be
phosphorylated by Cdc28p, were defined as predicted Cdc28p substrates. Comparing these to the set of substrates identified in the two
screens, shows that 83% of the known substrates were correctly predicted, corresponding to a 2-fold enrichment of known substrates
over random among the predicted substrates. This enrichment is statistically highly significant (P < 10−54, Fisher’s exact test).

Entire network High-confidence High-confidence
associations kinase associations

Genomic context 25.5% 0.7% 0.4%
Experimental data 8.9% 21.5% 30.3%
Curated pathways 12.2% 36.5% 27.4%
Literature mining 54.1% 41.2% 41.9%

Table S3: Contribution of different evidence types to the context net work. Quantifying the contribution of different evidence types
to the context networks is non-trivial because the network is probabilistic. If one simply sums the probability contributions of each type
of evidence across all protein pairs in the complete interaction network, text mining provides over half of the total evidence, and genomic
context methods provide over a quarter of the evidence. However, this does not show the complete picture since some evidence types
give rise to few interactions with high confidence, whereas others give vast numbers of interactions but with low confidence. Since the
predictions by NetworKIN mostly rely on interactions of fairly high confidence, we repeated the analysis but considered only interactions
with a STRING confidence score of 70%. This increases the importance of experimental evidence and curated pathway databases,
decreases the reliance on text mining and almost eliminates genomic context. This also may not accurately reflect the impact of the
individual evidence types on NetworKIN, since some type of evidence is more important for some classes of proteins than for others. We
thus further restricted the analysis to consider only associations involving at least one of the 112 protein kinases currently included in
NetworKIN. Doing so leads to a considerable increase in the estimated importance of experimental data and a corresponding decrease in
the importance of manually curated pathway databases. We believe that this last column in the table best reflects the relative importance
of each evidence type to the predictions made by NetworKIN.

Kinase Cytoplasmic Nuclear P-value
substrates substrates

INSR 45 4 2 · 10−12

LCK 28 0 3 · 10−11

CDK2 56 161 3 · 10−7

IGF1R 27 5 9 · 10−7

SRC 16 0 9 · 10−7

EGFR 15 0 3 · 10−6

LYN 14 1 5 · 10−5

FYN 11 1 6 · 10−4

PKCα 127 118 6 · 10−4

CK1ε 43 104 9 · 10−4

CK2α 96 183 4 · 10−3

MAPK9 23 61 4 · 10−3

MAPK10 26 66 5 · 10−3

HCK 8 1 6 · 10−3

CDC2 51 108 6 · 10−3

PKAβ 67 59 6 · 10−3

ATM 21 54 9 · 10−3

Total 960 1327

Table S4: Kinases predicted to preferentially target cytoplasmic/n uclear substrates. SwissProt and Phospho.ELM were used to
compile two sets of phosphoproteins that are believed to localize exclusively to the cytoplasm and the nucleus, respectively. NetworKIN
was used to predict the kinases responsible for the phosphorylation of these proteins, and Fisher’s exact test was used to identify 17
kinases that we predict to preferentially target either cytoplasmic or nuclear proteins. For another 18 kinases, no statistically significant
difference was observed; because of these additional kinases, the total number of predicted cytoplasmic/nuclear substrates is greater
than the sum of each column.
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Figure S3: Map of the human phosphorylation network. Circular network graph of the complete HPN (best viewed by zooming in
a PDF viewer). Blue circles and red boxes denote kinases and substrates respectively. An edge corresponds to a predicted kinase–
substrate interaction (non site-specific). The network is composed of 4723 edges and 1777 nodes (of which 68 are kinases). The typical
shortest path between any pair of proteins in the network is 3 and each protein has an average of 5.7 neighbours.
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Figure S5: Topology plots. Four topological measures were determined (by columns): a, The distribution of the shortest path between pairs of proteins. b, The node degree distribution, where the degree of a node x is the
number of links incident to x. c, The average clustering coefficient, C(k ), of all nodes x with k ≥ 3 neighbours is plotted against the number of neighbours. Where the C(k) = 2n/kx (kx -1), with n as the number of links connecting
the kx neighbours of node x to each other. C(k ) is a measure of the tendency of proteins in a network to form clusters or groups. We fitted the C(k ) data to power-law functions indicated by red lines. d, The topological coefficient,
TC(k ), was calculated for every protein in the network and plotted against the number of links, where TCx (k) = average(J(x,j)/kx ), where J(x , j) denotes the number of nodes to which both x and j are linked, kx is the number of
links of node x). TC(k ) is a relative measure of the extent to which proteins share interaction partners with other proteins.
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Figure S6: Map of the DDR+ subnetwork. Circular network graph of the complete DDR+ subnetwork (best viewed by zooming in a
PDF viewer). The subnetwork is composed of selected proteins from DNA damage response, apoptosis and NFκB signalling and spans
84 nodes and 235 edges. Blue circles and red boxes denote kinases and substrates respectively. An edge corresponds to a predicted
kinase–substrate interaction. The typical shortest path between any pair of proteins in the network is 3 and the average number of
neighbours is 5.6, topology-wise this network is similar to the HPN (data not shown).
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Figure S7: MS/MS spectra for two phosphorylated peptides from human Ra d50. a, Ion product spectrum of the peptide LFD-
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Table S5: Annotated ATM predictions. ATM kinase predictions annotated with supportive evidence from the literature. In total 98
proteins were predicted ATM targets (on 132 sites). We annotated 113 of these predictions and found 45 substrates were novel targets.
We provide a complete list of all predictions for further experimentation on the supplemental website (http://networkin.mshri.on.ca) and
as supplemental data.

Substrate HUGO Residue Motif Context Function Known
score score kinases

Abl ABL1 446 0.65 0.999 DNA damage response
Abl ABL1 465 0.65 0.999 DNA damage response ATM5

APC5 ANAPC5 217 0.63 0.948 Cell cycle control
BCL-2 BCL2 24 0.51 0.998 Apoptosis
BID BID 78 0.60 0.997 Apoptosis ATM23;56

BAD BAD 167 0.59 0.997 Apoptosis
BRCA1 BRCA1 1387 0.65 0.999 DNA damage response ATM52

BRCA1 BRCA1 1423 0.59 0.999 DNA damage response ATM13

BRCA1 BRCA1 1457 0.67 0.999 DNA damage response ATM13

BRCA1 BRCA1 1466 0.60 0.999 DNA damage response ATR 47

BRCA1 BRCA1 1524 0.58 0.999 DNA damage response ATM13

Cdc25A CDC25A 279 0.51 0.998 Cell cycle control Chk145

Chk1 CHEK1 317 0.51 0.999 DNA damage response ATM17

Chk1 CHEK1 345 0.57 0.999 DNA damage response ATR 32;55

Chk2 CHEK2 19 0.55 0.999 DNA damage response ATM34

Chk2 CHEK2 26 0.61 0.999 DNA damage response ATM34

Chk2 CHEK2 28 0.66 0.999 DNA damage response ATM34

Chk2 CHEK2 33 0.57 0.999 DNA damage response ATM34

Chk2 CHEK2 35 0.62 0.999 DNA damage response ATM34

Chk2 CHEK2 68 0.61 0.999 DNA damage response ATM1;34;36

CREB CREB1 111 0.59 0.992 Transcription factor ATM44

CREB CREB1 121 0.55 0.992 Transcription factor ATM44

ATF-2 CREBP1 472 0.54 0.987 Transcription factor ATM7

ATF-2 CREBP1 480 0.55 0.987 Transcription factor ATM7

SMC3 CSPG6 1065 0.48 0.997 DNA damage response
SMC3 CSPG6 1067 0.57 0.997 DNA damage response
SMC3 CSPG6 1074 0.47 0.997 DNA damage response
Beta-Catenin CTNNB1 112 0.52 0.994 Transcription factor
E2F1 E2F1 31 0.67 0.997 Cell cycle control ATM31

PHAS-1 EIF4EBP1 111 0.62 0.996 Translation ATM53

DAL-1 EPB41L3 88 0.54 0.940 Apoptosis
DAL-1 EPB41L3 96 0.53 0.940 Apoptosis
DAL-1 EPB41L3 460 0.57 0.940 Apoptosis
DAL-1 EPB41L3 486 0.57 0.940 Apoptosis
ERBB2IP ERBB2IP 1271 0.63 0.995 Cell adhesion
EPN2 EPN2 173 0.606 0.629 Endocytosis
FANCD2 FANCD2 222 0.68 0.999 DNA damage response ATM46

FANCD2 FANCD2 1257 0.65 0.999 DNA damage response
FANCD2 FANCD2 1404 0.57 0.999 DNA damage response
γH2AX H2AFX 139 0.67 0.999 DNA damage response ATM9

HMGA1 HMGA1 98 0.63 0.835 Transcription factor
HSP90 HSPCA 6 0.62 0.998 Heat shock protein
IKKβ IKBKB 682 0.60 0.995 Apoptosis
IKKγ/NEMO IKBKG 85 0.51 0.995 Apoptosis ATM 51
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Substrate HUGO Residue Motif Context Function Known
score score kinases

beta-2 Integrin ITGB2 745 0.51 0.958 Cell adhesion
Jun JUN 249 0.65 0.998 Transcription factor
EKLF KLF1 23 0.61 0.963 Transcription factor
DNA Ligase IV LIG4 132 0.48 0.986 DNA damage response
HSL LIPE 660 0.60 0.994 Lipase
MARCKS MARCKS 313 0.52 0.943 Cytoskeleton
Pur-1/MAZ MAZ 469 0.67 0.927 Transcription factor
MBP MBP 141 0.52 0.996 Myelin basic protein
MDC1 MDC1 988 0.58 0.900 DNA damage response ATM19

MDM2 MDM2 262 0.49 0.999 Apoptosis
MDM2 MDM2 395 0.48 0.999 Apoptosis ATM35

MDM2 MDM2 407 0.50 0.999 Apoptosis
Mre11 MRE11A 264 0.58 0.999 DNA damage response ATM25

Nbs1 NBS1 278 0.66 0.999 DNA damage repsonse ATM14

Nbs1 NBS1 343 0.67 0.999 DNA damage repsonse ATM18;29

Nbs1 NBS1 397 0.57 0.999 DNA damage repsonse ATM50

NCF1 NCF1 320 0.48 0.994 Neutrophil oxidase factor
NFAT5 NFAT5 1197 0.56 0.963 Transcription factor
NFAT5 NFAT5 1247 0.52 0.963 Transcription factor
NFAT5 NFAT5 1367 0.52 0.963 Transcription factor
Nrf2 NFE2L2 40 0.55 0.995 Transcription factor
NF-kappaB2 NFKB2 869 0.52 0.971 Apoptosis
NR3C1 NR3C1 508 0.61 0.997 Transcription factor
PIN1 PIN1 65 0.51 0.997 Apoptosis
PPARGC1A PPARGC1A 263 0.61 0.994 Transcription factor
PKCmu PRKCM 249 0.58 0.946 Protein kinase
DNA-PK PRKDC 2056 0.51 0.996 DNA damage response
DNA-PK PRKDC 2612 0.53 0.996 DNA damage response
DNA-PK PRKDC 2638 0.51 0.996 DNA damage response
DNA-PK PRKDC 2647 0.56 0.996 DNA damage response
PRL PRL 163 0.49 0.996 Cytokine
PS2 PSEN2 330 0.51 0.993 Cell cycle control
Rad17 RAD17 646 0.65 0.996 DNA damage repsonse ATM4

Rad17 RAD17 656 0.58 0.996 DNA damage response ATM39

Rad50 RAD50 635 0.55 0.999 DNA damage response
Rad9 RAD9A 272 0.65 0.996 Cell cycle control ATM11

CtIP RBBP8 664 0.65 0.997 DNA damage response ATM28

CtIP RBBP8 745 0.62 0.997 DNA damage response ATM28

RFC1 RFC1 190 0.47 0.997 DNA damage response
RIM1 RIMS1 218 0.51 0.951 Synaptic membrane reg.
RIM1 RIMS1 1677 0.54 0.951 Synaptic membrane reg.
RPS6 RPS6 247 0.58 0.975 Translation p90RSK 38

SF3B1 SF3B1 344 0.65 0.984 RNA splicing
SFRS16 SFRS16 180 0.51 0.901 RNA splicing
SMC1 SMC1L1 957 0.66 0.999 DNA damage response ATM26

SMC1 SMC1L1 966 0.67 0.999 DNA damage response ATM54

SRF SRF 435 0.56 0.996 Transcription factor
SRF SRF 446 0.48 0.996 Transcription factor
SRRM SRRM1 465 0.48 0.970 Nuclear matrix protein
StAR STARD1 100 0.53 0.995 Transcription factor
TEFB TCEB3 225 0.51 0.994 Transcription factor
HNF1 TCF1 249 0.64 0.995 Transcription factor Mirk30



Systematic Discovery of In Vivo Phosphorylation Networks 14

Substrate HUGO Residue Motif Context Function Known
score score kinases

TRF1 TERF1 219 0.67 0.999 Cell cycle control ATM27

THRAP3 THRAP3 211 0.47 0.972 Transcription factor
THRAP3 THRAP3 784 0.55 0.972 Transcription factor
p53 TP53 9 0.58 0.999 Apoptosis
p53 TP53 15 0.88 0.999 Apoptosis ATM10;24

p53 TP53 20 0.51 0.999 Apoptosis Chk220 ATM 15

p53 TP53 46 0.60 0.999 Apoptosis ATM41 HIPK2 16

53BP1 TP53BP1 6 0.61 0.998 DNA damage response ATM49

53BP1 TP53BP1 25 0.59 0.998 DNA damage response ATM49

53BP1 TP53BP1 29 0.56 0.998 DNA damage response ATM49

53BP1 TP53BP1 831 0.53 0.998 DNA damage response
TPR TPR 2036 0.60 0.997 Nuclear import
TRX1 TREX1 68 0.60 0.998 DNA damage response
TSC2 TSC2 1379 0.50 0.994 Apoptosis
VIM VIM 458 0.54 0.957 Cytoskeleton
WRN WRN 1141 0.68 0.998 DNA damage response ATM25

WRN WRN 1292 0.63 0.998 DNA damage response
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