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Abstract – A Gaussian mixture model with a finite number of components and correlated ran-
dom effects is described. The ultimate objective is to model somatic cell count information in
dairy cattle and to develop criteria for genetic selection against mastitis, an important udder dis-
ease. Parameter estimation is by maximum likelihood or by an extension of restricted maximum
likelihood. A Monte Carlo expectation-maximization algorithm is used for this purpose. The
expectation step is carried out using Gibbs sampling, whereas the maximization step is deter-
ministic. Ranking rules based on the conditional probability of membership in a putative group
of uninfected animals, given the somatic cell information, are discussed. Several extensions of
the model are suggested.
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1. INTRODUCTION

Mastitis is an inflammation of the mammary gland associated with bacterial
infection. Its prevalence can be as large as 50%, e.g., [16, 30]. Its adverse
economic effects are through a reduction in milk yield, an increase in veteri-
nary costs and premature culling of cows [39]. Milk must be discarded due
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to contamination with antibiotics, and there is a deterioration of milk quality.
Further, the disease reduces an animal’s well being.

Genetic variation in susceptibility to the disease exists. Studies in Scandi-
navia report heritability estimates between 0.06 and 0.12. The most reliable
estimate is the 0.07 of Heringstad et al. [17], who fitted a threshold model to
more than 1.6 million first-lactation records in Norway. These authors reported
genetic trends equivalent to an annual reduction of 0.23% in prevalence of clin-
ical mastitis for cows born after 1990. Hence, increasing genetic resistance to
the disease via selective breeding is feasible, albeit slow.

Routine recording of mastitis is not conducted in most nations, e.g., France
and the United States. Instead, milk somatic cell score (SCS) has been used in
genetic evaluation as a proxy measure. Heritability estimates of SCS average
around 0.11 [29]. Pöso and Mäntysaari [32] found that the genetic correlation
between SCS and clinical mastitis ranged from 0.37 to 0.68. Hence, selection
for a lower SCS is expected to reduce prevalence of mastitis. On this basis,
breeders have been encouraged to choose sires and cows having low estimated
breeding values for SCS.

Booth et al. [4] reported that 7 out of 8 countries had reduced bulk somatic
cell count by about 23% between 1985 and 1993; however, this was not ac-
companied by a reduction in mastitis incidence. Schukken et al. [38] stated
that a low SCS might reflect a weak immune system, and suggested that the
dynamics of SCS in the course of infection might be more relevant for se-
lection. Detilleux and Leroy [8] noted that selection for low SCS might be
harmful, since neutrophils intervene against infection. Also, a high SCS may
protect the mammary gland. Thus, it is not obvious how to use SCS informa-
tion optimally in genetic evaluation.

Some of the challenges may be met using finite mixture models, as sug-
gested by Detilleux and Leroy [8]. In a mixture model, observations (e.g.,
SCS, or milk yield and SCS) are used to assign membership into groups; for
example, putatively “diseased” versus “non-diseased” cows. Detilleux and
Leroy [8] used maximum likelihood; however, their implementation is not
flexible enough.

Our objective is to give a precise account of the mixture model of Detilleux
and Leroy [8]. Likelihood-based procedures are described and ranking rules
for genetic evaluation are presented. The paper is organized as follows. The
second section gives an overview of finite mixture models. The third section
describes a mixture model with additive genetic effects for SCS. A derivation
of the EM algorithm, taking into account presence of random effects, is given
in the fourth section. The fifth section presents restricted maximum likelihood
(REML) for mixture models. The final section suggests possible extensions.
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2. FINITE MIXTURE MODELS: OVERVIEW

Suppose that a random variable y is drawn from one of K mutually exclu-
sive and exhaustive distributions (“groups”), without knowing which of these
underlies the draw. For instance, an observed SCS may be from a healthy or
from an infected cow; in mastitis, the case may be clinical or subclinical. Here
K = 3 and the groups are: “uninfected”, “clinical” and “sub-clinical”. The
density of y can be written [27, 45] as:

p (y|θ) =
K∑

i=1

Pi pi (y|θi) ,

where K is the number of components of the mixture; Pi is the probability that

the draw is made from the ith component (
K∑

i=1
Pi = 1); pi (y|θi) is the density un-

der component i; θi is a parameter vector, and θ =
[
θ′1, θ

′
2, ..., θ

′
K, P1, P2, ..., PK

]′
includes all distinct parameters, subject to

K∑
i=1

Pi = 1. If K = 2 and the dis-

tributions are normal with component-specific mean and variances, then θ has
5 elements: P, the 2 means and the 2 variances. In general, the ymay be either
scalar or vector valued, or may be discrete as in [5, 28].

Methods for inferring parameters are maximum likelihood and Bayesian
analysis. An account of likelihood-based inference applied to mixtures is
in [27], save for models with random effects. Some random effects models for
clustered data are in [28, 40]. An important issue is that of parameter identifi-
cation. In likelihood inference this can be resolved by introducing restrictions
in parameter values, although creating computational difficulties. In Bayesian
settings, proper priors solve the identification problem. A Bayesian analysis
with Markov chain Monte Carlo procedures is straightforward, but priors must
be proper. However, many geneticists are refractory to using Bayesian models
with informative priors, so having alternative methods of analysis available is
desirable. Hereafter, a normal mixture model with correlated random effects is
presented from a likelihood-based perspective.

3. A MIXTURE MODEL FOR SOMATIC CELL SCORE

3.1. Motivation

Detilleux and Leroy [8] argued that it may not be sensible viewing SCS as
drawn from a single distribution. An illustration is in [36], where different
trajectories of SCS are reported for mastitis-infected and healthy cows. A
randomly drawn SCS at any stage of lactation can pertain to either a healthy or
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to an infected cow. Within infected cows, different types of infection, including
sub-clinical cases, may produce different SCS distributions.

Genetic evaluation programs in dairy cattle for SCS ignore this heterogene-
ity. For instance, Boichard and Rupp [3] analyzed weighted averages of SCS
measured at different stages of lactation with linear mixed models. The expec-
tation is that, on average, daughters of sires with a lower predicted transmitting
ability for somatic cell count will have a higher genetic resistance to mastitis.
This oversimplifies how the immune system reacts against pathogens [7].

Detilleux and Leroy [8] pointed out advantages of a mixture model over a
specification such as in [3]. The mixture model can account for effects of infec-
tion status on SCS and produces an estimate of prevalence of infection, plus
a probability of status (“infected” versus “uninfected”) for individual cows,
given the data and values of the parameters. Detilleux and Leroy [8] proposed
a 2−component mixture model, which will be referred to as DL hereafter. Al-
though additional components may be required for finer statistical modelling
of SCS, our focus will be on a 2−component specification, as a reasonable
point of departure.

3.2. Hierarchical DL

The basic form of DL follows. Let y and a be random vectors of observa-
tions and of additive genetic effects for SCS, respectively. In the absence of
infection, their joint density is

p0

(
y, a|β0,A, σ

2
a, σ

2
e

)
= p0

(
y|β0, a,σ2

e

)
p
(
a|A, σ2

a

)
. (1)

The subscript 0 denotes “no infection”, β0 is a set of fixed effects, A is the
known additive genetic relationship matrix between members of a pedigree,
and σ2

a and σ2
e are additive genetic and environmental components of vari-

ance, respectively. Since A is known, dependencies on this matrix will be
suppressed in the notation. Given a, the observations will be supposed to be
conditionally independent and homoscedastic, i.e., their conditional variance-
covariance matrix will be Iσ2

e . A single SCS measurement per individual will
be assumed, for simplicity. Under infection, the joint density is

p1

(
y, a|β1,σ

2
a, σ

2
e

)
= p1

(
y|β1, a,σ2

e

)
p
(
a|σ2

a

)
, (2)

where subscript 1 indicates “infection”. Again, the observations are assumed
to be conditionally independent, and β1 is a location vector, distinct (at least
some elements) from β0. DL assumed that the residual variance and the distri-
bution of genetic effects were the same in healthy and infected cows. This can
be relaxed, as described later.
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The mixture model is developed hierarchically now. Let P be the probability
that a SCS is from an uninfected cow. Unconditionally to group membership,
but given the breeding value of the cow, the density of observation i is

p
(
yi|β, ai,σ

2
e , P

)
= Pp0

(
yi |β0, ai,σ

2
e

)
+ (1 − P) p1

(
yi|β1, ai,σ

2
e

)
; i = 1, 2, ..., n,

where yi and ai are the SCS and additive genetic value, respectively, of the cow
on which the record is taken, and β =

[
β′0, β

′
1

]′
. The probability that the draw

is made from distribution 0 is supposed constant from individual to individual.
Assuming that records are conditionally independent, the density of all n

observations, given the breeding values, is

p
(
y|β, a,σ2

e , P
)
=

n∏
i=1

[
Pp0

(
yi|β0, ai,σ

2
e

)
+ (1 − P) p1

(
yi|β1, ai,σ

2
e

)]
. (3)

The joint density of y and a is then

p
(
y, a|β, σ2

a, σ
2
e , P

)
=

n∏
i=1

[
Pp0

(
yi|β0, ai,σ

2
e

)
+ (1 − P) p1

(
yi|β1, ai,σ

2
e

)] p
(
a|σ2

a

)
, (4)

and the marginal density of the data is

p
(
y|β, σ2

a, σ
2
e , P

)
=

∫
p
(
y, a|β, σ2

a, σ
2
e , P

)
p
(
a|σ2

a

)
da. (5)

When viewed as a function of the parameters θ =
[
β′0, β

′
1,σ

2
a, σ

2
e , P

]′
, (5) is

Fisher’s likelihood. This can be written as the product of n integrals only when
individuals are genetically unrelated; here, σ2

a would not be identifiable. On
the other hand, if ai represents some cluster effect (e.g., a sire’s transmitting
ability), the between-cluster variance can be identified.

DL assume normality throughout and take yi|β0, a,σ2
e ∼ N0

(
x′0iβ0 + ai,σ

2
e

)
and yi|β1, a,σ2

e ∼ N1

(
x′1iβ1 + ai,σ

2
e

)
. Here, x′0i and x′1i are known incidence

vectors relating fixed effects to observations. The assumption about the genetic
effects is a|A,σ2

a ∼ N
(
0,Aσ2

a

)
. Let now zi ∼ Bernoulli (P) , be an independent

(a priori) random variable taking the value zi = 0 with probability P if the
datum is drawn from process N0, or the value zi = 1 with probability 1 − P if
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from N1. Assuming all parameters are known, one has

Pr
(
zi = 0|yi, β0, β1, ai,σ

2
e , P

)
=

Pp0

(
yi|β0, ai,σ

2
e

)
Pp0

(
yi|β0, ai,σ

2
e

)
+ (1 − P) p1

(
yi |β1, ai,σ

2
e

) ·
(6)

Thus, Pr
(
zi = 1|yi, β0, β1, ai,σ

2
e , P

)
= 1−(6) is the probability that the cow be-

longs to the “infected” group, given the observed SCS, her breeding value and
the parameters.

A linear model for an observation (given zi) can be written as

yi = (1 − zi) x′0iβ0 + zix′1iβ1 + ai + ei.

A vectorial representation is

y =
[
I − Diag (zi)

]
X0β0 +

[
Diag (zi)

]
X1β1 + a + e

= X0β0 +
[
Diag (zi)

]
(X1β1 − X0β0) + a + e

where Diag (zi) is a diagonal matrix with typical element zi; X0 is an n × p0

matrix with typical row x′0i; X1 is an n × p1 matrix with typical row x′1i; a = {ai}
and e = {ei}. Specific forms of β0 and β1 (and of the corresponding incidence
matrices) are context-dependent, but care must be exercised to ensure param-
eter identifiability and to avoid what is known as “label switching” [27]. For
example, DL take X0β0 = 1µ0 and X1β1 = 1µ1.

4. MAXIMUM LIKELIHOOD ESTIMATION: EM ALGORITHM

4.1. Joint distribution of missing and observed data

We extremize (5) with respect to θ via the expectation-maximization algo-
rithm, or EM [6, 25]. Here, an EM version with stochastic steps is developed.

The EM algorithm augments (4) with n binary indicator variables zi (i =
1, 2, ..., n), taken as independently and identically distributed as Bernoulli,
with probability P. If zi = 0, the SCS datum is generated from the “unin-
fected” component; if zi = 1, the draw is from the other component. Let
z = [z1, z2, ..., zn]′ denote the realized values of all z variables. The “complete”
data is the vector

[
a′, y′, z′

]′ , with [a′, z′]′ constituting the “missing” part and
y representing the “observed” fraction. The joint density of a, y and z can be
written as

p
(
a, y, z|β0, β1,σ

2
a, σ

2
e , P

)
= p (z|P) p

(
a|σ2

a

)
p
(
y|z, a, β0, β1,σ

2
e

)
. (7)
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Given z, the component of the mixture generating the data is known automati-
cally for each observation. Now

p (z|P) =
n∏

i=1

P1−zi (1 − P)zi ,

p
(
yi|β0, β1, ai,σ

2
e , Zi = 0

)
= p0

(
yi|β0, ai,σ

2
e

)
,

p
(
yi|β0, β1, ai,σ

2
e , Zi = 1

)
= p1

(
yi|β1, ai,σ

2
e

)
,

for i = 1, 2, ..., n. Then, (7) becomes

p
(
a, y, z|β0, β1,σ

2
a, σ

2
e , P

)
= p

(
y, z|β0, β1, a,σ

2
a, σ

2
e , P

)
p
(
a|σ2

a

)
=


n∏

i=1

[
Pp0

(
yi|β0, a,σ2

e

)]1−zi
[
(1 − P) p1

(
yi|β1, a,σ2

e

)]zi

 p
(
a|σ2

a

)
. (8)

4.2. Fully conditional distributions of missing variables

The form of (8) leads to conditional distributions needed for implementing
the Monte Carlo EM algorithm.

• The density of the distribution [z|β0, β1, a, σ2
a, σ2

e , P, y] ≡ [z|β0, β1, a,
σ2

e , P, y] is

p
(
z|β0, β1, a,σ

2
e , P, y

)
∝

n∏
i=1

{[
Pp0

(
yi|β0, a,σ2

e

)]1−zi
[
(1 − P) p1

(
yi|β1, a,σ2

e

)]zi
}
.

This is the distribution of n independent Bernoulli random variables
with probability parameters (6).
• The density of distribution

[
a, z|β0, β1,σ

2
a, σ

2
e , P, y

]
can be written as

p
(
a, z|β0, β1,σ

2
a, σ

2
e , P, y

)
∝

n∏
i=1

{[
Pp0

(
yi|β0, a,σ2

e

)]1−zi
[
(1 − P) p1

(
yi|β1, a,σ2

e

)]zi
}

p
(
a|σ2

a

)

∝
n∏

i=1

exp

− (1 − zi)
[
ai −

(
yi − x′0iβ0

)]2
+ zi

[
ai −

(
yi − x′1iβ1

)]2

2σ2
e


×

 n∏
i=1

P1−zi (1 − P)zi

 p
(
a|σ2

a

)
. (9)
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As shown in the Appendix, the density of the distribution [a|z, β0, β1,
σ2

a, σ2
e , P, y] is

p
(
a|z, β0, β1,σ

2
a, σ

2
e , P, y

)
∝ exp

−
(
a − λ̂

)′ (
M + A−1σ

2
e

σ2
a

) (
a − λ̂

)
2σ2

e


with λ̂ as in (41). This indicates that the distribution is the Gaussian
process

a|z, β0, β1,σ
2
a, σ

2
e , P, y ∼ N

̂λ,
(
M + A−1σ

2
e

σ2
a

)−1

σ2
e

 . (10)

Recall that, given z, the probability P does not intervene in any distri-
bution.
• Integrating (42) in the Appendix with respect to a gives the conditional

distribution
[
z|β0, β1,σ

2
a, σ

2
e , P, y

]
with probability mass function

Pr
(
z|β0, β1,σ

2
a, σ

2
e , y

)
=

g (z)∑
z1

∑
z2

...
∑
zn

g (z)
, (11)

where

g (z) = exp

−
λ′M

(
M + A−1 σ

2
e

σ2
a

)−1
A−1λ

2σ2
a


n∏

i=1

P1−zi (1 − P)zi .

Computing the denominator of (11) is tedious because of the many
sums involved.

4.3. Complete data log-likelihood

The logarithm of (8) is called the “complete data” log-likelihood

Lcomplete = log
[
p
(
a|σ2

a

)]
+

n∑
i=1

{
(1 − zi)

[
log P + log p0

(
yi|β0, a,σ2

e

)]
+zi

[
log (1 − P) + log p1

(
yi|β1, a,σ2

e

)]}
. (12)
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4.4. The E and M steps

The E−step [6, 25, 27] consists of finding the expectation of Lcomplete taken
over the conditional distribution of the missing data, given y and some current
(in the sense of iteration) values of the parameters, say θ[k]=

[
β′[k],σ2[k]

a , σ2[k]
e ,

P[k]
]′
, where k denotes round of iteration. This expectation is known as the Q

function

Q
(
β,σ2

a, σ
2
e, P; θ[k]

)
= Ea,z|θ[k],y

[
Lcomplete

]
. (13)

The M−step finds parameter values maximizing Ea,z|θ[k],y

[
Lcomplete

]
. These

are called the “complete data” maximum likelihood estimates. Taking partial
derivatives of Q

(
β,σ2

a, σ
2
e, P; θ[k]

)
with respect to all elements of θ gives

∂Ea,z|θ[k],yQ
(
β,σ2

a, σ
2
e , P; θ[k]

)
∂P

= Ea,z|θ[k],y


n∑

i=1
(1 − zi)

P
−

n∑
i=1

zi

1 − P

 , (14)

∂Ea,z|θ[k],yQ
(
β,σ2

a, σ
2
e , P; θ[k]

)
∂β0

=

n∑
i=1

Ea,z|θ[k],y

 (1 − zi) x0i

(
yi − x′0iβ0 − ai

)
σ2

e

 ,
(15)

∂Ea,z|θ[k],yQ
(
β,σ2

a, σ
2
e , P; θ[k]

)
∂β1

=

n∑
i=1

Ea,z|θ[k],y

zix1i

(
yi − x′1iβ1 − ai

)
σ2

e

 ,
∂Ea,z|θ[k],yQ

(
β,σ2

a, σ
2
e , P; θ[k]

)
∂σ2

e
= − n

2σ2
e

+ Ea,z|θ[k],y

n∑
i=1


(1 − zi)

(
yi − x′0iβ0 − ai

)2

2σ4
e

+
zi

(
yi − x′1iβ1 − ai

)2

2σ4
e

 , (16)

and

∂Ea,z|θ[k],yQ
(
β,σ2

a, σ
2
e , P; θ[k]

)
∂σ2

a
= − q

2σ2
a
+ Ea,z|θ[k],y

[
a′A−1a

2σ4
a

]
· (17)

Setting derivatives to 0 and solving for the parameters leads to the “complete
data” maximum likelihood estimates; these provide new values for the next
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E−step. The updates are obtained iterating with

P[k+1] = 1 −

n∑
i=1

E[k] (zi)

n
, (18)

β[k+1]
0 = E[k]

{
X′0

[
I − Diag (zi)

]
X0

}−1
X′0

[
I − Diag (zi)

]
(y − aD) , (19)

β[k+1]
1 = E[k]

{
X′1Diag (zi) X1

}−1
X′1Diag (zi) (y − aD) , (20)

σ2[k+1]
e =

n∑
i=1

E[k]
[
(1 − zi)

(
yi − x′0iβ0 − ai

)2
+ zi

(
yi − x′1iβ1 − ai

)2
]

n
(21)

and

σ2[k+1]
a =

E[k]
(
a′A−1a

)
q

, (22)

where E[k] (expression
)
= Ea,z|θ[k],y

(
expression

)
.

4.5. Monte Carlo implementation of the E-step

In mixture models without random effects (i.e., with fixed a), calculation of
Ez|θ[k],y

(
expression

)
is direct, as the distribution

[
z|a, θ[k], y

]
is Bernoulli with

probability (6). In the fixed model a is included in the parameter vector, as-
suming it is identifiable; e.g., when the a′s represent fixed cluster effects. Here,
the iterates are linear functions of the missing z, and the computation involves
replacing zi by its conditional expectation, which is (6) evaluated at θ = θ[k].
This was employed by DL, but it is not correct when a is random.

In a mixture model with random effects, the joint distribution
[
a, z|θ, y]

,
with density (42) is not recognizable, so analytical evaluation of Ea,z|θ[k],y(
expression

)
is not possible. We develop a Monte Carlo E−step using the

Gibbs sampler. Observe that distributions
[
z|a, θ, y]

and
[
a|z, θ, y]

are recogniz-
able. Given a, each of the elements of z is independent Bernoulli, with prob-
ability (6). Likewise,

[
a|z, θ, y]

is multivariate normal, as in (10). The Gibbs
sampler [35, 41] draws from

[
a, z|θ, y]

by successive iterative sampling from[
z|a, θ, y]

and
[
a|z, θ, y]

. For example, draw each of the zi from their Bernoulli
distributions, then sample additive effects conditional on these realizations,
update the Bernoulli distributions, and so on. The process requires discard-
ing early samples (“burn-in”), and collecting m additional samples, with or
without thinning. The additive effects can be sampled simultaneously or in a
piece-wise manner [41].

Let the samples from
[
a, z|θ[k], y

]
be a( j,k), z( j,k), j = 1, 2, ...,m, recalling that

k is iterate number. Then, form Monte Carlo estimates of the complete data
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maximum likelihood estimates in (18)–(22) as

P̂[k+1] = 1 −

n∑
i=1

1
m

m∑
j=1

z( j,k)
i

n
, (23)

β̂[k+1]
0 =

1
m

m∑
j=1

{
X′0

[
I − Diag

(
z( j,k)

i

)]
X0

}−1
X′0

[
I − Diag

(
z( j,k)

i

)] (
y − a( j,k)

D

)
(24)

β̂[k+1]
1 =

1
m

m∑
j=1

{
X′1Diag

(
z( j,k)

i

)
X1

}−1
X′1Diag

(
z( j,k)

i

) (
y − a( j,k)

D

)
, (25)

σ2[k+1]
e =

n∑
i=1

m∑
j=1

[(
1 − z( j,k)

i

) (
yi − x′0iβ̂

[k]
0 − a( j,k)

i

)2
+ z( j,k)

i

(
yi − x′1iβ̂

[k]
1 − a( j,k)

i

)2
]

mn
(26)

and

σ2[k+1]
a =

m∑
j=1

a( j,k)′A−1a( j,k)

mq
· (27)

The E and M steps are repeated until parameter values do not change appre-
ciably.

When m → ∞, the limiting form of the algorithm is the standard EM.
The deterministic EM algorithm increases the likelihood function monotoni-
cally [6, 25] until convergence to some stationary point, although this may not
be a global maximum. Monte Carlo implementations of EM are discussed
in [12, 46]. For finite m, however, it is not true that the likelihood increases
monotonically, although this may reduce the chance that the algorithm gets
stuck in some local stationary point of little inferential value. Tanner [44] sug-
gests keeping m low at early stages of the algorithm and then increase sample
size in the neighborhood of some maximum. Due to Monte Carlo error, con-
vergence may be declared when fluctuations of the iterates appear to be random
about some value. At that point it may be worthwhile to increase m [44].

4.6. Inference about additive genetic effects

Genetic evaluation for SCS would be based on âi, the ith element of â, this
being the mean vector of the distribution

[
a|β0 = β̂0, β1 = β̂1, σ2

a = σ̂
2
a,

σ2
e = σ̂

2
e , y

]
. While β̂0, β̂1, σ̂

2
e , σ̂2

a and P̂ follow from the maximum likelihood
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procedure, â must be calculated using Monte Carlo methods. From standard
theory

E
(
a|β0 = β̂0, β1 = β̂1,σ

2
a = σ̂

2
a, σ

2
e = σ̂

2
e , y

)
=

Ez|β0=β̂0,β1=β̂1,σ
2
a=σ̂

2
a ,σ

2
e=σ̂

2
e ,y

E
(
a|β0 = β̂0, β1 = β̂1, z,σ2

a = σ̂
2
a, σ

2
e = σ̂

2
e , y

)
. (28)

Using (10), one then has that

Ê
(
a|β0 = β̂0, β1 = β̂1,σ

2
a = σ̂

2
a, σ

2
e = σ̂

2
e , y

)
=(

M + A−1σ
2
e

σ2
a

)−1 
[
In − Diag (zi)

]
(y − X0β0) + Diag (zi) (y − X1β1)

0

 (29)

where zi is the mean of m draws from
[
zi|β0 = β̂0, β1 = β̂1,σ

2
a = σ̂

2
a,

σ2
e = σ̂

2
e , y

]
, obtained from running a Gibbs sampler applied to the process[

a, z|θ = θ̂, y
]
. One can also estimate (28) directly from the m draws for a

obtained from such sampler. In theory, however, (29) is expected to have a
smaller Monte Carlo error.

Another issue is how the SCS information is translated into chances of a
cow belonging to the “uninfected” group. A simple option is to estimate (6) as

Pr
(
Zi = 0|yi ,̂β0, β̂1, âi,σ̂

2
e , P̂

)
=

P̂p0

(
yi |̂β0, âi,σ̂

2
e

)
P̂p0

(
yi |̂β0, âi,σ̂

2
e

)
+

(
1 − P̂

)
p1

(
yi |̂β1, âi,σ̂

2
e

) ·
(30)

For cow i (30) induces the log odds-ratio

k01

(
yi ,̂β0, β̂1, âi,σ̂

2
e , P̂

)
= log

P̂(
1 − P̂

) + log
p0

(
yi |̂β0, âi,σ̂

2
e

)
p1

(
yi |̂β1, âi,σ̂

2
e

) ·
The first term is constant across cows, so rankings based on (30) are driven by
the ratios between the densities of the SCS record of the cow in question under
the “healthy” and “diseased” components.

Statistically (30) does not take into account the error of the maximum like-
lihood estimates of all parameters. If the likelihood function is sharp and uni-
modal (large samples), this would be of minor concern. However, asymptotic
arguments in finite mixtures are more subtle than in linear or generalized linear
models [27] and multimodality is to be expected in small samples, as illustrated
in [1].
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5. RESTRICTED MAXIMUM LIKELIHOOD

5.1. General

Maximum likelihood ignores uncertainty associated with simultaneous esti-
mation of nuisance parameters [41]. For example, if variance components are
inferred, no account is taken of degrees of freedom lost for estimating fixed
effects [31]. This is clear when casted from a Bayesian perspective [14]. Max-
imum likelihood estimates can be viewed as components of the mode of a
joint posterior distribution obtained after assigning flat (improper) priors to all
parameters. On the other hand, restricted maximum likelihood estimates (of
variance components) correspond to the mode of the posterior distribution of
the variance components after integration of fixed effects, these viewed as nui-
sances. We extend this idea to our mixture model, i.e., account for uncertainty
about fixed effects.

5.2. Distributions

The sampling model is as in (3). Following the EM−REML algorithm
in [6], we treat β0 and β1 as missing data and assign an improper uniform prior
to each of these two vectors. The missing data includes now β0, β1, a and z,
and the joint density of the missing data and of the observations is proportional
to (8). Pertinent distributions follow.

• The density of
[
β0, β1, a, z|σ2

a, σ
2
e , P, y

]
is proportional to (9), but it is

convenient to rewrite it as

p
(
β0, β1, a, z|σ2

a, σ
2
e, y

)
∝ exp

[
−

(
y − X0β0 − a

)′ [I − Diag (zi)
] (

y − X0β0 − a
)

2σ2
e

]

× exp

[
−

(
y − X1β1 − a

)′ Diag (zi)
(
y − X1β1 − a

)
2σ2

e

]
p
(
a|σ2

a

)

×
n∏

i=1

P1−zi (1 − P)zi . (31)

• The distribution
[
z|β0, β1, a,σ

2
a, σ

2
e , P, y

]
is as before, i.e., group mem-

bership variables are independent Bernoulli with parameters (6).
• The conditional posterior distribution

[
a|z, β0, β1,σ

2
a, σ

2
e , P, y

]
is also as

before, i.e., normal, with parameters given in (10).
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• From (31) it can be deduced that the distribution
[
β0|a, z, β1,σ

2
a,

σ2
e , P, y

]
has density

p
(
β0|a, z, β1,σ

2
a, σ

2
e , P, y

)
∝ exp

[
−

(
y − a − X0β0

)′ [I − Diag (zi)
] (

y − a − X0β0
)

2σ2
e

]
· (32)

Given z, the only observations contributing information about β0 are
those for which zi = 0. Hence, (32) can be recognized [41] as the
density of the normal distribution

β0|a, z, β1,σ
2
a, σ

2
e , P, y ∼N

[(
X′0TzX0

)−1
X′0Tz (y − a) ,

(
X′0TzX0

)−1
σ2

e

]
, (33)

where Tz = I − Diag (zi).
• Likewise

p
(
β1|a, z, β0,σ

2
a, σ

2
e , P, y

)
∝ exp

[
−

(
y − a − X1β1

)′ Diag (zi)
(
y − a − X1β1

)
2σ2

e

]
, (34)

is the density of the normal distribution

β1|a, z, β0,σ
2
a, σ

2
e , P, y ∼N

[(
X′1DzX1

)−1
X′1Dz (y − a) ,

(
X′1DzX1

)−1
σ2

e

]
, (35)

where Dz = Diag (zi) .

5.3. The E and M steps

The complete data log-likelihood, apart from a constant, is as in (12). Since
the fixed effects must now be integrated out, the pertinent complete data max-
imum likelihood estimates are those of P, σ2

e and σ2
a. The integration over

the missing data β0, β1, a and z needed for the E−step is done by sampling
from

[
a, z, β0, β1|P[k], σ2[k]

e , σ
2[k]
a , y

]
. The Gibbs sampler draws successively

from (6), (10), (33) and (35), leading to samples a( j,k), z( j,k), β
( j,k)
0 , β

( j,k)
1 ,
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j = 1, 2, ...,m. The Monte Carlo estimates of the complete data maximum like-
lihood estimates are

P̂[k+1] = 1 −

n∑
i=1

1
m

m∑
j=1

z( j,k)
i

n
,

σ2[k+1]
e =

n∑
i=1

1
m

m∑
j=1

[(
1 − z( j,k)

i

) (
yi − x′0iβ

( j,k)
0 − a( j,k)

i

)2
+ z( j,k)

i

(
yi − x′1iβ

( j,k)
1 − a( j,k)

i

)2
]

n
,

and

σ2[k+1]
a =

m∑
j=1

a( j,k)′A−1a( j,k)

mq
·

Convergence issues are as for full maximum likelihood.

5.4. Inference about additive genetic effects

From now on, let the REML estimates be P̂, σ̂2
e , σ̂2

a. Genetic evalua-
tion for SCS may be based on Monte Carlo estimates of the mean vector of[
a|P̂, σ̂2

e , σ̂
2
a, y

]
. These can be obtained from running a second Gibbs sampler

applied to
[
a, z, β0, β1|P̂, σ̂2

e , σ̂
2
a

]
. This takes into account uncertainty about β0

and β1 (in the usual REML sense), but not that associated with the variance
component estimates and with P.

From a group allocation perspective, Pr
(
Zi = 0|yi,ai,σ

2
e , σ

2
a, P

)
is arguably

more relevant than Pr
(
Zi = 0|yi, β0, β1, ai,σ

2
e , P

)
, since cows and bulls must be

selected across a range of environmental circumstances. Here, one can use the
(approximate) Bayesian argument

Pr
(
Zi = 0|y,ai,σ

2
e , σ

2
a, P

)
≈

∫
Pr

(
Zi = 0|y, β0, β1, ai,σ

2
e , P

)
p
(
β0, β1|σ2

e , σ
2
a, P, y

)
dβ0dβ1

=

∫
Pr

(
Zi = 0|yi, β0, β1, ai,σ

2
e , P

)
p
(
β0, β1|σ2

e , σ
2
a, P, y

)
dβ0dβ1 (36)

and calculate the estimated probability

P̂r
(
Zi = 0|y,ai,σ

2
e , σ

2
a, P

)
=

1
m

m∑
j=1

Pr
(
Zi = 0|yi, β( j)

0 , β
( j)
1 , ai,σ̂

2
e , P̂

)
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where the m samples of the fixed effects are draws from
[
a, z, β0, β1|P̂, σ̂2

e ,

σ̂2
a, y

]
. The “exact” integration involves sampling from

[
a−i, z, β0, β1|ai, P̂, σ̂2

e ,

σ̂2
a, y

]
, which requires running an “auxiliary sampler”; a−i is a without ai. This

is of doubtful additional value, in view of the computational burden.

6. EXTENSIONS OF MODEL

A first extension is to allow for heterogeneous residual variance in the two
components. The parameter vector would now be θ =

[
β′0, β

′
1,σ

2
a, σ

2
e0, σ

2
e1, P

]
,

and the complete data log-likelihood would take the form

Lcomplete = log
[
p
(
a|σ2

a

)]
+

n∑
i=1

{
(1 − zi)

[
log P + log p0

(
yi|β0, a,σ2

e0

)]
+zi

[
log (1 − P) + log p1

(
yi|β1, a,σ2

e1

)]}
.

The Monte Carlo complete data full maximum likelihood estimates (23)–(27)
have the same form as before, except for the residual components of variance,
which are now

σ2[k+1]
e0 =

1
m

m∑
j=1


n( j,k)

0∑
i=1

[(
1 − z( j,k)

i

) (
yi − x′0iβ

[k]
0 − a( j,k)

i

)2
]

n( j,k)
0



σ2[k+1]
e1 =

1
m

m∑
j=1


n( j,k)

1∑
i=1

[
z( j,k)

i

(
yi − x′1iβ

[k]
1 − a( j,k)

i

)2
]

n( j,k)
1

 ,

where n( j,k)
0 and n( j,k)

1 = n − n( j,k)
0 are the number of indicator variables z( j,k)

i
falling into each of the two groups in sample j at iteration k. The imputa-
tions of z and a in the E–step need to be modified as well. The probability of
membership (6) must be amended to reflect residual heteroscedasticity; this is
straightforward. The density of the distribution

[
a, z|β0, β1,σ

2
a, σ

2
e0, σ

2
e1, P, y

]
,
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counterpart of (9), can be expressed as

p
(
a, z|β0, β1,σ

2
a, σ

2
e0, σ

2
e1, P, y

)

∝
n∏

i=1

exp

− (1 − zi)
[
ai −

(
yi − x′0iβ0

)]2
+ zi

[
ai −

(
yi − x′1iβ1

)]2

2σ2
ezi


×

 n∏
i=1

P1−zi (1 − P)zi

 p
(
a|σ2

a

)
. (37)

Using similar algebra as before, this can be written as

p
(
a, z|β0, β1,σ

2
a, σ

2
e0, σ

2
e1, P, y

)
∝ exp

− n∑
i=1

(ai − λi)2

2σ2
ezi


 n∏

i=1

P1−zi (1 − P)zi

 p
(
a|σ2

a

)
.

Now
n∑

i=1

(ai − λi)2

σ2
ezi

+
a′A−1a

σ2
a
= (a − λ)′Mz (a − λ) + a′A−1a

σ2
a
,

where

Mz =

 Diag
(

1
σ2

ezi

)
0

0 0

 .
Then, as in (40) and (42), as in the Appendix, one is led directly to

a|β0, β1, z,σ
2
a, σ

2
e0, σ

2
e1, P, y ∼ N

̂λz,

(
Mz +

A−1

σ2
a

)−1 ,
where

λ̂z =

(
Mz +

A−1

σ2
a

)−1

Mzλ.

With
[
a|β0, β1, z,σ

2
a, σ

2
e0, σ

2
e1, P, y

]
recognized as above, and with

z|β0, β1, a,σ
2
a, σ

2
e0, σ

2
e1, P, y ≡ z|β0, β1, a, σ

2
e0, σ

2
e1, P

identified, this completes the ingredients for carrying out the E−step via Gibbs
sampling.



20 D. Gianola et al.

A second extension is as follows. It is known from microarray studies
(e.g., [47]) that there is differential expression of genes in diseased and healthy
individuals. For example, some genes are expressed in tissues sampled from
cancerous tumors whereas other genes are expressed in negative biopsies. Mix-
ture models for diseases with a genetic basis should be flexible enough to allow
for differential expression. A cow cannot be mastitic and healthy at the same
time, but there may be genes that are expressed when infection takes place,
but to a different extent in the absence of disease. This can be modelled by
introducing a genetic correlation, much in the same way that one can think
of a genetic covariance between ovulation rate and scrotal circumference in
sheep [24], or between direct and maternal effects in cattle [48]. In the context
of mastitis, and in a 2−component mixture, a sufficient condition for statistical
identification of the genetic correlation is that some healthy animals have rela-
tives that contract the disease. If a K−component mixture model is fitted, one
would need that at least some “families” (in a loosely defined sense) are rep-
resented in all components of the mixture. In dairy cattle, where large half-sib
families are common, this requirement can be met, unless K is large. Also, the
assumption that genetic variances are the same for each of the two components
of the mixture can be relaxed.

In mixture models, it is not always clear whether asymptotic properties of
the maximum likelihood estimates hold well when one departs from standard
settings (e.g., [15, 22]). Hosmer [20] reported poor mean squared error behav-
ior of parameter estimates in a 2−component mixture model, especially when
the distributions overlapped and when P was close to 1. DL found that esti-
mates of P were not reliable when the means of the mixture components were
close. This implies that posterior probabilities based on maximum likelihood
estimates should be viewed with caution. DL reported that posterior probabil-
ities of infection were lower in “truly” non-infected that in infected cows, with
the differences increasing as mixing proportion increased. Posterior probabili-
ties were close to zero both for non-infected and infected cows with small SCS
values, and close to 1 for infected cows with large SCS. From plots in [8], it
seems that if one used the rule that the posterior probability should be larger
than 1

2 to assign a cow to the “possibly infected” class, only a few cows would
be false positives. It is difficult to assess the proportion of false negatives (in-
fected cows classified as non-infected) that would result from such an assign-
ment. DL assumed homogeneous variances in the two populations, and the
maximum likelihood estimates agreed with the simulated values, particularly
when the two distributions were well separated and P was far away from 1

2 .
The assumption of homogeneity of variances was to ensure a global maximum
of the likelihood, but perhaps at the expense of realism, as one would expect
the variances to be larger in the “infected” component, merely from scaling
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considerations. A Bayesian analysis, exploring the entire posterior distribution
of the parameters, could be useful here. If the model calls for heterogeneous
dispersion parameters, likelihood-based inference would run the risk of plac-
ing the (conceptual) asymptotic distribution at a local stationary point, whereas
the Bayesian analysis would integrate over the entire parameter space.

Our approach does not allow for hierarchical modelling of the prior prob-
ability of membership to the components, assumed constant for every obser-
vation. In the context of longitudinal information, evidence indicates that the
incidence of mastitis is much higher around calving than at other stages of
lactation (e.g., [18]). In such a setting, it would be sensible to allow for a
time-varying probability of membership.

Mastitis is complex, and more than two components may be needed for
adequate modelling. Different types of bacterial agents may lead to pathogen-
specific distributions of SCS. Hence, a mixture model with an unknown
number of components may be in order, although the difficulty of implement-
ing such a specification must be recognized. For example, a Bayesian ap-
proach with an unknown number of components may require a reversible jump
Markov chain Monte Carlo algorithm [11,34], but it is difficult to tune this type
of procedure [13]. A possibly more feasible alternative is to fit a sequence of
models with 2, 3, ...K components, and carry out the analysis for each of the
settings. Then, assuming that models are equi-probable a priori, choose the
one with the largest Bayes factor support [21] or infer breeding values or future
observations using Bayesian model averaging [19]. Bayesian model averaging
accounts for uncertainty about the models, and is expected to lead to better
prediction of future observations in some well-defined sense [26, 33].

Although SCS is claimed to be nearly normally distributed [2], the problem
of outlier protection in multivariate data is a difficult one [23]. A possibil-
ity is to use thick-tailed distributions, instead of normal processes, in mixture
model analysis. Robust distributions were introduced for cross-sectional data
in quantitative genetics by [10, 42, 43]; extensions are in [37, 41]. McLach-
lan and Peel [27] have described mixtures using the t−distribution, one of the
many possible thick-tailed processes, and warn that this distribution, like the
normal, cannot accommodate asymmetrically distributed errors. However, an
asymmetric t-distribution [9], or skewed-Gaussian distributions can be used in
mixture models without much difficulty. Bayesian Markov chain Monte Carlo
procedures allow all these extensions.

A mixture model may be even more powerful when other traits are brought
into the picture. For example, the analysis might involve SCS, protein yield
and some udder type trait simultaneously. A mixture model for vectors would
need to be fitted here.
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7. CONCLUSION

In conclusion, finite mixture models provide an elegant manner of dealing
with SCS data in the context of genetic improvement of resistance to mastitis.
Irrespective of whether Bayesian or likelihood-based methods are employed,
the main challenges may reside in developing meaningful mixture models.
These will need to be validated using information from cows where the disease
outcome is known. In short, research is needed to establish their usefulness,
to identify models having an adequate predictive ability, and to develop feasi-
ble computational procedures. For example, a non-Bayesian analysis may be
carried out more efficiently with algorithms other than EM.
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APPENDIX: CONDITIONAL DENSITY OF GENETIC EFFECTS

The density of
[
a, z|β0, β1,σ

2
a, σ

2
e , P, y

]
is in (9). The two quadratic forms on

ai can be combined as

(1 − zi)
[
ai −

(
yi − x′0iβ0

)]2
+ zi

[
ai −

(
yi − x′1iβ1

)]2
=

(ai − λi)
2 + (1 − zi) zi

(
x′0iβ0 − x′1iβ1

)2

where

λi = (1 − zi)
(
yi − x′0iβ0

)
+ zi

(
yi − x′1iβ1

)
.

Hence, (9) is expressible as

p
(
a, z, |β0, β1,σ

2
a, σ

2
e , P, y

)
∝

 n∏
i=1

P1−zi (1 − P)zi



× exp

−
n∑

i=1
(ai − λi)2 + a′A−1aσ

2
e

σ2
a
+

n∑
i=1

(1 − zi) zi

(
x′0iβ0 − x′1iβ1

)2

2σ2
e

 · (38)

Note that the term (1 − zi) zi is null for all observations. Thus

p
(
a, z|β0, β1,σ

2
a, σ

2
e , P, y

)

∝ exp

−
n∑

i=1
(ai − λi)2 + a′A−1aσ

2
e

σ2
a

2σ2
e


 n∏

i=1

P1−zi (1 − P)zi

 . (39)

Now, to combine quadratic forms again, put λD= {λi}, i = 1, 2, ..., n, where
D denotes the subset of individuals with records, and partition the vector of
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breeding values as

a =
[

aD

aD

]
where aD is the vector of additive genetic effects of individuals without obser-
vations. Then

n∑
i=1

(ai − λi)
2 + a′A−1a

σ2
e

σ2
a
= (aD − λD)′ (aD − λD) + a′A−1a

σ2
e

σ2
a

= (a − λ)′M (a − λ) + a′A−1a
σ2

e

σ2
a

with λ =
[
λ′D 0′

]′
and

M =

 In 0

0 0

 .
The two quadratic forms on a can be combined into

(a − λ)′M (a − λ) + a′A−1a
σ2

e

σ2
a
=

(
a − λ̂

)′ (
M + A−1σ

2
e

σ2
a

) (
a − λ̂

)

+ λ′M
(
M + A−1σ

2
e

σ2
a

)−1

A−1λ
σ2

e

σ2
a
, (40)

where

λ̂ =

(
M + A−1σ

2
e

σ2
a

)−1

Mλ

=


In + ADDσ

2
e

σ2
a

ADDσ
2
e

σ2
a
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2
e

σ2
a

ADDσ
2
e

σ2
a



−1

×


[
In − Diag (zi)

]
(y − X0β0) + Diag (zi) (y − X1β1)

0

 . (41)

• Further

A−1 =

 ADD ADD

ADD ADD


−1

=

 ADD ADD

ADD ADD
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Employing the preceding developments in (39), it follows that

p
(
a, z|β0, β1,σ

2
a, σ

2
e , P, y

)
∝ exp
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(
a − λ̂

)′ (
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P1−zi (1 − P)zi

 . (42)

The density of the conditional distribution
[
a|z, β0, β1,σ

2
a, σ

2
e , P, y

]
is

arrived at by fixing z in (42), yielding

p
(
a|z, β0, β1,σ

2
a, σ

2
e , P, y

)
∝ exp

−
(
a − λ̂

)′ (
M + A−1σ

2
e

σ2
a

) (
a − λ̂

)
2σ2

e

 ·

To access this journal online:
www.edpsciences.org


