Cu(I)-Catalyzed Diamination of Disubstituted Terminal Olefins: An Approach to Potent NK₁ Antagonist

Yuehong Wen, Baoguo Zhao, and Yian Shi*

Department of Chemistry Colorado State University Fort Collins, CO 80523

Supporting Information

Table of Contents

Diamination procedureS-2Deprotection procedureS-2Synthesis of Sch 425078S-4Characterization data of compounds 3S-7NOE studies of compound 4aS-7NMR spectra of compounds 3, 4a, 5a, 6a, 9-14S-7	S-2
Deprotection procedureS-2Synthesis of Sch 425078S-4Characterization data of compounds 3S-7NOE studies of compound 4aS-7NMR spectra of compounds 3, 4a, 5a, 6a, 9-14S-7	S-2
Synthesis of Sch 425078S-4Characterization data of compounds 3S-7NOE studies of compound 4aS-7NMR spectra of compounds 3, 4a, 5a, 6a, 9-14S-7	S-2
Characterization data of compounds 3S-7NOE studies of compound 4aS-7NMR spectra of compounds 3, 4a, 5a, 6a, 9-14S-7	S-4
NOE studies of compound 4aS-1NMR spectra of compounds 3, 4a, 5a, 6a, 9-14S-1	S-7
NMR spectra of compounds 3, 4a, 5a, 6a, 9-14 S-2	S-13
	S-14
The X-ray structure of compound 14 S-6	S-64

General methods. All commercially reagents were used without further purification. Column chromatography was performed with silica gel (200-400 mesh). ¹H NMR was recorded on 300 or 400 MHz spectrometers at ambient temperature. ¹³C NMR was recorded at 75 or 100 MHz spectrometers at ambient temperature. IR spectra were recorded on a FT-IR spectrometer. Melting points were uncorrected.

Olefins 1a, 1f, 1h, 1i, 1j, and 1p were purchased and used directly. Olefins 1b-1e, 1g, and 1k-1n were prepared from ketones using the Tebbe or Wittig reagents according to the reported procedures.¹ Olefin 1o was prepared by following the reported procedure.²

(1) (a) Ohsugi, S.; Nishide, K.; Node, M. *Tetrahedron* 2003, *59*, 1859. (b) Pine, S. H.; Shen, G. S.; Hoang, H. *Synthesis* 1991, 165. (c) Tebbe, F. N.; Parshall, G. W.; Reddy, G. S. *J. Am. Chem. Soc.* 1978, *100*, 3611.

(2) Beddow, J. E.; Davies, S. G.; Ling, K. B.; Roberts, P. M.; Russell, A. J.; Smith, A. D.; Thomson, J. E. Org. Biomol. Chem. 2007, 5, 2812.

Representative diamination procedure (Table 1, entry 1). To a 1.5 mL vial equipped with a stir bar was added CuCl (0.002 g, 0.02 mmol), triphenylphosphine (0.0052 g, 0.02 mmol), and CDCl₃ (0.3 mL). After the mixture was stirred at room temperature for 10 min, 2-phenylpropene (**1a**) (0.047 g, 0.4 mmol) was added. The reaction mixture was warmed to 65 °C using an oil bath with stirring, and di*-tert*-butyldiaziridinone (**2**) (0.136 g, 0.8 mmol) was added by syringe pump over 8 h. The reaction mixture was stirred at this temperature for an additional 1 h and purified by flash chromatography (silica gel, hexane:ether = 10:1, v/v) to give the diamination product **3a** as a white solid (0.105 g, 91%).

Removal of one *tert*-butyl group (Scheme 2). A mixture of compound 3a (0.075 g, 0.26 mmol) and methanesulfonic acid (0.075 mL) in hexane (0.75 mL) was stirred at room temperature for 3.5 h. Water (7 mL) was then added. The mixture was extracted with chloroform (10 mL \times 3), washed with brine (10 mL), dried (Na₂SO₄), filtered, concentrated, and purified by column chromatography (silica gel, hexane:ethyl acetate = 2:1, v/v) to give

compound **4a** as a white solid (0.060 g, 99%). mp 88-90 °C; IR (film) 3226, 1693 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.31 (m, 4H), 7.29-7.22 (m, 1H), 4.92 (s, 1H), 3.48 (d, *J* = 8.8 Hz, 1H), 3.40 (d, *J* = 8.8 Hz, 1H), 1.61 (s, 3H), 1.32 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 161.4, 146.1, 128.6, 127.2, 124.8, 57.7, 56.3, 52.9, 28.2, 27.7; HRMS Calcd for C₁₄H₂₁N₂O (M+H⁺): 233.1648. Found: 233.1651.

Removal of both of the *tert*-butyl groups (Scheme 2). A mixture of compound 3a (0.150 g, 0.52 mmol) and methanesulfonic acid (0.15 mL) in hexane (1.5 mL) was stirred at 65 °C for 3.5 h. Water (10 mL) was then added. The mixture was extracted with chloroform (20 mL × 3), washed with brine (10 mL), dried (Na₂SO₄), filtered, concentrated, and purified by column chromatography (silica gel, ethyl acetate then ethyl acetate/methanol = 20/1) to give compound 5a as a white solid (0.078 g, 85%). mp 197-198 °C; IR (film) 3193, 1699 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆) δ 7.39-7.32 (m, 4H), 7.25-7.24 (m, 1H), 7.02 (s, 1H), 6.29 (s, 1H), 3.43 (d, J = 8.8 Hz, 1H), 3.26 (d, J = 8.4 Hz, 1H), 1.49 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 162.4, 147.1, 128.2, 126.6, 124.8, 59.6, 54.1, 28.7; Anal. Calcd for C₁₀H₁₂N₂O: C, 68.16; H, 6.86; N, 15.90. Found: C, 68.09; H, 6.84; N, 15.78.

Preparation of diamine 6a (Scheme 2). A mixture of compounds **3a** (0.116 g, 0.4 mmol) and conc. HCl (6.0 mL) was stirred at reflux for 30 h, washed with CH₂Cl₂ (10 mL x 3), concentrated under reduced pressure, diluted with water (5 mL), and adjusted to basic (pH >12) with 15% aqueous NaOH. The mixture was extracted with CH₂Cl₂ (10 mL × 3), washed with brine (10 mL), dried (Na₂SO₄), filtered, and concentrated to give diamine **6a** as a dark yellow oil (0.052 g, 87% yield). IR (film) 3355, 3287 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.43 (d, *J* = 8.1 Hz, 2H), 7.35-7.30 (m, 2H), 7.23-7.18 (m, 1H), 2.91 (d, *J* = 12.3 Hz, 1H), 2.72 (d, *J* = 12.3 Hz, 1H), 1.41 (s, 3H), 1.34 (brs, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 147.1, 128.3, 126.4, 125.5, 56.1, 54.7, 28.8; HRMS Calcd for C₉H₁₄N₂ (M⁺): 150.1154. Found: 150.1157.

Preparation of α-bromomethylstyrene (7). *N*-Bromosuccinimide (8.90 g, 50.0 mmol) was added to a solution of α-methylstyrene (10.4 mL, 80.0 mmol) in CCl₄ (5 mL), and the mixture was rapidly heated in an oil bath at 170 °C until the solids were dissolved. The reaction mixture was allowed to cool to room temperture and filtered to remove the precipitates. The filtrate was concentrated under reduced pressure and purified by flash chromatography (hexane) to give **7** as a colorless oil (5.0 g, 51%). ¹H NMR (300 MHz, CDCl₃) δ 7.59-7.56 (m, 2H), 7.45-7.42 (m, 3H), 5.63 (s, 1H), 5.56 (s, 1H), 4.45 (s, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 144.3, 137.6, 128.6, 128.4, 126.2, 117.3, 34.3.

Reed, S. F. J. Org. Chem. 1965, 30, 3258.

Preparation of olefin 9. To a stirred suspension of NaH (60% dispersion in mineral oil) (0.40 10.0 mmol) in THF (20.0 mL) at 0 °C was added a solution of g, (R)-1-(3,5-bis(trifluoromethyl)phenyl)ethanol (2.582 g, 10.0 mmol) in THF (10.0 mL). After stirring at room temperature for 30 min, a solution of α -bromomethylstyrene (1.97 g, 10.0 mmol) in THF (10.0 mL) was added. The resulting mixture was heated at reflux for 18 h, cooled to room temperature, filtered through Celite, concentrated, and purified by flash chromatography (silical gel, hexane:ethyl acetate = 100:1, v/v) to afford compound 9 as a colorless oil (2.90 g, 77%). $[\alpha]_{D}^{20} = +43.8 (c \ 1.1, \ CH_2Cl_2);$ IR (film) 1279, 1177, 1134 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 9.6 Hz, 3H), 7.38-7.35 (m, 2H), 7.31-7.24 (m, 3H), 5.49 (s, 1H), 5.27 (d, J = 1.2 Hz, 1H), 4.60 (q, J = 6.4 Hz, 1H), 4.31 (d, J = 12.8 Hz, 1H), 4.20 (d, J = 12.4 Hz, 1H), 1.41 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 146.8, 144.2, 138.6, 132.4, 132.1, 131.8, 131.4, 128.6, 128.1, 126.6, 126.2, 124.9, 122.1, 121.7, 121.6, 115.0, 76.2, 71.1, 24.0.

Diamination of compound 9. To a 1.5 mL vial equipped with a stir bar was added CuCl (0.004 g, 0.04 mmol), triphenylphosphite (0.0124 g, 0.04 mmol), and CDCl₃ (0.3 mL). After the mixture was stirred at room temperature for 10 min, compound **9** (0.075 g, 0.20 mmol) was added. The reaction mixture was warmed to 65 $^{\circ}$ C using an oil bath with stirring, and di-*tert*-butyldiaziridinone (**2**) (0.068 g, 0.40 mmol) was added by syringe pump over 8 h. The

reaction mixture was stirred at this temperature for an additional 2 h and purified by flash chromatography (silica gel, hexane:ether = 10:1, v/v) to give compound **10** as a sticky colorless oil (0.038 g, 35%) and more polar compound **11** as a sticky colorless oil (0.033 g, 30%).

10: $[\alpha]^{20}{}_{D} = +19.8 (c 2.5, CH_{2}Cl_{2});$ IR (film) 1682 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.87 (s, 3H), 7.56 (d, J = 8.1 Hz, 2H), 7.42-7.32 (m, 3H), 4.77 (q, J = 6.6 Hz, 1H), 4.16 (d, J = 9.0 Hz, 1H), 3.80 (d, J = 9.0 Hz, 1H), 3.73 (d, J = 8.7 Hz, 1H), 3.21 (d, J = 8.7 Hz, 1H), 1.64 (d, J = 6.6 Hz, 3H), 1.37 (s, 9H), 1.20 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 160.4, 146.1, 145.2, 132.8, 132.4, 132.0, 131.5, 128.8, 128.4, 127.6, 126.9, 126.3, 125.2, 122.1, 122.0, 121.6, 78.4, 72.0, 64.0, 55.8, 54.5, 53.2, 29.8, 27.4, 24.0; HRMS Calcd for C₂₈H₃₅F₆N₂O₂ (M+H⁺): 545.2597. Found: 545.2601.

11: $[\alpha]^{20}{}_{D} = +31.1 \ (c \ 2.85, \ CH_2Cl_2); \ IR \ (film) \ 1685 \ cm^{-1}; \ ^{1}H \ NMR \ (300 \ MHz, \ CDCl_3) \ \delta$ 7.90-7.89 (m, 3H), 7.45 (d, $J = 6.9 \ Hz, 2H$), 7.38-7.27 (m, 3H), 4.72 (q, $J = 6.3 \ Hz, 1H$), 4.03 (d, $J = 9.0 \ Hz, 1H$), 3.98 (d, $J = 9.3 \ Hz, 1H$), 3.71 (d, $J = 8.7 \ Hz, 1H$), 3.21 (d, $J = 8.7 \ Hz, 1H$), 1.62 (d, $J = 6.6 \ Hz, 3H$), 1.43 (s, 9H), 1.24 (s, 9H); $^{13}C \ NMR \ (75 \ MHz, \ CDCl_3) \ \delta \ 160.5, 146.4, 145.3, 132.8, 132.4, 131.9, 131.5, 128.4, 127.6, 126.4, 125.2, 121.9, 121.88, 121.8, 121.6, 78.3, 72.3, 63.9, 55.8, 54.8, 53.1, 29.8, 27.6, 23.7; HRMS \ Calcd \ for \ C_{28}H_{35}F_6N_2O_2 \ (M+H^+): 545.2597.$ Found: 545.2601.

Preparation of compound 12. A mixture of compound **10** (0.140 g, 0.26 mmol) and CF₃CO₂H (0.52 mL) in a 3 mL vial was stirred at 80 °C for 2 h, concentrated, and purified by flash chromatography (silica gel, ethyl acetate) to give compound **12** as a white solid (0.083 g, 74%). $[\alpha]^{20}_{D} = -52.9$ (*c* 1.2, CH₂Cl₂); mp 131-132 °C; IR (film) 3200, 1713 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.80 (s, 1H), 7.50 (s, 2H), 7.44-7.34 (m, 3H), 7.30-7.28 (m, 2H), 5.60 (s, 1H), 4.90 (s, 1H), 4.52 (q, *J* = 6.6 Hz, 1H), 3.78 (d, *J* = 8.7 Hz, 1H), 3.68 (d, *J* = 8.4 Hz, 1H), 3.58 (d, *J* = 9.0 Hz, 1H), 3.51 (d, *J* = 9.0 Hz, 1H), 1.43 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 162.9, 146.1, 142.3, 132.6, 132.2, 131.8, 131.3, 128.9, 127.9, 126.2, 125.3, 125.1, 125.0, 121.8, 121.5, 78.0, 74.8, 63.4, 50.9, 24.1; Anal. Calcd for C₂₀H₁₈F₆N₂O₂: C, 55.56; H, 4.20; N, 6.48. Found: C, 55.63; H, 4.42; N, 6.33; HRMS Calcd for C₂₀H₁₉F₆N₂O₂

$(M+H^+)$: 433.1345. Found: 433.1347.

Preparation of compound 13. A mixture of compound **10** (0.168 g, 0.31 mmol) and CF₃CO₂H (0.6 mL) in a 3 mL vial was stirred at rt for 1 h, concentrated, and purified by flash chromatography (silica gel, ethyl acetate:hexane = 1:2, v/v) to give compound **13** as a sticky colorless oil (0.142 g, 94%). $[\alpha]^{20}_{D} = -31.6$ (*c* 3.8, CH₂Cl₂); IR (film) 1694 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.75 (s, 1H), 7.45 (s, 2H), 7.40-7.29 (m, 3H), 7.26-7.24 (m, 2H), 5.26 (brs, 1H), 4.46 (q, *J* = 6.6 Hz, 1H), 3.66 (d, *J* = 8.4 Hz, 1H), 3.57 (d, *J* = 8.4 Hz, 1H), 3.49 (d, *J* = 8.7 Hz, 1H), 3.35 (d, *J* = 9.0 Hz, 1H), 1.36 (d, *J* = 6.3 Hz, 3H), 1.33 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 161.2, 146.2, 142.6, 132.6, 132.2, 131.7, 131.3, 128.8, 127.7, 126.3, 126.2, 125.1, 121.8, 121.7, 121.5, 78.0, 74.7, 59.2, 53.4, 53.3, 27.7, 24.2; HRMS Calcd for C₂₄H₂₇F₆N₂O₂ (M+H⁺): 489.1971. Found: 489.1979.

Preparation of compound 14. To a solution of **13** (0.090 g, 0.184 mmol) in anhydrous THF (2 mL) at 0 °C under Ar, was added a solution of *n*-BuLi in pentane (2.0 M, 0.14 mL, 0.28 mmol). After the mixture was stirred at 0 °C for 15 min, a solution of benzoyl chloride (0.042 mL, 0.051 g, 0.36 mmol) in THF (1 mL) was added. Upon stirring at 0 °C for an additional 2 h, the reaction mixture was quenched with saturated aqueous ammonium chloride solution, extracted with CH₂Cl₂ (15 mL × 3), washed with saturated aqueous NaHCO₃ and brine, dried (Na₂SO₄), filtered, concentrated, and purified by flash chromatography (silica gel, ethyl acetate:hexane = 1:8, v/v) to give compound **14** as a white solid (0.068 g, 62%). [α]²⁰_D = -15.1 (*c* 1.45, CH₂Cl₂); mp 162-163 °C; IR (film) 1727, 1668 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.10-8.08 (m, 1H), 7.74 (s, 1H), 7.66 (s, 2H), 7.48-7.43 (m, 2H), 7.41-7.33 (m, 4H), 7.31-7.23 (m, 3H), 4.65 (q, *J* = 6.4 Hz, 1H), 4.21 (d, *J* = 9.2 Hz, 1H), 4.18 (d, *J* = 9.2 Hz, 1H), 4.07 (d, *J* = 9.2 Hz, 1H), 3.50 (d, *J* = 8.8 Hz, 1H), 1.53 (d, *J* = 6.4 Hz, 3H), 1.34 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 154.4, 145.9, 141.3, 135.8, 133.9, 132.1, 131.8, 131.4, 130.3, 128.9, 128.6, 128.5, 128.0, 127.7, 126.3, 125.0, 124.7, 121.9, 78.1, 69.8, 63.7, 54.3, 52.9, 27.5, 23.8; HRMS Calcd for C₃₁H₃₁F₆N₂O₃ (M+H⁺): 593.2233. Found: 593.2241.

Table 1, Entry 1

White solid; mp 74-75 °C; IR (film) 1688 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.45 (m, 2H), 7.33-7.29 (m, 2H), 7.24-7.23 (m, 1H), 3.16 (d, J = 8.8 Hz, 1H), 3.06 (d, J = 8.8 Hz, 1H), 1.80 (s, 3H), 1.31 (s, 9H), 1.19 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 160.5, 147.8, 128.3, 127.1, 126.3, 61.3, 60.3, 55.6, 53.0, 29.8, 27.5, 24.3; Anal. Calcd for C₁₈H₂₈N₂O: C, 74.96; H, 9.78; N, 9.71. Found: C, 75.19; H, 9.56; N, 9.94.

Table 1, Entry 2

White solid; mp 110-111 °C; IR (film) 1689 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.26 (m, 1H), 7.20-7.18 (m, 1H), 7.03-6.93 (m, 2H), 3.33 (d, J = 8.4 Hz, 1H), 3.01 (dd, J = 8.4, 2.8 Hz, 1H), 1.75 (s, 3H), 1.25 (s, 9H), 1.12 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 162.5, 159.9 (J = 29.2 Hz), 133.8 (J = 7.3 Hz), 129.5 (J = 9.1 Hz), 128.3 (J = 3.6 Hz), 123.9 (J = 2.7 Hz), 117.1 (J = 21.9 Hz), 59.5, 57.7, 55.4, 53.2, 29.6, 27.6, 26.1; Anal. Calcd for C₁₈H₂₇FN₂O: C, 70.55; H, 8.88; N, 9.14. Found: C, 70.33; H, 8.65; N, 9.06.

Table 1, Entry 3

White solid; mp 56-57 °C; IR (film) 1681 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.32-7.26 (m, 2H), 6.93-6.88 (m, 2H), 3.83 (s, 3H), 3.58 (d, *J* = 8.1 Hz, 1H), 2.97 (d, *J* = 7.5 Hz, 1H), 1.83

(s, 3H), 1.37 (s, 9H), 1.18 (s, 9H); 13 C NMR (75 MHz, CDCl₃) δ 160.1, 158.0, 133.6, 128.9, 127.6, 120.0, 111.3, 59.6, 56.4, 55.0, 54.5, 53.0, 29.5, 27.7, 27.4; Anal. Calcd for C₁₉H₃₀N₂O₂: C, 71.66; H, 9.50; N, 8.80. Found: C, 71.45; H, 9.61; N, 8.83.

Table 1, Entry 4

White solid; mp 90-91 °C; IR (film) 1690 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.60-7.59 (m, 1H), 7.44-7.36 (m, 2H), 7.23-7.18 (m, 1H), 3.12 (d, J = 8.4 Hz, 1H), 3.08 (d, J = 8.7 Hz, 1H), 1.80 (s, 3H), 1.32 (s, 9H), 1.21 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 160.3, 150.4, 130.3, 130.0, 129.3, 125.0, 122.6, 61.2, 60.0, 55.7, 53.1, 29.8, 27.5, 24.5; Anal. Calcd for C₁₈H₂₇BrN₂O: C, 58.86; H, 7.41; N, 7.63. Found: C, 58.77; H, 7.50; N, 7.54.

Table 1, Entry 5

ОМе

White solid; mp 113-115 °C; IR (film) 1683 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.21 (m, 1H), 7.05-7.01 (m, 2H), 6.78-6.76 (m, 1H), 3.79 (s, 3H), 3.16 (d, *J* = 8.4 Hz, 1H), 3.06 (d, *J* = 8.4 Hz, 1H), 1.79 (s, 3H), 1.31 (s, 9H), 1.21 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 160.5, 159.6, 149.7, 129.4, 118.7, 112.6, 112.0, 61.4, 60.2, 55.6, 55.3, 53.1, 29.7, 27.5, 24.6; Anal. Calcd for C₁₉H₃₀N₂O₂: C, 71.66; H, 9.50; N, 8.80. Found: C, 72.02; H, 9.27; N, 8.97.

Table 1, Entry 6

Colorless oil; IR (film) 1690 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.30-7.28 (m, 2H), 7.25-7.19 (m, 1H), 7.08-7.05 (m, 1H), 3.18 (d, J = 8.4 Hz, 1H), 3.08 (d, J = 8.4 Hz, 1H), 2.36 (s, 3H), 1.82 (s, 3H), 1.34 (s, 9H), 1.22 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 160.5, 147.8, 137.8, 128.2, 127.8, 126.9, 123.4, 61.3, 60.2, 55.5, 53.0, 29.8, 27.5, 24.4, 21.7; Anal. Calcd for C₁₉H₃₀N₂O: C, 75.45; H, 10.00; N, 9.26. Found: C, 75.58; H, 9.89; N, 9.09.

Table 1, Entry 7

White solid; mp 175-176 °C; IR (film) 1686 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.72-7.67 (m, 2H), 7.50-7.48 (m, 1H), 7.42-7.38 (m, 1H), 3.05-3.02 (m, 2H), 1.76 (s, 3H), 1.24 (s, 9H), 1.11 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 160.1, 149.6, 131.0, 129.6, 129.3, 118.8, 112.5, 61.1, 59.8, 55.8, 53.2, 29.9, 27.5, 24.3; Anal. Calcd for C₁₉H₂₇N₃O: C, 72.81; H, 8.68; N, 13.41. Found: C, 73.15; H, 8.61; N, 13.66.

Table 1, Entry 8

Me

Colorless oil; IR (film) 1690 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, J = 8.0 Hz, 2H), 7.11 (d, J = 8.4 Hz, 2H), 3.14 (d, J = 8.4 Hz, 1H), 3.04 (d, J = 8.0 Hz, 1H), 2.32 (s, 3H), 1.78 (s,

3H), 1.31 (s, 9H), 1.19 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 160.6, 144.8, 136.8, 129.0, 126.2, 61.1, 60.3, 55.5, 53.0, 29.8, 27.5, 24.4, 21.1; Anal. Calcd for C₁₉H₃₀N₂O: C, 75.45; H, 10.00; N, 9.26. Found: C, 75.18; H, 9.89; N, 9.06.

Table 1, Entry 9

Colorless oil; IR (film) 1689 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 8.4 Hz, 2H), 7.26 (d, J = 8.8 Hz, 2H), 3.08 (d, J = 8.4 Hz, 1H), 3.04 (d, J = 8.8 Hz, 1H), 1.77 (s, 3H), 1.28 (s, 9H), 1.17 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 160.3, 146.4, 133.0, 128.5, 127.7, 61.0, 60.0, 55.6, 53.0, 29.8, 27.5, 24.4; Anal. Calcd for C₁₈H₂₇ClN₂O: C, 66.96; H, 8.43; N, 8.68. Found: C, 66.94; H, 8.52; N, 8.69.

Table 1, Entry 10

White solid; mp 103-104 °C; IR (film) 1689 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.88-7.81 (m, 4H), 7.75-7.72 (m, 1H), 7.52-7.49 (m, 2H), 3.28 (d, J = 8.4 Hz, 1H), 3.13 (d, J = 8.7 Hz, 1H), 1.98 (s, 3H), 1.38 (s, 9H), 1.26 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 160.6, 145.0, 133.1, 132.5, 128.2, 128.16, 127.7, 126.5, 126,2, 125.2, 124.0, 61.6, 59.6, 55.7, 53.1, 29.8, 27.6, 24.5; Anal. Calcd for C₂₂H₃₀N₂O: C, 78.06; H, 8.93; N, 8.28. Found: C, 78.15; H, 8.70; N, 8.14.

Table 1, Entry 11

Colorless oil; IR (film) 1685 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.49-7.46 (m, 2H), 7.36-7.29 (m, 2H), 7.27-7.22 (m, 1H), 3.30 (d, J = 8.7 Hz, 1H), 3.25 (d, J = 9.0 Hz, 1H), 2.40-2.28 (m, 1H), 2.13-2.01 (m, 1H), 1.36 (s, 9H), 1.22 (s, 9H), 1.14 (t, J = 7.2, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 160.7, 148.8, 128.3, 127.1, 126.3, 63.1, 57.1, 55.6, 53.1, 31.2, 29.4, 27.6, 8.6; HRMS Calcd for C₁₉H₃₁N₂O (M+H⁺): 303.2431. Found: 303.2435.

Table 1, Entry 12

White solid; mp 115-117 °C; IR (film) 1684 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.65-7.63 (m, 2H), 7.43-7.33 (m, 4H), 7.31-7.23 (m, 4H), 3.61 (s, 2H), 3.53 (d, *J* = 9.0 Hz, 1H), 3.31 (d, *J* = 9.0 Hz, 1H), 1.28 (s, 9H), 1.16 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 160.1, 148.3, 137.4, 130.6, 128.4, 128.3, 127.4, 127.0, 126.7, 63.3, 56.5, 56.1, 52.8, 43.5, 29.8, 27.3; Anal. Calcd for C₂₄H₃₂N₂O: C, 79.08; H, 8.85; N, 7.68. Found: C, 78.87; H, 8.61; N, 7.40.

Table 1, Entry 13

Colorless oil; IR (film) 1690 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.40 (m, 2H), 7.25-7.22 (m, 2H), 7.18-7.16 (m, 1H), 4.02 (d, J = 9.2 Hz, 1H), 3.67 (d, J = 9.2 Hz, 1H), 3.61 (d, J = 9.2 Hz, 1H), 3.41 (s, 3H), 3.00 (d, J = 9.2 Hz, 1H), 1.26 (s, 9H), 1.09 (s, 9H); ¹³C NMR

(100 MHz, CDCl₃) δ 160.5, 145.5, 128.2, 127.3, 126.8, 75.3, 64.1, 59.2, 55.7, 53.9, 53.1, 29.8, 27.6; Anal. Calcd for C₁₉H₃₀N₂O₂: C, 71.66; H, 9.50; N, 8.80. Found: C, 71.42; H, 9.40; N, 8.61.

Table 1, Entry 14

White solid; mp 124-125 °C; IR (film) 1688 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.7 (d, J = 7.8 Hz, 1H), 7.28-7.12 (m, 2H), 7.05-7.02 (m, 1H), 3.35 (d, J = 8.7 Hz, 1H), 3.11 (d, J = 8.7 Hz, 1H), 2.78-2.76 (m, 2H), 2.19-2.16 (m, 2H), 2.03-1.98 (m, 1H), 1.83-1.76 (m, 1H), 1.36 (s, 9H), 1.25 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 160.8, 142.7, 137.6, 128.8, 128.3, 1226.8, 126.3, 61.7, 58.3, 55.2, 53.0, 31.9, 29.9, 29.8, 27.5, 21.4; Anal. Calcd for C₂₀H₃₀N₂O: C, 76.39; H, 9.62; N, 8.91. Found: C, 76.34; H, 9.46; N, 8.88.

Table 1, Entry 15

Yellow oil; IR (film) 1751, 1697 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.53-7.50 (m, 2H), 7.34-7.31 (m, 3H), 3.91 (s, 3H), 3.85 (d, *J* = 9.0 Hz, 1H), 3.38 (d, *J* = 9.0 Hz, 1H), 1.33 (s, 9H), 1.24 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 173.8, 159.8, 142.4, 128.3, 128.0, 127.3, 69.2, 57.7, 56.6, 53.4, 52.6, 29.0, 27.3; Anal. Calcd for C₁₉H₂₈N₂O₃: C, 68.65; H, 8.49; N, 8.43. Found: C, 68.90; H, 8.28; N, 8.17.

Table 1, Entry 16

White solid; mp 66-68 °C; IR (film) 1743, 1697 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 3.74 (s, 3H), 3.31 (d, *J* = 8.1 Hz, 1H), 2.99 (d, *J* = 7.8 Hz, 1H), 1.57 (s, 3H), 1.34 (s, 9H), 1.29 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 175.5, 159.4, 61.8, 55.2, 54.1, 53.2, 52.6, 28.8, 27.4, 23.7; HRMS Calcd for C₁₄H₂₇N₂O₃ (M+H⁺): 271.2016. Found: 271.2021.

NOE studies of compound 4a.

The X-ray structure of compound 14

Table 1. Crystal data and structure refiner	ment for 14 .			
Identification code	ys190_0m			
Empirical formula	C31 H30 F6 N2 O3			
Formula weight	592.57			
Temperature	120(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P2(1)			
Unit cell dimensions	a = 9.5388(6) Å	= 90°.		
	b = 14.5600(10) Å	$= 109.057(4)^{\circ}.$		
	c = 10.9484(7) Å	= 90°.		
Volume	1437.23(16) Å ³			
Z	2			
Density (calculated)	1.369 Mg/m ³			
Absorption coefficient	0.114 mm ⁻¹			
F(000)	616			
Crystal size	$0.52 \ge 0.34 \ge 0.24 \text{ mm}^3$			
Theta range for data collection	2.26 to 45.37°.			
Index ranges	-19<=h<=18, -22<=k<=28,	-21<=l<=21		
Reflections collected	40750			
Independent reflections	18762 [R(int) = 0.0555]			
Completeness to theta = 45.37°	98.7 %			
Absorption correction	Multi-scan			
Max. and min. transmission	0.9728 and 0.9433			
Refinement method	Full-matrix least-squares on	_{r F} 2		
Data / restraints / parameters	18762 / 1 / 408			
Goodness-of-fit on F ²	0.967			
Final R indices [I>2sigma(I)]	R1 = 0.0562, wR2 = 0.1185			
R indices (all data)	R1 = 0.1293, wR2 = 0.1478			
Absolute structure parameter	-0.1(4)			
Extinction coefficient	0.0167(18)			
Largest diff. peak and hole	0.382 and -0.337 e.Å ⁻³			

	Х	у	Z	U(eq)	
N(1)	6812(1)	7867(1)	10838(1)	16(1)	
N(2)	4784(1)	7863(1)	11440(1)	18(1)	
O(1)	4867(1)	8660(1)	8719(1)	19(1)	
O(2)	5466(1)	6505(1)	10675(1)	26(1)	
O(3)	8443(1)	8044(1)	9734(1)	24(1)	
F(1)	8541(1)	7593(1)	6800(1)	40(1)	
F(2)	7622(1)	7563(1)	4731(1)	41(1)	
F(3)	9255(1)	8567(1)	5656(1)	41(1)	
F(4)	4655(10)	10724(3)	2884(3)	101(2)	
F(4A)	5660(6)	10935(3)	3193(5)	66(2)	
F(5)	3541(3)	10963(4)	3402(5)	83(2)	
F(5A)	4215(7)	11504(3)	4334(5)	78(2)	
F(6)	6357(4)	11405(3)	4242(6)	98(2)	
F(6A)	5309(7)	11713(2)	4641(3)	81(2)	
C(1)	8063(2)	8123(1)	5756(1)	25(1)	
C(2)	5041(2)	10922(1)	4063(2)	34(1)	
C(3)	6066(1)	8624(1)	6636(1)	20(1)	
C(4)	6870(1)	8779(1)	5799(1)	20(1)	
C(5)	6558(2)	9527(1)	4958(1)	22(1)	
C(6)	5406(2)	10111(1)	4955(1)	22(1)	
C(7)	4589(2)	9961(1)	5784(1)	22(1)	
C(8)	4919(1)	9221(1)	6633(1)	19(1)	
C(9)	4006(1)	9058(1)	7525(1)	20(1)	
C(10)	2749(2)	8385(1)	6919(1)	30(1)	
C(11)	5952(1)	9276(1)	9515(1)	17(1)	
C(12)	6485(1)	8854(1)	10874(1)	16(1)	
C(13)	5179(1)	8830(1)	11427(1)	18(1)	
C(14)	3290(1)	7604(1)	11489(1)	21(1)	
C(15)	2179(2)	7680(1)	10130(2)	33(1)	

for ys190_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

10³)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x

C(16)	2887(2)	8274(1)	12402(2)	33(1)
C(17)	3301(2)	6631(1)	12017(2)	37(1)
C(18)	5635(1)	7315(1)	10965(1)	18(1)
C(19)	7891(1)	7539(1)	10344(1)	18(1)
C(20)	8464(1)	6586(1)	10689(1)	18(1)
C(21)	8739(2)	6233(1)	11934(1)	23(1)
C(22)	9446(2)	5390(1)	12268(2)	28(1)
C(23)	9854(2)	4885(1)	11361(2)	30(1)
C(24)	9574(2)	5227(1)	10123(2)	28(1)
C(25)	8903(2)	6084(1)	9792(1)	24(1)
C(26)	7784(1)	9406(1)	11754(1)	17(1)
C(27)	9056(2)	8985(1)	12589(1)	22(1)
C(28)	10194(2)	9514(1)	13399(1)	25(1)
C(29)	10087(2)	10461(1)	13408(1)	27(1)
C(30)	8826(2)	10884(1)	12595(2)	29(1)
C(31)	7686(2)	10363(1)	11771(1)	24(1)

—

N(1)-C(19)	1.3936(15)
N(1)-C(18)	1.4239(15)
N(1)-C(12)	1.4746(15)
N(2)-C(18)	1.3574(16)
N(2)-C(13)	1.4583(16)
N(2)-C(14)	1.4922(15)
O(1)-C(9)	1.4208(15)
O(1)-C(11)	1.4311(15)
O(2)-C(18)	1.2179(16)
O(3)-C(19)	1.2223(15)
F(1)-C(1)	1.3296(17)
F(2)-C(1)	1.3385(17)
F(3)-C(1)	1.3433(18)
F(4)-C(2)	1.254(4)
F(4A)-C(2)	1.274(3)
F(5)-C(2)	1.377(3)
F(5A)-C(2)	1.256(3)
F(6)-C(2)	1.396(4)
F(6A)-C(2)	1.298(3)
C(1)-C(4)	1.4982(18)
C(2)-C(6)	1.500(2)
C(3)-C(4)	1.3923(17)
C(3)-C(8)	1.3965(18)
C(4)-C(5)	1.3941(19)
C(5)-C(6)	1.3880(19)
C(6)-C(7)	1.3936(18)
C(7)-C(8)	1.3904(19)
C(8)-C(9)	1.5234(17)
C(9)-C(10)	1.523(2)
C(11)-C(12)	1.5353(17)
C(12)-C(26)	1.5260(17)
C(12)-C(13)	1.5522(16)
C(14)-C(15)	1.523(2)
C(14)-C(17)	1.528(2)
C(14)-C(16)	1.533(2)

Table 3. Bond lengths [Å] and angles [°] for ys190_0m.

C(19)-C(20)	1.4942(17)
C(20)-C(25)	1.3939(17)
C(20)-C(21)	1.3989(18)
C(21)-C(22)	1.3901(19)
C(22)-C(23)	1.391(2)
C(23)-C(24)	1.386(2)
C(24)-C(25)	1.395(2)
C(26)-C(31)	1.3965(18)
C(26)-C(27)	1.3997(18)
C(27)-C(28)	1.389(2)
C(28)-C(29)	1.383(2)
C(29)-C(30)	1.385(2)
C(30)-C(31)	1.390(2)
C(19)-N(1)-C(18)	123.41(10)
C(19)-N(1)-C(12)	122.25(10)
C(18)-N(1)-C(12)	111.52(9)
C(18)-N(2)-C(13)	112.02(9)
C(18)-N(2)-C(14)	124.22(11)
C(13)-N(2)-C(14)	119.86(10)
C(9)-O(1)-C(11)	112.95(10)
F(1)-C(1)-F(2)	107.07(13)
F(1)-C(1)-F(3)	106.68(12)
F(2)-C(1)-F(3)	105.49(11)
F(1)-C(1)-C(4)	113.16(11)
F(2)-C(1)-C(4)	112.38(12)
F(3)-C(1)-C(4)	111.58(12)
F(4)-C(2)-F(5A)	113.7(4)
F(4)-C(2)-F(4A)	44.5(3)
F(5A)-C(2)-F(4A)	130.3(2)
F(4)-C(2)-F(6A)	130.6(3)
F(5A)-C(2)-F(6A)	47.6(3)
F(4A)-C(2)-F(6A)	106.6(3)
F(4)-C(2)-F(5)	64.2(5)
F(5A)-C(2)-F(5)	58.1(3)
F(4A)-C(2)-F(5)	105.3(4)
F(6A)-C(2)-F(5)	102.9(4)

F(4)-C(2)-F(6)	102.1(4)
F(5A)-C(2)-F(6)	103.4(4)
F(4A)-C(2)-F(6)	58.8(3)
F(6A)-C(2)-F(6)	57.3(3)
F(5)-C(2)-F(6)	141.7(2)
F(4)-C(2)-C(6)	114.6(2)
F(5A)-C(2)-C(6)	114.05(17)
F(4A)-C(2)-C(6)	115.60(19)
F(6A)-C(2)-C(6)	114.46(18)
F(5)-C(2)-C(6)	110.87(18)
F(6)-C(2)-C(6)	107.33(19)
C(4)-C(3)-C(8)	119.85(12)
C(3)-C(4)-C(5)	121.07(12)
C(3)-C(4)-C(1)	120.35(12)
C(5)-C(4)-C(1)	118.55(11)
C(6)-C(5)-C(4)	118.59(12)
C(5)-C(6)-C(7)	120.86(12)
C(5)-C(6)-C(2)	120.00(12)
C(7)-C(6)-C(2)	119.14(12)
C(8)-C(7)-C(6)	120.30(12)
C(7)-C(8)-C(3)	119.31(11)
C(7)-C(8)-C(9)	119.84(11)
C(3)-C(8)-C(9)	120.83(11)
O(1)-C(9)-C(10)	105.93(11)
O(1)-C(9)-C(8)	111.93(10)
C(10)-C(9)-C(8)	110.78(11)
O(1)-C(11)-C(12)	106.50(9)
N(1)-C(12)-C(26)	113.26(9)
N(1)-C(12)-C(11)	111.73(9)
C(26)-C(12)-C(11)	110.15(9)
N(1)-C(12)-C(13)	101.08(9)
C(26)-C(12)-C(13)	110.82(9)
C(11)-C(12)-C(13)	109.47(9)
N(2)-C(13)-C(12)	105.59(9)
N(2)-C(14)-C(15)	108.36(11)
N(2)-C(14)-C(17)	111.07(11)
C(15)-C(14)-C(17)	110.70(13)

107.92(11)
110.32(13)
108.42(12)
128.60(11)
124.26(11)
107.14(10)
120.72(11)
120.64(10)
118.37(10)
119.34(12)
118.58(11)
121.60(11)
120.10(13)
120.26(14)
119.90(13)
120.11(13)
120.24(13)
118.36(11)
119.32(11)
122.27(11)
120.33(12)
120.84(13)
119.31(13)
120.34(13)
120.81(13)

Symmetry transformations used to generate equivalent atoms:

	U11	U ²²	U33	U23	U13	U12	
N(1)	16(1)	11(1)	23(1)	0(1)	10(1)	0(1)	
N(2)	16(1)	14(1)	26(1)	0(1)	11(1)	0(1)	
O(1)	20(1)	16(1)	19(1)	0(1)	5(1)	-1(1)	
O(2)	24(1)	13(1)	46(1)	-4(1)	19(1)	-3(1)	
O(3)	25(1)	20(1)	32(1)	5(1)	18(1)	2(1)	
F(1)	45(1)	43(1)	40(1)	14(1)	23(1)	25(1)	
F(2)	39(1)	42(1)	44(1)	-19(1)	16(1)	7(1)	
F(3)	24(1)	43(1)	64(1)	4(1)	22(1)	3(1)	
F(4)	217(7)	49(2)	26(1)	14(1)	23(3)	43(3)	
F(4A)	111(3)	44(2)	76(3)	34(2)	78(3)	37(2)	
F(5)	37(1)	111(4)	84(3)	76(3)	-2(2)	1(2)	
F(5A)	130(4)	43(2)	99(4)	43(2)	91(4)	54(2)	
F(6)	92(3)	58(3)	157(5)	61(3)	59(3)	3(2)	
F(6A)	174(5)	22(1)	38(1)	4(1)	23(2)	5(2)	
C(1)	23(1)	27(1)	28(1)	0(1)	13(1)	4(1)	
C(2)	50(1)	25(1)	37(1)	8(1)	26(1)	9(1)	
C(3)	19(1)	19(1)	22(1)	1(1)	7(1)	1(1)	
C(4)	19(1)	20(1)	20(1)	-2(1)	7(1)	0(1)	
C(5)	26(1)	20(1)	22(1)	-2(1)	11(1)	0(1)	
C(6)	29(1)	19(1)	23(1)	1(1)	12(1)	2(1)	
C(7)	24(1)	19(1)	23(1)	1(1)	9(1)	4(1)	
C(8)	19(1)	19(1)	19(1)	-1(1)	7(1)	0(1)	
C(9)	18(1)	22(1)	21(1)	2(1)	8(1)	4(1)	
C(10)	21(1)	43(1)	24(1)	1(1)	5(1)	-7(1)	
C(11)	19(1)	13(1)	20(1)	1(1)	7(1)	-1(1)	
C(12)	16(1)	12(1)	21(1)	-1(1)	8(1)	1(1)	
C(13)	18(1)	14(1)	25(1)	-2(1)	11(1)	-1(1)	
C(14)	18(1)	17(1)	34(1)	1(1)	16(1)	0(1)	
C(15)	20(1)	34(1)	44(1)	-1(1)	9(1)	-4(1)	
C(16)	34(1)	29(1)	47(1)	-8(1)	30(1)	-4(1)	

Table 4. Anisotropic displacement parameters (Å²x 10³) for ys190_0m. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a*²U¹¹ + ... + 2 h k a* b* U¹²]
C(17)	39(1)	25(1)	59(1)	12(1)	34(1)	1(1)
C(18)	17(1)	14(1)	24(1)	0(1)	10(1)	-1(1)
C(19)	16(1)	16(1)	23(1)	0(1)	9(1)	1(1)
C(20)	16(1)	14(1)	27(1)	-1(1)	10(1)	0(1)
C(21)	23(1)	19(1)	29(1)	3(1)	13(1)	3(1)
C(22)	28(1)	19(1)	37(1)	6(1)	12(1)	4(1)
C(23)	24(1)	16(1)	51(1)	2(1)	14(1)	3(1)
C(24)	26(1)	20(1)	43(1)	-7(1)	17(1)	2(1)
C(25)	23(1)	20(1)	31(1)	-5(1)	13(1)	0(1)
C(26)	18(1)	14(1)	19(1)	-1(1)	8(1)	-1(1)
C(27)	22(1)	18(1)	23(1)	0(1)	5(1)	0(1)
C(28)	23(1)	26(1)	24(1)	0(1)	4(1)	0(1)
C(29)	26(1)	25(1)	28(1)	-5(1)	5(1)	-8(1)
C(30)	31(1)	17(1)	36(1)	-5(1)	6(1)	-5(1)
C(31)	23(1)	15(1)	32(1)	0(1)	5(1)	0(1)

	Х	У	Z	U(eq)	
H(3A)	6297	8114	7208	24	
H(5A)	7122	9635	4400	26	
H(7A)	3803	10367	5769	26	
H(9A)	3584	9655	7693	24	
H(10A)	2176	8291	7506	44	
H(10B)	3162	7797	6764	44	
H(10C)	2100	8634	6097	44	
H(11A)	5509	9889	9533	21	
H(11B)	6792	9345	9179	21	
H(13A)	5488	9088	12311	22	
H(13B)	4327	9189	10873	22	
H(15A)	2184	8308	9811	49	
H(15B)	1184	7530	10149	49	
H(15C)	2452	7250	9557	49	
H(16A)	2876	8902	12077	49	
H(16B)	3624	8228	13267	49	
H(16C)	1904	8121	12445	49	
H(17A)	3556	6193	11442	55	
H(17B)	2317	6484	12063	55	
H(17C)	4038	6592	12882	55	
H(21A)	8442	6569	12551	27	
H(22A)	9651	5159	13120	33	
H(23A)	10324	4305	11589	36	
H(24A)	9840	4878	9499	34	
H(25A)	8745	6326	8952	28	
H(27A)	9142	8335	12601	26	
H(28A)	11058	9221	13954	30	
H(29A)	10870	10818	13966	32	
H(30A)	8740	11534	12601	35	
H(31A)	6830	10660	11213	29	

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10^3) for ys190_0m.