Supplemental Data

Vaccine Adjuvants Alter

TCR-Based Selection Thresholds

Laurent Malherbe, Linda Mark, Nicolas Fazilleau, Louise J. McHeyzer-Williams, and Michael G. McHeyzer-Williams

Supplemental References

- Samelson, L.E., Germain, R.N. and Schwartz, R.H. Monoclonal antibodies against the antigen receptor on a cloned T-cell hybrid. Proc Natl Acad Sci U S A. 80(22), 6972-6976 (1983).
- Nakano, N., Rooke, R., Benoist, C. and Mathis, D. Positive selection of T cells induced by viral delivery of neopeptides to the thymus. Science. 275(5300), 678-683 (1997).
- Liu, C.P., Parker, D., Kappler, J. and Marrack, P.J. Selection of antigen-specific T cells by a single IEk peptide combination. J. Exp Med. 186(9):1441-1450 (1997).

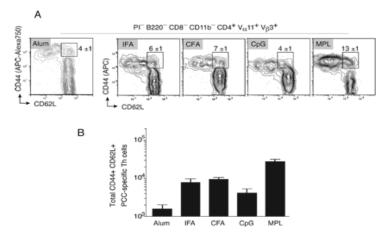
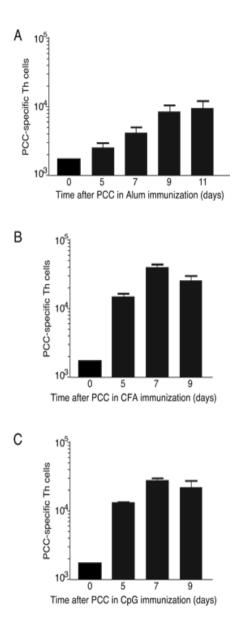



Figure S1. Accumulation of CD44^{hi}CD62L^{hi} Antigen-Specific Th Cells across Different Adjuvants

(a) As displayed in Figure 1, PCC-specific Th cells $(V\alpha 11^+V\beta 3^+CD44^{hi}CD62L^{hi})$ at day 7 in lymph nodes from B10.BR mice immunized with the indicated adjuvant. Profiles gated on propidium iodide (PI) negative cells that are $CD4^+B220^-CD8^-CD11b^-$ and $V\alpha 11^+V\beta 3^+$ as indicated with mean ±SEM (n≥3) percent of cells within insert box (**b**) Total number of $CD44^{hi}CD62L^{hi}$ PCC-specific Th cells 7 days after immunization with Alum, IFA, CFA, CpG and MPL; means ±SEM n≥3 number of animals used is the same as in Figure 1.

Immunity, Volume 28

Total number of PCC-specific Th cells 0, 5, 7, 9 and 11 days after immunization with (a) Alum and PCC and 0, 5, 7 and 9 days after immunization with (b) CFA or (c) CpG. Mean ±SEM for at least three animals at each timepoint.

							В	TCRα	Alum	IFA	CFA	CpG	MPL
۸							_			L			
A							(aa)						
	TCRα	Alum	IFA	CFA	CpG	MPL	CDR3α length	8					
$J\alpha$ gene segment usage	22	••••		•••	:::;::	****	B3α	Percent Canonical	83±2	81±9	74±7	83±2	77±3
t us							8	9	••••	••	•••••	•••	••••••
ner	34	•••••	•••••	•••	•••	*****		10	••••	•••••	•••••	••	••
segr								7	•	••••	•	••	••
ü	17	*****	****			•		6					•
ge	16					•••		11			••	•	
- ^		•••••	••••		•••			12	•	•			
	Percent Canonical	55±15	71±3	49±6	59±8	72±4		n=	60	58	53	48	52
	21	••	•••••	••	••••	••	1 '						
	13			•••	•••	•••••	С						
	12	•••••		•	••			ΤCRα	Alum	IFA	CFA	CpG	MPL
	9	••••	•	•		•	8						
	32	•••••		•		•	CDR3α	E					
	24 52		•	••	••								
				•	••	•	93			*****		•	
	23	•					Position	Percent		05.10	00.0	00.4	70.11
	50	•		•••			osi	Canonical	96±2	85±13	89±3	90±4	78±11
	31			••		••	1 "	D					
	28			••	••			G V	••	•••	•••	•	
	44		••	•				P					••
	39	•		•	•			н					•
	11		•		••			L				•	
	27		•			•		A		•••••		•	•••
	48	•				•		R		•		40	
	6			••				n=	60	58	53	48	52
	45 33	•	•										
	18						D						
	43							ΤСΒα	Alum	IFA	CFA	CpG	MPL
	42						3α		::::::	::::::	::::::		
	37			•			CDR3α	s					
	56			•			95 C				••••		*****
	49					•	6 u	Percent			E9.4	71.0	90.0
	47				•		Position	Canonical	70±16	81±11	58±4	71±8	80±9
	2				•		P P	T A	••••	•••••	••••	•••••	
	15		•					G	•••	•••	••••	•	
	53	•						Ν	••	•••	•••••	••	•••••
	n=	60	58	53	48	52		P		•	••		
l							,	Y	•			•	•

Г р

> Y R ٠ . М ٠ D ••

> > 58

53

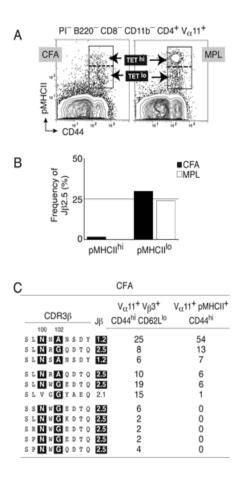
48

52

60

n=

Figure S3. Impact of Adjuvant on TCRα Chain Selection


Ag-driven selection for preferred CDR3 features in α -chain of the TCR. Single PCCspecific Th cells (V α 11⁺V β 3⁺CD4⁺CD44^{hi}CD62L^{io}) were sorted from draining lymph nodes of B10.BR mice immunized with PCC and the indicated adjuvant. Single-cell repertoire analysis was undertaken as described in Materials and Methods. Each dot represents the sequence information from a single-cell. The y-axis represents (a) J α usage (b) CDR3 α length (c) aa present at position α 93 and (d) α 95. The numbers of sequences used in the analysis are displayed (across 3 separate mice for each condition).

TCRβ Alum IFA CFA CpG MPL 1.2 III.6 III.6 III.6 III.2 III.6 IIII.6 IIII.6 IIII.6	A						1	В							
error of canonical θ1=6 86=9 91=2 90=2 78=7 1.1 <t< td=""><td></td><td>τርRβ</td><td>Alum</td><td>IFA</td><td>CFA</td><td>CpG</td><td>MPL</td><td></td><td>τርrβ</td><td>Alum</td><td>IFA</td><td>CFA</td><td>CpG</td><td>MPL</td></t<>		τርRβ	Alum	IFA	CFA	CpG	MPL		τርrβ	Alum	IFA	CFA	CpG	MPL	
error of canonical θ1=6 86=9 91=2 90=2 78=7 1.1 <t< td=""><td>nt usage</td><td>1.2</td><td></td><td></td><td></td><td></td><td></td><td></td><td>A</td><td>Щ.</td><td></td><td>*****</td><td></td><td>Щ.</td></t<>	nt usage	1.2							A	Щ.		*****		Щ.	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ne segme	2.5			Щ.	*#*	*****	sition 102	G		Щ.		*****		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ß gei	Percent Canonical	81±6	86±9	91±2	90±2	78±7	Å	Percent Canonical	81±3	92±5	92±4	94±3	87±1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	1.1		•••	•	•	•••		S	•	•••	•		•••	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.3	••	•		•	•••		N	••	•	•	•	•	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.4	•••	•••			••		v	••			•	•	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.2	•	•			••		Q			•		•	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.1			•		••								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.3	•			••									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		2.7	•		•	•							•		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		2.4	•	•	•				Ŷ	•				•	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1.6	••						L			•			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1.5			•				D	•					
TCRβ Alum IFA CFA CpG MPL 9 Image: Constraint of the constraint of		n=	60	58	53	48	52		n=	60	58	53	48	52	
TCRβ Alum IFA CFA CpG MPL 9 Image: Constraint of the constraint of	~							-							
8 •• • • • • S ••• •	C	τርrβ	Alum	IFA	CFA	CpG	MPL	D	τርRβ	Alum	IFA	CFA	CpG	MPL	
8 •• • • • • S ••• •	3β length (aa)	9	••••	*****			•••••	0	N	****		••••	*****		
8 •• • • • • S ••• •	DR		82±2	97±2	91±4	98±2	90±2	sitior	Percent Canonical	76±7	91±7	83±6	88±3	70±7	
10 •• •	~	8	••		••••	•	••	Ğ	S	•••		•••	•		
11 •• •<		10	••	•			••		G	•••	••	••••			
11 •• • 6 ••• n= 60 58 53 48 52 T I • W		7	••		•		•			•	•••		••		
6 ••• n= 60 58 53 48 52 T I W		11	••	•						•••	•	•	••		
n= 60 58 53 48 52 H T I I I I I I I I I I I I I I I I I I		6	•••						-			•			
			60	58	53	48	52						•	.	
w •			00			40	52							•	
									1	•					
n= 60 58 53 48 52	W •														
									n=	60	58	53	53 48		

Figure S4. Impact of Adjuvant on TCRβ Chain Selection

Ag-driven selection for preferred CDR3 features in β -chain of the TCR. Single PCC-specific Th cells (V α 11⁺V β 3⁺CD4⁺CD44^{hi}CD62L^{lo}) were sorted from draining lymph nodes of B10.BR mice immunized with PCC and the indicated adjuvant. Single-cell repertoire analysis was undertaken as described in Materials and Methods. Each dot

represents the sequence information from a single-cell. The y-axis represents (a) $J\beta$ usage (b) as present at position β 102 (c) the CDR3 β length and (d) as present at position β 100. The numbers of sequences used in the analysis are displayed (across 3 separate mice for each condition).

Figure S5. pMHCII Labeling Discriminates Jβ Usage

(a) Single CD4⁺V α 11⁺pMHCII^{hi}CD44^{hi} (mfi>500) and CD4⁺V α 11⁺pMHCII^bCD44^{hi} (40<mfi<500) cells were sorted from mice immunized with CFA (left) or MPL-based adjuvant (right) and (**b**) the relative abundance of J β 1.2 and J β 2.5 gene segments was evaluated by single-cell PCR using J β specific primers (pMHCII^{hi} CFA, n=3 with a total of 65 cells; pMHCII^{hi} MPL, n=2 with a total of 61 cells; pMHCII^b CFA, n=2 with a total of 68 cells; pMHCII^b MPL, n=2 with a total of 42 cells). (**c**) Predicted amino acid sequences of CDR3 β regions for CD4⁺V α 11⁺V β 3⁺CD44^{hi}CD62L¹⁰ and CD4⁺V α 11⁺pMHCII⁺CD44^{hi} Th cells sorted from the same CFA immunized B10.BR mice. The sequences are sorted according to their relative enrichment using pMHCII tetramer staining.

	V_{α} 11		CDR3a									V _β З	CDR3β						10			-	
Hybridoma	93	94	95	96	97	98	99	100	101	102	Jα	98	99	100	101	102	103	104	105	106	Jβ	Adjuvant	Reference
2B4	L	R	v	т	G	G	Ν	N	к	L	56	s	L	Ν	W	s	Q	D	т	Q	2.5	CFA	1
2C2	L	R	v	т	G	G	Ν	N	K	L	56	s	\mathbf{L}	Ν	W	G	Q	D	т	Q	2.5	CFA	1
MCC2	Е	А	т	G	G	Y	K	v			12	s	\mathbf{L}	Ν	R	G	Q	D	т	Q	2.5	CFA	2
15	Е	G	А	G	G	Y	K	v			12	S	\mathbf{L}	Ν	R	G	Q	D	т	Q	2.5	CFA	2
8	Е	А	S	G	s	W	Q	L			22	s	\mathbf{L}	Ν	R	G	Q	D	т	Q	2.5	CFA	2
1	Е	Ρ	G	G	Ν	N	K	L			56	s	\mathbf{L}	Ν	W	G	Q	D	т	Q	2.5	CFA	2
KMAC-92	G	A	S	s	F	N	K	L			4	s	L	Ν	W	G	G	D	т	Q	2.5	CFA	3

Figure S6. PCC-Specific Hybridomas Expressing TCR β Using J β 2.5

CDR3 α and CDR3 β regions of TCR sequences from known PCC-specific hybridomas using J β 2.5. Columns (left to right): hybridoma designation; CDR3 α , with positions α 93E and α 95S 'highlighted' in black as canonical, and motif length; J α gene segment usage; CDR3 β , with positions β 100N and β 102G 'highlighted' in black as canonical, and motif length; J β gene segment usage; adjuvant used to promote PCC-specific Th cell response and isolate T cell hybridomas.