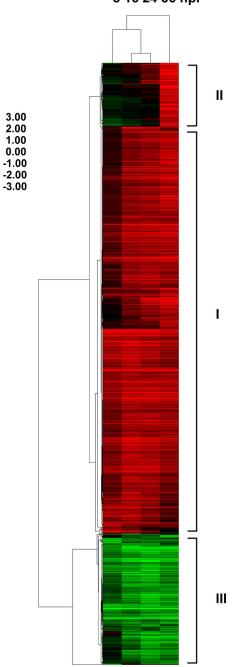

Supporting Information

Qin et al. 10.1073/pnas.0811186106

SI Text


Sequences Used for qRT-PCR. The forward (F) and reverse (R) primer sequences used for qRT-PCR are as follows: *ascl1a* (*achaete-scute complex-like 1a*): F 5'-CAACTGGTTTT-GAGCGTTCG-3', R 5'-GACATCCTCCCAAGCGAGTG-3'; *dlg7* (*discs, large homolog 7*): F 5'-AGGCGAGTCTCCTGTG-GATG-3', R 5'-TCCCACTGTTCTGGGGTGAA-3'; gpia: F 5'-TCCAAGGAAAACAAGCCAAGC-3', R 5'-TTCCACAT-CACACCCTGCAC-3'; hspd1 (heat shock 60-kDa protein 1): F 5'-AGGCTCTCTGGTGGTGGAGA-3', R 5'-GCATCTAG-CAGTGCCGTCCT-3'; *id3* (*inhibitor of DNA binding 3*): F

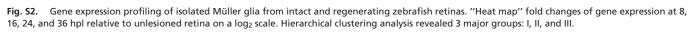
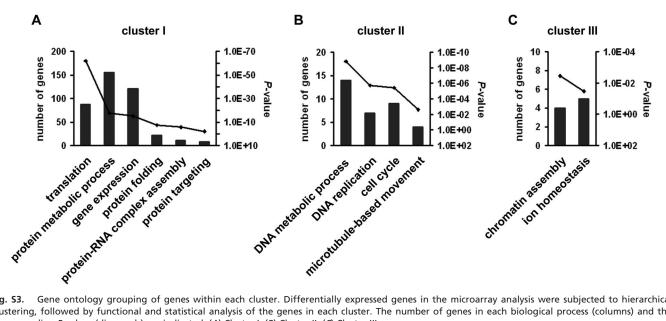
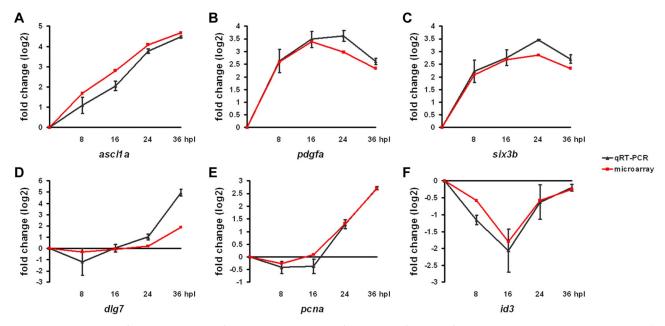
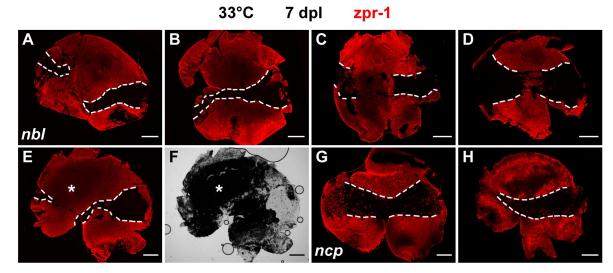

5'-TGCCATTAGGATGGATGAATGA-3', R 5'-CGCAGAT-TGCTTTCCCACAC-3'; mps1 (monopolar spindle 1): F 5'-ACTCGCAGGTCGGAACTCTG-3', R 5'-CCACACGTC-CCCTTTAGCAC-3'; pcna (proliferating cell nuclear antigen): F 5'-CATGATCTCGTGTGCCAAGG-3', R 5'-TGAGCTG-CACTGGCTCATTC-3'; pdgfa (platelet-derived growth factor a): F 5'-TTCCCCGAGAGCTGATTGAG-3', R 5'-TGCTCCT-TATGGTGGCCTTG-3'; and six3b (sine oculis homeobox homolog 3b): F 5'-CCAATCCGAGCAAGAAAAGG-3', R 5'-CAGACTGCTTTGGCCCAGTC-3'.

Fig. S1. Isolation of GFP⁺ Müller glia. (A) Dissociated GFP⁺ Müller glial cell (green). Counterstained with DAPI (blue). (*B* and *C*) Flow cytometry scatter plots. forward scatter-height (FSC-H); side scatter-height (SSC-H). Dissociated cells from adult Tg(gfap:GFP)mi2002 zebrafish retinas were gated by forward and side scatters (*B*), and GFP⁺ Müller glia were isolated based on fluorescence in the FITC channel (R5) (*C*). Our yield of dissociated retinal cells from adult zebrafish (5-to 6-month old) was ~ 2.5×10^5 cells/retina, of which ~9% were GFP⁺ Müller glia. With flow cytometry, we could recover ~ 2.1×10^4 Müller glia/retina, representing an efficiency of ~84%. (Scale bar: 10 μ m.)

DN A C

8 16 24 36 hpl

SANG SANG

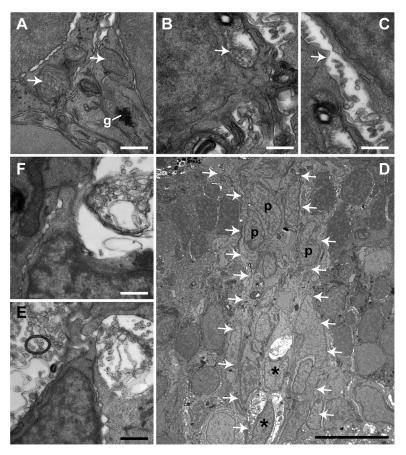

Fig. S3. Gene ontology grouping of genes within each cluster. Differentially expressed genes in the microarray analysis were subjected to hierarchical clustering, followed by functional and statistical analysis of the genes in each cluster. The number of genes in each biological process (columns) and the corresponding P-values (diamonds) are indicated. (A) Cluster I. (B) Cluster II. (C) Cluster III.

Fig. S4. qRT-PCR validation of expression patterns of selected genes. Expression fold changes of a subset of injury-responsive genes detected by qRT-PCR (gray) and microarray (red). (*A*–*C*) Genes from cluster I: *ascl1a, pdgfa,* and *six3b.* (*D* and *E*) Genes from cluster II: *dlg7* and *pcna.* (*F*) Gene from cluster III: *id3.* Error bars represent SEM for 3 independent biological replicates.

Fig. S5. Cone regeneration defect in *nbl* and *ncp* mutants at the restrictive temperature. (A–E, G, and H) Flat-mounted retinas at 7 dpl immunolabeled with zpr-1 (red). (A–E) One retina from each of 5 *nbl* mutants. (F) Bright-field image of E. (G and H) One retina from each of 2 *ncp* mutants. Dashed lines, light-damaged areas that have few or no zpr-1–labeled cones; we cannot determine from these preparations whether the rare scattered cones sometimes observed within the light-damaged areas survived the lesion or have regenerated. Asterisk, attached retinal pigment epithelium. (Scale bars: 300 μ m.)

Fig. S6. Transmission electron micrographs of mitochondria in injury-activated Müller glia in WT siblings and *nbl* mutants after acute exposure to 33°C. (*A*–*C*) High-magnification images of mitochondria in injury-activated Müller glia in retinas at 2 dpl after 8 h of exposure to 33°C. See Fig. 4*D* for lower magnification images of these sections. (*A*) Glycogen granules (g) and mitochondria (arrows) in Müller glia in WT. (*B* and *C*) Swollen mitochondria with empty matrix in Müller glia of *nbl*. (*D*) Low-magnification view of a neurogenic cluster (within the arrows) in the inner nuclear layer of *nbl* at 3 dpl after 4 h of exposure to 33°C. Asterisks, Müller glia; p, progenitor. Note that the mitochondria defect is present only in injury-activated Müller glia but not in the associated neuronal progenitors. (*E* and *F*) High-magnification images of mitochondria from the Müller glia cells in *D*. (Scale bars: 0.5 μm in *A*–*C*, *E*, and *F*; 10 μm in *D*.)

Table S1. Transcriptionally regulated genes common to regenerating retina, fin, and/or heart

Gene name	Gene symbol	Biological process
Monopolar spindle 1	mps1 (ttk)	Cell cycle
Decorin	dcn	Cell signaling
Insulin-like growth factor binding protein 3	igfbp3	Cell signaling
Jagged 2	jag2*	Cell signaling
Kallmann syndr. 1b	kal1b	Cell signaling
Meteorin	metrnl	Cell signaling
Platelet-derived growth factor α	pdgfa	Cell signaling
GLI-Kruppel family member GLI2a	gli2a	Cell signaling
TGF- β -induced	tgfbi	Cell signaling
TGF- β -induced factor homeobox 1	tgif1	Cell signaling
Activating transcr. factor 3	atf3	Immunoregulation
Clusterin	clu	Immunoregulation
LIM domain only 4	lmo4	Immunoregulation
Matrix metalloproteinase 14 beta	mmp14b	Immunoregulation
Similar to complement protein C7-1	LOC570832*	Immunoregulation
Matrix metalloproteinase 9	mmp9	Immunoregulation
Suppressor of cytokine signaling 3b	socs3b	Immunoregulation
Tissue inhibitor of metalloproteinase 2	timp2	Immunoregulation
Cathepsin C	ctsc	Immunoregulation
Cathepsin B, a	ctsba	Proteolysis
Karyopherin alpha 2	kpna2	Protein import into nucleus
SRY-box-containing gene 11b	sox11b	Regulation of transcription
SRY-box-containing gene 4a	sox4a	Regulation of transcription
zic family member 2 (odd-paired-like) b	zic2b	Regulation of transcription
Nuclear receptor subfamily 1, group D, member 2b	nr1d2b	Regulation of transcription
Calreticulin, like 2	calrl2	Stress response
Heat shock 70-kDa protein 5	hspa5	Stress response
Heat shock 60-kDa protein 1	hspd1	Stress response

The genes listed are in the retinal microarray data set reported here and are also found in one or both of the 2 comparison data sets (1, 2). The boldfaced genes correspond to the temperature-sensitive regeneration mutants. All genes except nr1d2b are up-regulated at 1 or more sample times. *Closely related gene is found in one of the comparison data sets: jag1a in fin; C4-1 and C4-2 in heart.

Schebesta M, Lien CL, Engel FB, Keating MT (2006) Transcriptional profiling of caudal fin regeneration in zebrafish. *Scientific World Journal* 6(Suppl 1):38–54.
Lien CL, Schebesta M, Makino S, Weber GJ, Keating MT (2006) Gene expression analysis of zebrafish heart regeneration. *PLoS Biol* 4:1386–1396.

PNAS PNAS