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Abstract – Estimates of quantitative trait loci (QTL) effects derived from complete genome
scans are biased, if no assumptions are made about the distribution of QTL effects. Bias should
be reduced if estimates are derived by maximum likelihood, with the QTL effects sampled from
a known distribution. The parameters of the distributions of QTL effects for nine economic
traits in dairy cattle were estimated from a daughter design analysis of the Israeli Holstein
population including 490 marker-by-sire contrasts. A separate gamma distribution was derived
for each trait. Estimates for both the α and β parameters and their SE decreased as a function
of heritability. The maximum likelihood estimates derived for the individual QTL effects using
the gamma distributions for each trait were regressed relative to the least squares estimates, but
the regression factor decreased as a function of the least squares estimate. On simulated data,
the mean of least squares estimates for effects with nominal 1% significance was more than
twice the simulated values, while the mean of the maximum likelihood estimates was slightly
lower than the mean of the simulated values. The coefficient of determination for the maximum
likelihood estimates was five-fold the corresponding value for the least squares estimates.
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1. INTRODUCTION

Many studies have shown that individual quantitative trait loci (QTL) can
be detected and mapped in commercial animal populations with the aid of
genetic markers. The daughter and granddaughter designs are most appropri-
ate for analysis of dairy cattle populations [24]. With the advent of DNA mi-
crosatellites it became possible to scan the entire genome for QTL for all traits
of economic interest. At least three complete genome QTL scans by the grand-
daughter design have been completed for the US Holstein population. In addi-
tion, granddaughter design genome scans have been completed for Canadian,
Dutch, French, and German Holsteins, Finish Ayshire, Norwegian cattle, and
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French Normande and Montbeliarde cattle. These studies are summarized at:
http://www.vetsci.usyd.edu.au/reprogen/QTL_Map/.

Beavis [2] first noted that the estimates for statistically significant effects
will be biased due to selection. Georges et al. [7] and Beavis [3] showed
that bias will be greater for small effects. Although large QTL effects will
be deemed significant in any case, small or marginal effects will be denoted
“significant” only if the estimate is larger than the actual effect, because of a
large positive error term.

Allison et al. [1] and Broman [4] noted that the estimates of the nonsignifi-
cant effects will also be biased. Generally, either maximum likelihood (ML) or
least squares (LS) methodology is used to estimate QTL effects, which in ei-
ther event are considered fixed. That is, no assumptions are made with respect
to the statistical distribution of QTL effects. Since in nearly all QTL analyses
only the absolute value of the effect is considered, LS or ML estimates that do
not account for the distribution of QTL effects will be inflated due to nonzero
residuals. Assuming that the residual and the actual QTL effects are uncorre-
lated, the variance of the LS estimates will be equal to the sum of the residual
and true QTL effect variance. Thus positive values for QTL effects will be ob-
tained even in the absence of a segregating QTL. Goring et al. [8] noted an
additional source of bias in genome scans. When a LOD score or regression
effect is maximized over many pointwise tests, the locus-specific effect-size
estimate is also maximized. Several studies have proposed methods that deal
with some of these problems [1, 20, 26].

The “multiple comparison problem” is an additional source of bias, not con-
sidered in these studies. If several families are analyzed for a number of traits
based on a battery of markers covering nearly the entire genome, thousands
of statistical tests are performed, and standard levels for null hypothesis rejec-
tion are meaningless. Several different solutions have been proposed, summa-
rized by Fernando et al. [6] and Weller et al. [25]. In addition to the question
of appropriate rejection thresholds for null hypotheses, the large number of
comparisons will also inflate the estimated effects for those contrasts deemed
“significant”, as described previously.

As the sample size increases, the residual variance for the estimated QTL
effect decreases. In best linear unbiased prediction (BLUP) additive genetic
effects are considered random, and are regressed as functions of the quantity
of data and the ratio of the genetic to residual variance. In BLUP both the
genetic and residual effects are assumed to have normal distributions [10].

Fernando and Grossman [5] first proposed to consider QTL as random ef-
fects sampled from a distribution with known parameters. If many QTL are
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analyzed jointly it should be possible to estimate both the QTL effects and
the parameters of the distribution of QTL effects. However this requires as-
sumptions about the nature of distribution of QTL effects, and a joint analysis
of a very large data set (at least several hundred estimated QTL effects, each
estimated from several hundred individual quantitative trait and genotype ob-
servations) for both the parameters of the QTL distribution and the individual
QTL effects.

Allison et al. [1] proposed empirical Bayes approaches to deal with the
problem of bias in QTL estimates, but did not present the details. Several
studies have considered the question of the appropriate distribution for QTL
effects, and in nearly all cases a single-sided distribution was assumed [22].
That is, the QTL effect was assumed to vary from zero to infinity. Hoeschele
and Van Raden [11] assumed an exponential distribution of QTL effects. This
distribution varies from zero to infinity, and is a function of only one param-
eter. They also estimated the effect for a simulated QTL using both ML and
Bayesian methodology. As expected, Bayesian estimates of the QTL effect
were regressed relative to the ML estimates, which made no prior assumptions
about the distribution of QTL effects. Hoeschele and Van Raden [12] varied
the sample size in their simulations, but not the magnitude of the QTL.

Hayes and Goddard [9] estimated the distribution of QTL effects for cat-
tle and swine by combining the results from several studies. They assumed a
gamma distribution for the QTL effects. Like the exponential distribution, the
gamma distribution varies from zero to infinity, but is more flexible, because
it is a function of two parameters. A single gamma distribution was assumed
for each species, even though several different traits were analyzed. Hayes and
Goddard’s [9] dairy cattle analysis was based on the QTL estimates from three
granddaughter design analyses, considering only “significant” effects. Thus a
truncated gamma distribution was assumed. The dairy cattle data set included
only 50 observations, because each QTL estimate was considered a single data
point.

The assumption of a single distribution per species for all segregating QTL
is problematic, because the traits analyzed have different heritabilities and were
exposed to differing selection intensities. For example, dairy cattle have been
highly selected for milk production for 50 years, while there has been virtually
no direct selection for fat concentration. In addition, it should be possible to
more accurately estimate the QTL distribution parameters if both significant
and nonsignificant effects are included in the analysis.

We recently completed a daughter design genome scan of the Israeli
Holstein population for nine economic traits [18]. Although it is not practical
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to estimate jointly both the distribution of the QTL effects and the individual
effects from a complete genome scan, it is possible to first estimate the dis-
tribution of the QTL effects, and then estimate each of the individual random
QTL effects with their distributions assumed known. The objectives of the cur-
rent study were to estimate the parameters of the distributions of QTL effects
in the Israeli Holstein population, under the assumption of a separate gamma
distribution for each of the nine traits analyzed, and to use these distributions
to derive ML estimates of a sample of QTL effects with the QTL effects con-
sidered random with known distributions. (From this point onward, “ML esti-
mates” will refer only to estimates derived under the assumption that the QTL
effects are randomly sampled from a known distribution.) Finally a simulated
genome scan was generated based on the gamma distribution derived for pro-
tein percentage, the trait with the highest heritability. QTL estimates derived
by ML and LS were compared to each other and to the simulated values.

2. MATERIALS AND METHODS

2.1. Data

Eleven Israeli Holstein families including 5221 cows were analyzed by a
daughter design for nine economic traits; milk, fat and protein production, fat
and protein percentage, somatic cell score (SCS), herd-life, female fertility,
and the Israeli breeding index (PD01), computed as follows for each animal:

PD01 = −0.22×(milk)+8.5×(fat)+31×(protein)−300×(SCS)+26×(fertility)
(1)

where milk, fat, protein, SCS, and fertility are the genetic evaluations for the
animal. Details of the analysis were presented by Ron et al. [18]. The basic
genome scan included 73 microsatellites, but a QTL effect could be estimated
only for sires heterozygous for a specific marker. Preliminary analysis was by
ANOVA of the cows’ genetic evaluation for each trait, with the marker effect
nested within sire. All cows included in the analysis had genetic evaluations for
the five milk production traits, but a few cows were lacking values for the sec-
ondary traits; SCS, herd-life, fertility, and PD01. Genotypes were considered
“informative” if the sire was heterozygous, and the genotype of the daughter
was different from the genotype of the sire [16]. Families with significant ef-
fects were genotyped for an additional 35 markers linked to the markers with
significant effects, for a total of 108 markers. There were 98 287 informative
genotypes, and 490 marker-by-sire contrasts; for a mean of 4.5 contrasts per
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marker, and 201 informative genotypes per contrast. The number of informa-
tive genotypes per contrast varied from 83 to 591. A QTL effect for each of the
nine traits was estimated for each contrast, for a total of 4410 QTL effects. All
effects were normalized to equal variance by analysis of the t-values.

The greatest QTL effect was detected for the effect of protein percent near
the middle of chromosome 6 [17]. Two sire families, 2278 and 3099, were
heterozygous for this QTL. Daughters of sire 2278 were selected for further
analysis, because this family was larger. The daughters were genotyped for
11 markers on this chromosome, and the highest test statistic was obtained
at marker BM143. A total of 393 daughters were informative for this marker,
and slightly less had evaluations for the secondary traits (Tab. III). A total of
683 daughters with evaluations for the production traits were informative for
at least one marker on this chromosome. Of these, 641 cows had evaluations
for all of nine traits, and this subset was used for the analysis of the secondary
traits. The probability to obtain either paternal allele at the assumed QTL lo-
cation was computed for each daughter as described by Knott et al. [14] for
these two samples.

For ML analysis of the individual records, it was necessary to normalize
the individual records to the same scale used to estimate the gamma distribu-
tions; the scale of t-values. The genetic evaluations were normalized first by
division by the standard deviation of the genetic evaluations for each trait. For
the analysis of the daughters genotyped for BM143, the values were then sub-
tracted from the mean of the means of the two genotype classes. The contrasts
were then normalized to a t-value by division by the standard error (SE) of
the contrast computed as: (1/n1 + 1/n2)

1/2, where n1 and n2 are the number of
daughters that received the paternal alleles with positive and negative effects,
respectively. For the production traits, there were 221 and 172 cows with the
two paternal alleles, respectively. Thus the SE of the contrast was 0.102.

For analysis of the entire chromosome, the genetic evaluations were normal-
ized by subtracting the grand mean and dividing by the SE of the regression of
the trait value on the probability that the daughter received the “positive” QTL
allele from her sire. Among the traits analyzed, the regression SE increased
as the QTL effect decreased. The highest SE was used for normalization. The
production and non-production traits were normalized separately, because of
the difference in the sample sizes. The SE values used for normalization were
0.082 for the production traits, and 0.085 for the secondary traits.
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2.2. Estimation of the parameters for the QTL distributions

Following Hayes and Goddard [9], the QTL were assumed to follow a
gamma distribution with scaling parameter α and shape parameter β. Defin-
ing x as the absolute difference between the substitution effects of the two
paternal QTL alleles, g(x) the distribution of x is:

g(x) =
α βx β−1e−αx

∞∫
0

t β−1e−tdt

· (2)

The mode of the gamma distribution is (β − 1)/α. If β < 1, the mode of the
distribution will be at zero. A normal distribution is assumed for the residuals.
Thus the ordinate of observed QTL effect, x̂i, given the actual effect, n(x̂i|x),
will be:

n(x̂i|x) =
1√

2πσ2
x

e
−
(

(x̂i−x)2

2σ2
x

)
(3)

where σx = the SE of the estimated QTL effect. This value will vary as a
function of the experiment size.

As noted by Hayes and Goddard [9], although the QTL effect is assumed
always to be positive, the residual can be either positive or negative. Thus the
density for x̂i, f (x̂i) is computed as follows:

f (x̂i) =

∞∫
0

n(x̂i|x)g(x)dx +

∞∫
0

n(−x̂i|x)g(x)dx. (4)

Unlike Hayes and Goddard [9] we did not truncate the likelihood, because
all contrasts were included. The log likelihood for the distribution of the QTL
effects, Log L (x), summed over all observed effects for each trait is:

LogL(x) =
I∑

i=1

Log[ f (x̂i)] (5)

where I is the total number of estimated QTL effects per trait. Numerical inte-
gration was used to compute the density function, and LogL(x) was maximized
relative to α, β, and σx for each trait by a grid search for the three parameters.
Since the analysis was performed on the t-values of the contrasts, σx should
be approximately equal to unity. Therefore, LogL was also maximized for α
and β, with σx fixed at unity.
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In both cases, the prediction error variances of the parameter estimates were
estimated by the negative of the inverse of the matrix of second derivatives of
LogL at its maximum. The matrix of second derivatives was estimated numer-
ically.

In addition the following model was tested which, similar to the “BayesB”
method of Meuwissen et al. [15], considers the possibility that only a fraction
of the marker contrasts were associated with segregating QTL:

f (x̂i) = P


∞∫

0

n(x̂i |x)g(x)dx +

∞∫
0

n(−x̂i|x)g(x)dx

+2(1−P)


∞∫

0

n(x̂i |x)dx

 (6)

where P = the fraction of marker contrasts, and the other terms are as defined
previously. This model was applied to two traits, protein percentage and fertil-
ity, with σx fixed at unity.

2.3. ML Estimation of QTL effects

The likelihood of the individual QTL effects given the distribution of QTL
effects for a given trait, L(y) will first be computed under the assumption that
QTL genotype has been determined for each individual. This was assumed to
be the case for the analysis of the effect associated with marker BM143. For the
daughter design, only the paternal allele is considered, and the progeny will be
divided into two groups; the J1 individuals that received the positive paternal
QTL allele, and the J2 individuals that received the negative paternal allele.
L(y) is then computed as follows:

L(y) = g(xi |α, β)
J1∏
j=1


1√

2πσ2
y

e
−
(

(y j−0.5xi)
2

2σ2
y

)
J∏

j=J1+1


1√

2πσ2
y

e
−
(

(y j+0.5xi)
2

2σ2
y

) (7)

where xi = the effect for QTL i, y j = standardized record of individual j,
J = J1 + J2 = the total number of individuals genotyped for the QTL, σ2

y is the
residual variance of the individual records, and the other terms are as described
previously. Since the observations were normalized by subtraction of the mean
of the two means, it is not necessary to include a mean effect in the likelihood.
Since α and β are assumed known, this likelihood was maximized only relative
to xi and σy.
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LogL(y), the log likelihood, with terms including only constants deleted is
computed as follows:

LogL(y) = (β − 1)log(xi) − axi − J(log(σy)) − [1/(2σ2
y)]

×


J1∑
j=1

(y j − 0.5xi)
2 +

J∑
j=J1+1

(y j + 0.5xi)
2

 . (8)

Solutions were obtained by a one-dimensional search with respect to xi.
At each value of xi, the ML value for σy was determined by solving for
∂[LogL(y)]/∂σy = 0 as follows:

σ2
y =

J1∑
j=1

(y j − 0.5xi)2 +
J∑

j=J1+1
(y j + 0.5xi)2

J
· (9)

In the interval mapping QTL analysis, the genotype of each individual with
respect to the QTL is not known with certainty. In this case L(y) is computed
as follows:

L(y) = g(xi |α, β)
J∏

j=1




pj√
2πσ2

y

e
−
(

(y j−0.5xi)
2

2σ2
y

) +


1 − pj√
2πσ2

y

e
−
(

(y j+0.5xi )2

2σ2
y

)
 (10)

where pj is the probability that the progeny received the positive paternal al-
lele, given its marker genotype. This likelihood was solved for xi and σy by a
two-dimensional grid search.

The prediction error variances of the QTL estimates were estimated by two
methods. First, from the inverse of the two-by-two matrix of second derivatives
for xi and σy, as described for the parameters of the gamma distribution. These
were denoted “empirical” values because the second derivatives were derived
numerically. The second method applied the assumption that the minor diago-
nal elements of the matrix of second derivatives of Log L(y) are small relative
to the major diagonal elements. Under this assumption, −1/[∂2[LogL(y)]/∂x2

i ]
will be approximately equal to the prediction error variance of xi. If the QTL
genotype was assumed known without error, ∂2[LogL(y)]/∂x2

i is computed as
follows:

∂2[LogL(y)]

∂x2
i

=
1 − β

x2
i

− J

4σ2
y

· (11)

For large values of xi, the first term on the right-hand side of Eq. (11) tends
to zero. Similarly, ∂2[LogL(y)]/∂σ2

y can be derived by differentiating Eq. (8)
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twice and substituting from Eq. (9) as follows:

∂2[LogL(y)]

∂σ2
y

= −2J

σ2
y

(12)

which is the value of ∂2[LogL(y)]/[∂σ2
y] for a sample from a normal distribu-

tion. For both methods, SE estimates were derived as the square roots of the
corresponding prediction error variances.

2.4. Simulation analysis

We simulated a daughter design genome scan with 1000 contrasts under
the assumption that the true effects were sampled from a gamma distribution
with α and β values equal to estimates for protein percentage. For each con-
trast, an effect was simulated by random sampling from this gamma distribu-
tion, and a sample of 400 individual records was generated. Each individual
had a 50% chance to receive the positive or the negative QTL allele. A random
residual was generated by sampling from a normal distribution with mean zero
and a standard deviation of 10. Thus the expected SE for the QTL effect for a
balanced sample of 400 individuals will be equal to unity. The trait value for
each individual was then computed as the residual +1/2 the QTL effect for indi-
viduals that received the positive allele, and –1/2 the QTL effect for individuals
that received the negative allele. The LS QTL effect was then estimated for
each simulated QTL based only on the genotypes and trait records. If the abso-
lute value of the t-value was > 2.5 (a probability of 0.012 for comparison-wise
significance) then the QTL effect was also estimated by ML, with the QTL
genotypes assumed known. The LS and ML QTL estimates of the significant
effects were compared to each other and to the simulated QTL values. Mean
squared deviations of both estimates from the simulated values, coefficients of
determinations (R2), and regressions of the simulated values on the estimates
were computed. Standard errors for the ML estimates were computed by the
two methods described.

3. RESULTS

The ML estimates of the QTL parameters, including σx, are given in Table I
with their SE. Since, as noted, the mode of the gamma distribution = (β−1)/α,
distributions with β < 1 have modes at x = 0. This was the case only for fat
and protein percent. The first parity trait heritabilities are also given. Hayes
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Table I. Maximum likelihood estimates of the QTL parameters, including σx.

Parameter estimates
Heritabilitya α ± SE β ± SE σx ± SE

Milk yield 0.43 2.31 ± 0.60 1.16 ± 0.31 1.02 ± 0.10
Fat yield 0.38 2.45 ± 0.64 1.18 ± 0.33 1.01 ± 0.09
Protein yield 0.36 3.36 ± 2.00 1.44 ± 0.73 0.98 ± 0.15
Fat percentage 0.58 2.01 ± 0.36 0.96 ± 0.18 1.29 ± 0.06
Protein percentage 0.78 1.99 ± 0.32 0.90 ± 0.15 1.30 ± 0.05
SCS 0.20 4.22 ± 4.80 1.65 ± 1.24 1.00 ± 0.23
Herd-lifeb 0.11 7.50 ± 9.78 5.86 ± 5.60 0.81 ± 0.17
Fertility 0.03 8.75 ± 11.47 5.86 ± 7.36 0.81 ± 0.12
PD01c 0.25 2.66 ± 0.90 1.27 ± 0.43 1.05 ± 0.11

a First parity estimates are from Weller and Ezra [23] for all traits, except herd-life and PD01.
b Heritability from Settar and Weller [19]. There was only one record per cow for this trait.
c Heritability computed as bGb′/bPb′ where b = vector of index coefficients, G = first parity
genetic variance matrix, and P = first parity phenotypic variance matrix.

and Goddard’s [9] estimate of 5.4 for α for dairy cattle is within the range
of estimates in Table I, but their estimate of 0.42 for β is considerably lower
than all the estimates obtained in this study. However they only used “signif-
icant” QTL effects to estimate these parameters. The estimates for σx ranged
from 0.8 to 1.3, and increased as a function of the heritabilities. The estimates
of σx were significantly different from unity only for fat and protein percent-
age. Estimates for both α and β and their SE were negatively correlated with
the heritability. For traits with heritability < 0.25 confidence intervals for α
and β, estimated as ±2 SE, included zero. Thus the estimates derived for these
traits are virtually useless, even though the sample sizes were quite large. Sur-
prisingly, this was also the case for protein yield, even though its heritability
was 0.36.

The gamma distributions of QTL effects for protein yield, protein percent-
age, and fertility are plotted in Figure 1. The distribution of fat percentage was
very similar to the distribution of protein percentage, the distribution of herd-
life was very similar to the distribution of fertility, and the distributions of the
remaining traits were very similar. Therefore distributions are shown only for
protein yield, protein percentage, and fertility. Protein percentage, with a mode
at zero, had the highest density at high x-values; while fertility, with the highest
mode, had the lowest density at high x-values.

Estimates for α and β with σx fixed at unity and their SE are given in Ta-
ble II. For fat percentage and protein, α values were slightly lower, and β values
were slightly higher. For the production traits, α and β values were nearly the
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Figure 1. The gamma
distributions of the QTL
effects. —, protein;
- -, protein percentage;
· · · , female fertility. Trait
units are the standard
errors of the QTL effects.

Table II. Maximum likelihood estimates of the QTL parameters, with σx fixed
at unity.

Parameter estimates
Trait α ± SE β ± SE
Milk yield 2.25 ± 0.49 1.17 ± 0.32
Fat yield 2.40 ± 0.54 1.18 ± 0.33
Protein yield 3.53 ± 1.48 1.42 ± 0.70
Fat percentage 1.70 ± 0.28 1.08 ± 0.23
Protein percentage 1.65 ± 0.24 0.95 ± 0.17
SCS 4.26 ± 2.99 1.67 ± 1.40
PD01 2.49 ± 0.68 1.32 ± 0.45

same as in Table I. This is expected, since the estimates of σx for these traits
were all very close to unity. It was not possible to derive parameter estimates
for fertility and herd-life with σx fixed at unity. Likelihood values kept increas-
ing even with α and β > 20. This corresponds to the results of Ron et al. [18]
that for these traits the number of “significant” effects was virtually equal to the
number expected by chance at all significance levels. SE were generally simi-
lar to the values in Table I. Based on these SE, none of the parameter estimates
in Table II were significantly different from the estimates in Table I.

Comparisons of the observed and expected frequencies of the LS QTL ef-
fects are given in Figures 2, 3, and 4 for protein percentage, protein yield,
and fertility, respectively. The expected frequencies with σx fixed at unity and
with σx estimated are given in Figure 2 for protein percentage. There were
10 observations with x > 4 (2% of the total) not shown in the figure. The
expected density at x = 0 was slightly lower with the estimated value of σx,
while the density at intermediate densities was higher. For protein yield the two
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(xi) 

Figure 2. Comparison
of the expected and
observed frequency
distribution of the least
squares QTL effects
for protein percentage.
—, expected frequency
with σx fixed at unity;
· · · , expected frequency
with σx estimated;
- -, observed frequency.
Trait units are the stan-
dard errors of the QTL
effects.

 

(xi) 

Figure 3. Comparison
of the expected and ob-
served frequency distri-
bution of least squares
QTL effects for protein
yield. —, expected fre-
quency with σx fixed at
unity; - -, observed fre-
quency. Trait units are
the standard errors of the
QTL effects.

 

(xi) 

Figure 4. Comparison
of the expected and ob-
served frequency distri-
bution of least squares
QTL effects for female
fertility. —, expected fre-
quency with no segregat-
ing QTL; · · · , expected
frequency with segregat-
ing QTL and σx esti-
mated; - -, observed fre-
quency. Trait units are
the standard errors of the
QTL effects.
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Table III. Maximum likelihood and least squares estimates of the QTL effects on
chromosome 6 for sire 2278 considering only daughters with informative genotypes
for BM143.

Estimates

Number t-test QTL effect

Trait of cows probability LS ML ± SE a σy ± SE

Milk yield 393 10−5 4.55 0.59 ± 0.73 (0.82) 9.76 ± 0.35

Fat yield 393 0.0008 3.55 0.24 ± 0.37 (0.49) 9.80 ± 0.35

Protein yield 393 0.0026 2.97 0.22 ± 0.23 (0.31) 9.81 ± 0.35

Fat percentage 393 10−10 7.34 3.78 ± 0.97 (0.94) 9.29 ± 0.34

Protein percentage 393 10−14 10.07 7.05 ± 0.89 (0.87) 8.59 ± 0.31

SCS 392 NS 1.58 0.18 ± 0.16 (0.22) 9.82 ± 0.35

Herd-life 378 NS 0.22 0.21 ± 0.08 (0.09) 9.82 ± 0.36

Fertility 384 NS 1.93 0.60 ± 0.19 (0.26) 9.79 ± 0.35

PD01 383 10−7 4.68 0.48 ± 0.55 (0.68) 9.77 ± 0.36

a The empirical standard errors are listed next to the QTL effect estimate, and the
standard errors derived from Eq. (10) are given in parentheses.

expected functions were nearly identical, and thus only the function with σx

fixed is shown. For fertility, the expected frequencies were computed with the
estimated value for σx from Table I, and based on the assumption of no seg-
regating QTL. At x = 0 the expected density with a gamma distribution of
QTL was slightly lower than the distribution that assumed no segregating QTL,
while the density at intermediate x-values was higher. For all three traits there
was good correspondence between the expected and observed QTL LS esti-
mate distributions.

For the analysis by Eq. (7) maximum likelihood was obtained for both pro-
tein percentage and fertility with P = 1, that is under the assumption that some
segregating QTL effect is associated with all marker contrasts.

ML estimates of the QTL parameters, assuming complete linkage between
the QTL and the genetic marker BM143 on chromosome 6 are given in
Table III. These estimates were derived using the gamma distributions pre-
sented in Table I. The sample sizes are also given, but they were all very sim-
ilar. For the selection index, the regression factor is a direct function of the
LS estimate for all samples of the same size. This was not the case for the
ML estimates. The ML estimates of the significant effects were all highly re-
gressed relative to the LS estimates, but the regression factor was greater for
the smaller effects. For fat and protein yield the regression factor was > 10 fold,
but only two-fold for fat percentage, and 1.5 for protein percentage. Note that
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Table IV. Maximum likelihood and least squares estimates of the QTL effects on chro-
mosome 6 including all daughters of sire 2278 with at least one informative marker.

Estimates

Trait Number QTL effect

of cows LS ML ± SE σy ± SE

Milk yield 683 4.16 2.00 ± 1.01 11.80 ± 0.35

Fat yield 683 3.75 1.50 ± 0.97 11.71 ± 0.35

Protein yield 683 3.58 0.81 ± 0.77 11.74 ± 0.35

Fat percentage 683 7.62 5.62 ± 0.96 11.26 ± 0.34

Protein percentage 683 10.64 8.86 ± 0.90 10.65 ± 0.32

SCS 641 1.55 0.23 ± 0.23 11.78 ± 0.33

Herd-life 641 0.19 0.48 ± 0.25 11.79 ± 0.33

Fertility 641 1.15 0.59 ± 0.26 11.78 ± 0.33

PD01 641 5.36 2.88 ± 0.97 11.75 ± 0.33

for herd-life there was virtually no regression of the ML estimate, because the
LS estimate was also quite low. Thus, as expected, regression was the greatest
for moderately significant effects. All the estimates of σy were very similar,
and quite close to the expected value derived in the Methods section, that is
1/0.102 = 9.8. The σy SE estimates were very similar for all the traits, and
close to 0.35. This was also the value obtained from Eq. (12). The empirical
SE for the QTL effect varied from 0.08 for herd-life to 0.97 for fat percentage,
and were generally close to the SE estimates derived from Eq. (11) given in
parenthesis. As expected from the β values, SE were higher for the traits with
higher heritabilities.

ML estimates of the QTL effects and their SE for all animals with at least
one informative marker on chromosome 6 are given in Table IV. Sample sizes
are also given. The ML estimates were derived from Eq. (10) and the LS
estimates were derived by interval mapping [14]. The number of records in
Table IV was nearly double the number of records in Table III. The LS es-
timates were very similar to the LS estimates in Table III, while all the ML
estimates for significant effects were larger. The ML estimates as a function of
the LS estimates are plotted in Figure 5. The exponential regression curve is
also shown. As expected, the regression factor decreased as the LS effect in-
creased. For milk yield the regression factor was 2, while for protein percent-
age the regression factor was < 1.2. For herd-life, the ML estimate was more
than twice the LS estimate. This is because the mode of the gamma distribution



Correcting for bias 515

 

Figure 5. Maximum
likelihood estimates as
a function of the least
squares estimates for the
QTL on chromosome
six. Trait units are the
standard errors of the
QTL effects.

for this trait = (β − 1)/α = 0.648 > the LS estimate. However, neither estimate
was significantly different from zero. The estimates of σy were close to the
expected values for the sample sizes as given in the Methods section. Protein
percentage had the lowest estimate of σy, because a larger fraction of the to-
tal variance was absorbed by the QTL effect. As in Table III, the SE of σy in
Table IV were very similar for all the traits, and had nearly the same values
as in Table III, 0.35; even though the sample size was nearly double. Again
as in Table III, the SE for the QTL effect varied widely, from 0.23 for SCS
to 1 for milk yield. Surprisingly, the SE were on the average slightly larger in
Table IV, even though the sample sizes were larger. However, this analysis also
accounted for uncertainty with respect to the QTL genotype, and as shown in
Eq. (11), the SE is also a function of the ML estimate.

The results of the simulated genome scan are summarized in Table V. The
mean of the 1000 simulated contrasts was 0.566, as compared to the ex-
pected value of β/α = 0.95/1.65 = 0.576 [9]. There were 54 contrasts with
t-values > 2.5, as compared to 1000 × 0.012 = 12 expected purely by chance.
Thus the false discovery rate = 0.22 [25]. Similar to the results of Goring
et al. [8] for LOD scores, the LS estimates were highly biased, with a mean
value of 3.04, as compared to 1.45 for the simulated values. The mean of the
ML estimates was 1.26, which is much closer to the simulated values. The stan-
dard deviation of the ML estimates was slightly higher than the LS estimates,
although both standard deviations were considerably lower than the standard
deviation of the simulated effects. The LS and ML estimates for σy were very
similar, and both were very close to the simulated value of 10. The standard
deviations of the estimates for σy were both 0.35, which is also the simulated
value, and the value obtained from Eq. (12) for a sample of 400 individuals.
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Table V. Comparison of the simulated QTL values and the least squares and maximum
likelihood estimates (54 observations).

Simulated LS estimates ML estimates
value

xi, mean ± standard
deviation 1.451 ± 0.896 3.038 ± 0.449 1.263 ± 0.543

Range for xi

(minimum – maximum) 0.015–2.970 2.519–4.298 0.010–2.663

σy, mean ± standard deviation 10.000 ± 0.353 10.002 ± 0.353 10.027 ± 0.357

Coefficient of determination
(R2) for the simulated value 0.014 0.075
of xi

Regression of simulated
value for xi on the estimate 0.239 ± 0.275 0.451 ± 0.219
± SE

Mean squared deviation of
estimated xi from the 3.409 0.851
simulated value

This is also very close to the estimated SE for σy in Table III for nearly the
same sample size.

The R2 of the simulated values was more than five-fold for the ML
estimates, as compared to the LS estimates, but both were < 0.1. For an esti-
mate to be unbiased, the regression of the true value on the estimate should
be unity [21]. Both regressions of the simulated values on the estimates
were < 0.5, but the regression on the ML estimate was nearly double the re-
gression of the LS estimate. SE of both regressions were quite large though.

The mean squared deviation of the ML estimates from the simulated value,
0.85, was one fourth of the corresponding value for the LS estimates, 3.41.
Under the null hypothesis of no segregating QTL, the SE of the LS estimates
should be equal to unity by definition. With segregating QTL, the deviation
between the actual value and the estimate includes both sampling variation of
the QTL effect and variation in the actual effect. The mean of the computed
SE was 1.02, which overestimated the square root of the mean squared devi-
ation, but is close to the value of 0.9 obtained in the analysis of actual data
for protein percentage. Solving for ∂2[LogL(y)]/∂x2

i using the mean estimates
for xi and σy gives −1.03 for a mean SE of 0.97, which is very close to the
value obtained by numerical calculation. The SE estimates were very con-
stant with a standard deviation of 0.04. This is as expected, because, except
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Figure 6. Maximum
likelihood estimates of
QTL effects as a function
of the least squares esti-
mates for the simulated
data.

for very low estimates of xi, the first term of Eq. (11) will be negligible with
respect to the second term, which is nearly constant. The computed SE can
be considered “conservative” in that marginally significant differences will be
considered nonsignificant.

The ML QTL estimates as a function of the LS estimates are plotted in Fig-
ure 6. All the LS estimates are > 2.5, because this was the selection criteria.
Although the correlation between the two estimates was 0.86, the ML estimates
were not a direct function of the LS estimates. The regression value was 1.04.
Even though sample sizes were the same for each contrast, the same LS es-
timates gave differing ML estimates. Three contrasts with LS estimated > 2.5
gave ML estimates of nearly zero (two overlap in the figure). The simulated
values as a function of the LS and ML estimates and the regressions are plot-
ted in Figures 7 and 8. As can be seen from the minimum and maximum values
given in Table V, the ML estimates cover nearly the entire range of simulated
values. Of the seven contrasts with simulated values < 0.3, the ML algorithm
generated similar estimates for three observations (two overlap in the figure
near the origin).

4. DISCUSSION

The estimation of the QTL distributions was based on several assumptions
that will now be addressed in detail. Similar to Fernando and Grossman [5],
who also assumed random QTL effects, we assumed an individual QTL ef-
fect for each contrast estimated. A more reasonable assumption would be to
assume a finite number of segregating QTL, with most contrasts representing
only random variation, as proposed by Meuwissen et al. [15]. We also analyzed
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Figure 7. Simulated
QTL effects as a function
of the least squares
estimates.

Figure 8. Simulated
QTL effects as a func-
tion of the maximum
likelihood estimates.

two traits assuming that only a fraction P of the marker contrasts represent seg-
regating QTL, but in both cases the likelihood was maximized with P equal to
unity. Another alternative would be to estimate contrasts for marker brackets
rather than individual markers. Hayes and Goddard [9] attempted to estimate
the number of segregating QTL in the population, but assumed that all “signif-
icant” QTL effects represent actual segregating QTL, which is also problem-
atic. Their sample included 50 “significant” contrasts including all families
for all traits, while our sample included 490 contrasts for each trait. We es-
timated the gamma distributions using the contrasts calculated at the marker
locations. Even if there is a segregating QTL in linkage to the marker, its effect
will be attenuated by recombination, unless the marker and the QTL happen
to be tightly linked. However, it can be argued that the practical objective is to
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estimate the distribution of effects that would be detected by a genome scan,
not the distribution of true QTL effects.

The equations presented and the simulation studies assumed no segregation
distortion, that is the probability that either allele was passed from parents to
progeny for all genes is 0.5. These probabilities could differ from 0.5 due to
either meiotic drive or selection. Georges et al. [7] noted that the bulls currently
analyzed in their granddaughter design were a selected sample with respect to
milk production traits. Analysis of the effect of segregation distortion warrants
further study.

Finally, we assumed a common value for σx for each trait, even though
the sample sizes varied between traits. Alternatively it should be possible to
estimate the parameters of the gamma distribution with each QTL contrast
weighted by its specific sample size. Hayes and Goddard [9] also assumed
a single value for σx, the mean value of the SE as listed in the experiments
analyzed to estimate n(x̂i |x); and assumed that this value was known without
error. We estimated this parameter in addition to α and β, and found that the
estimates were generally close to unity, as expected.

Although methods to account for bias in estimating QTL effects have been
proposed previously [1,17,24] none are complete solutions. The method of Utz
et al. [20] is based on cross validation on independent samples, which is very
often not a viable option. Both [1] and [26] dealt chiefly with the problem of
bias due to selection. Neither study attempted to correct for the multiple com-
parison problem, and neither study considered the distribution of QTL effects.
Allison et al. [1] noted that his method, which requires significant simulation
for each QTL effect may be impractical, if a large number of QTL are esti-
mated. Xu [26] noted that his method is very sensitive to the sample size, and
cannot be applied when the sample size is small.

Hayes and Goddard [9] assumed a common gamma distribution of QTL
effects for all traits. The current results indicate that this assumption may be
problematic. Although the distributions in Figure 1 appear quite different, the
confidence intervals for the estimates of α and β overlap. As predicted by
Weller et al. [24] it should be possible to detect more QTL for traits with higher
heritabilities. Since Hayes and Goddard [9] considered only significant effects,
their sample was apparently weighted towards the traits with higher heritabil-
ities. Houle et al. [13] discuss various explanations for differences in genetic
variances among traits, and conclude that genetic coefficients for life history
trait are greater than those for morphological traits. Although they considered
numerous traits from seven species, no agricultural animal species were con-
sidered, and very little is known about mutation rates for quantitative traits in
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commercial animal species. Differences in genetic variances most likely reflect
different selection histories, and environmental variances.

Previous studies [3, 7, 9] predicted that the bias of QTL effects should de-
crease as the magnitude of the effect increases. The analyses of the actual data
tend to support this conclusion, but not the analysis of the simulated data. Al-
though the mean of the ML estimates was significantly lower than that of the
LS estimates, the regression of the ML estimates on the LS estimates was linear
and nearly equal to unity. However, no very large QTL effects were generated
by the simulation.

Although the proposed estimation of the QTL distribution parameters is
rather time-consuming, it need only be done once for each trait for each
species. Once the parameters of these distributions have been estimated, ML
estimation of the individual QTL effects is straightforward, and the additional
computing time is insignificant. A similar strategy is generally applied for
commercial genetic evaluations. Variance components are first estimated by
REML, and then the estimated values are used for routine genetic evaluations
derived by BLUP.
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