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Support Materials 1 2 

Definition of the symbols used in paper: 3 

Em Young’s modulus of membrane 4 
Ec  Young’s modulus of cytoskeleton 5 
F force 6 
R0 radius of the uncompressed cell 7 
 8 
ε relative deformation  9 
νm Poisson ratio of membrane 10 
νc Poisson ratio of cytoskeleton 11 
 12 

Support Materials 2 13 

In our model, prior to compression living cell mechanical structure is 14 

approximated as a spherical impermeable elastic balloon (spherical membrane). This 15 

balloon is filled with an incompressible fluid and gel-like materials. 16 

Calculation of fluid-filled impermeable spherical membrane deformation between 17 

parallel plates assumes that under small deformations the lateral part of membrane 18 

extends  spherically (except contact regions) 46. Then, using the volume conservation, the 19 

lateral radius of the membrane after deformation, R, can be calculated from the initial 20 

membrane radius R0 and relative deformation ε: 21 

20
0 2

ε
R

RR +=  (A1) 22 

 23 

The energy of the stretching of the membrane G with thickness h according to elastic 24 

theory is: 25 

dSuhG αβαβσ∫=
2

 (A2) 26 

where integration is over membrane surface, uαβ is two-dimensional deformation and σαβ 27 

is two-dimensional deformation stress tensors: 28 

])1[(
1 2 γγαβαβαβ νδν

ν
σ uu
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m +−
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=  (A3) 29 

 30 
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where Em is Young’s modulus, νm is Poisson ratio of membrane, and summation must be 1 

over repeating indices. 2 

Balance of stress defines the pressure inside the balloon: 3 

)( φφθθ σσ +=
R
hP  (A4) 4 

 5 

Using the relation between stress and deformation tensors,  6 

θθφφφφ

φφθθθθ

νσσ

νσσ

−=

−=

Eu
Eu

 (A5) 7 

and the assumption that the deformed balloon has a spherical shape, yields 8 

0

0
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rr
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uuu r −

=== θθφφ  (A6) 9 

 10 

and the stress tensors 11 

0
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rrEm −

−
==

ν
σσ θθφφ  (A7) 12 

 13 

Substituting Eq. A6 and Eq. A7 to Eq. A2, we obtain the elastic energy of the spherical 14 

membrane stretching: 15 

2
0 )(

1
4 rr

E
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m

m
el −

−
≈

ν
π  (A8) 16 

Correspondingly, the reaction force (load)  17 

3
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2 ε
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π hR
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mel
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−=  (A9) 18 

 19 

has cubic dependence on relative deformation ε.  20 

Note that membrane bending was ignored. For bending of the noncontact area of a 21 

spherical membrane, the bending contribution is proportional to (h/R)2 36.  For a typical 22 

cellular membrane of R = 5 µm and h = 4 nm, h/R is less than 10-6 and can thus be 23 

neglected. However, strong membrane bending does occur at the contact region. The 24 

change from the membrane in contact with the substrate to the free membrane, at the 25 
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contact angle θ, happens over a length comparable to the membrane thickness. Then the 1 

local radius of curvature of the membrane near the separation line can be estimated as 2 

ρ =h/θ. Εelastic energy of  bending using from beam theory is: 3 

22 ρ
hlIE

G m
b ≈  (A10) 4 

where I = h3/12 is the second momentum of the area of the contact, and l = 4πrsinθ ≈ 5 

4πrθ,  is the total length of contact. Substituting l and I back to the expression of the 6 

bending energy (Eq. A10), and taking into account the volume conservation requirement 7 

R-R0  ≈(R0 θ4)/8 we obtain: 8 

2/3
0

2

3
2 επ RhEG mb ≈  (A11) 9 

The force due to contact area bending therefore equals: 10 

2/12

22
επ hE

Z
GF m

b
b =

∂
∂

−=  (A12) 11 

The ratio between the bending and stretching terms can be calculated using Eq. A9 and 12 

Eq. A12: 13 

 
2

5
0

1

εR
h

F
F

stretching

bending ≈  (A13) 14 

Given that lipid bilayer thickness (h) is typically 4 nm, while cell radius is above 5 µm, at 15 

ε = 0.1-0.3, this ratio is below 0.05. Therefore, one can neglect the bending deformation 16 

contribution, and use Eq. A9 to estimate fluid-filled the impermeable spherical 17 

membrane’s deformation. 18 

Cytoskeletal compression can be estimated using contact Hertz theory. Assuming 19 

that glass is much harder than the cell and has infinite radius of curvature, the 20 

deformation of the cytoskeleton compressed between two parallel plates can be 21 

calculated using 36 22 
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where R0 represents the cell contact radius before deformation and Ec and νc are the 1 

Young’s modulus and Poisson ratio of the cytoskeleton, respectively. 2 

Therefore superposition of Eq. A9 and Eq A14 gives overall cell deformation in 3 

estimation as: 4 

3
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−
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where first term arises from the cytoskeleton compression resistance and is responsible 6 

for global membrane stretching, and membrane-to-cytoskeleton attachment is neglected 7 

 8 

 9 
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