SUPPLEMENTARY MATERIAL

Regulation of B cell fate commitment

and immunoglobulin V_H gene rearrangements by lkaros

Damien Reynaud, Ignacio Demarco, Karen Reddy, Hilde Schjerven,

Eric Bertolino, Zhengshan Chen, Stephen T. Smale, Susan Winandy

& Harinder Singh.

b

Reynaud et al

Figure S1. Quantitative analysis of the generation of EBF-rescued $lkzf1^{-1}$ CD19⁺ cells.

(a) LSK cells were sorted from WT or *lkzf1^{-/-}* bone marrow mice (top) and directly transduced by spin-infection with MIG-EBF retrovirus. After 72 h of culture, GFP⁺ Mac1⁻ transduced *lkzf1^{-/-}* cells were sorted directly at the indicated cell numbers onto OP9 stroma cells and cultured in lymphoid conditions (bottom). Cells were harvested after 2 to 4 weeks and analyzed for B lineage (CD19⁺) precursors. (b) The number of EBF-transduced *lkzf1^{-/-}* LSK cells plated per well is plotted against the percentage of negative wells for growth of CD19⁺ progeny. Solid line represents the best-fit regression used to determine the frequency of generation of CD19⁺ progeny. Data are representative of 2 independent experiments.

Supplementary Figure 2 Reynaud et al

Figure S2. Cell surface phenotype of an EBF-rescued *lkzf1^{-/-}* **clone (type B).** Flow cytometry of an $lkzf1^{-/-}$ CD19⁺ clone (type B) that does not sustain the expression of GFP and the retrovirally encoded *Ebf1* gene. Data are representative of three independently derived clones.

Supplementary Figure 3	
Reynaud et al	

		D _H segments		J _H 3 segments
		← →		←
	Dsp2.3AAGGGATCTACTACTGTG Dsp2.4AAGGGATCTACTACTGTG Dsp2.5AAGGTATCTACTACTGTG	TCTACTATGGTTACGAC		GCCTGGTTTGCTTACTGGGGCCAAGGGACTCTGG GCCTGGTTTGCTTACTGGGGCCAAGGGACTCTGG GCCTGGTTTGCTTACTGGGGCCAAGGGACTCTGG
	Dsp2.6AAGGGATCTACTACTGTG Dsp2.7AAGGGATCTACTACTGTG	CCTACTATGGTTACGAC		GCCTGGTTTGCTTACTGGGGCCAAGGGACTCTGG GCCTGGTTTGCTTACTGGGGCCAAGGGACTCTGG
	Dsp2.8AAGGGATCTACTACTGTG Dsp2.2AAGGGATCTACTACTGTG	CCTAGTATGGTAACTAC		GCCTGGTTTGCTTACTGGGGCCAAGGGACTCTGG GCCTGGTTTGCTTACTGGGGCCAAGGGACTCTGG
	FL16.2AAGGGATCTACTACTGTG Dq52AAGCGGAGCACCACAGTG	CAACTGGGAC		GCCTGGTTTGCTTACTGGGGCCAAGGACTCTGG GCCTGGTTTGCTTACTGGGGCCAAGGACTCTGG
				l
	AAGGGATCTACTACTGTG	TCTATGATGGTTAC	A	CTTACTGGGGCCAAGGGACTCTGG
	AAGGGATCTACTACTGTG	TTTATTACTACGGCAGTAGC	CG	GCCTGGTTTGCTTACTGGGGGCCAAGGGACTCTGG
	AAGGGATCTACTACTGTG		AAAG	GCCTGGTTTGCTTACTGGGGGCCAAGGGACTCTGG
			GGTGTTG	
			1	
Spieen cells				
			I	
	AAGGGATCTACTACTGTG	CCTACTATAGTAACTAC	GATGG	
	AAGGGATCTACTACTGTG	TTTATTACTACGGCAGTAG	CCG	GCCTGGTTTGCTTACTGGGGCCAAGGGACTCTGG
	AAGGGATCTACTACTGTG	TTTATTACTACGGTAGTAGCTAC	CACCTGAC	TACTGGGGCCAAGGGACTCTGG
WT CD19⁺ cells	AAGGGATCTACTACTGTG	TTTATTACTACGGTAGTAGCTAC		GCCTGGTTTGCTTACTGGGGCCAAGGGACTCTGG
	AAGGGATCTACTACTGTG	TTTATTACTACGGTAGTAG	-+	GCCTGGTTTGCTTACTGGGGCCAAGGGACTCTGG
	AAGGGATCTACTACTGTG	TCTACTATGGTT	CCCCCTTTGAC	TACTGGGGCCAAGGGACTCTGG
	AAGGGATCTACTACTGTG	CCTACTATAGTAAC		Lctggtttgcttactggggccaagggactctgg
	AAGGGATCTACTACTGTG	TTTATTACTACGGTAGTA		GCCTGGTTTGCTTACTGGGGCCAAGGGACTCTGG
			1	
	AAGGGATCTACTACTGTG	TCTACTATGGTAACTAC		CTGGTTTGCTTACTGGGGCCAAGGACTCTGG
		TCTACTATGGTAACTAC		
			I	
<i>lkzf1</i> CD19⁺ colle	AAGGGATCTACTACTGTG	TTTATTACTACGGTA		GTTTGCTTACTGGGGCCAAGGACTCTGG
CD19 Cells				GCCTGGTTTGCTTACTGGGGCCAAGGGACTCTGG
	AAGGGATCTACTACTGTG	TTTATTACTACGGTAGTAGC		TGCTTACTGGGGCCAAGGACTCTGG
	AAGGGATCTACTACTGTG	ТСТАСТАТGGTAACTAC		GTTTGCTTACTGGGGCCAAGGGACTCTGG
	AAGGGATCTACTACTGTG	TTTATTACTACGGTAGTAG		TTGCTTACTGGGGCCAAGGGACTCTGG
	AAGGGATCTACTACTGTG	TCTACTATGGTAACTAC	-+	CTGGTTTGCTTACTGGGGCCAAGGGACTCTGG
	AAGGGATCTACTACTGTG	TCTACTATGATTACGAC	-+	GGTTTGCTTACTGGGGCCAAGGGACTCTGG
	AAGGGATCTACTACTGTG	TTTATTACTACGGTAGTAGCTAC		CTGGTTTGCTTACTGGGGCCAAGGGACTCTGG
		TTTATTACTACGGTAGTA	-+	

Figure S3. D-J_H rearrangements in *lkzf1^{-/-}* pro-B cells are oligoclonal but lack N-region diversity.

DNA sequence analysis of recombined D-J_H regions in *lkzf1^{-/-}* pro-B cells generated by limiting dilution (see **Supplementary Fig. 1**). D_HJ_H rearrangements were amplified from genomic DNA by PCR. DNA from spleen cells or wild-type pro-B cells were used as controls. Top, germline sequences of 10 D_H segments (GenBank GI:126349412 and GI:23306144).

Supplementary Figure 4 Reynaud et al

Figure S4. D-J_H rearrangements in *lkzf1^{-/-}* pro-B clones

DNA sequence analysis of recombined D-J_H regions in *lkzf1^{-/-}* pro-B clones. Recombined DNA fragments were amplified from genomic DNA by PCR. Note that *lkzf1^{-/-}* pro-B clones B1, B3, B4 have single D-J_H rearrangements while *lkzf1^{-/-}* pro-B clone B2 has both alleles rearranged.

Supplementary Figure 5 Reynaud et al

Figure S5. *lkzf1^{-/-}* pro-B cells mis-express alternate lineage genes.

Analysis of alternate lineage genes in $lkzf1^{-/-}$ pro-B clones. Serial dilutions of cDNA were analyzed by RT-PCR after normalization to *Hprt1*. cDNAs from $Rag2^{-/-}$ and $Pax5^{-/-}$ pro-B cell lines were used as controls. Data are representative of two independent experiments using 4 independent clones.

Supplementary Figure 6 Reynaud et al

Figure S6. Quantitative assessment of the myeloid potential of $lkzf1^{-/-}$ pro-B clones.

lkzf1^{-/-} pro-B clones were sorted directly at the indicated cell numbers onto S17 stromal cells in individual wells. Cells were cultured in lymphoid conditions for 3 days and then switched to myeloid conditions. Cells were harvested after 5 to 6 days and analyzed for myeloid (Mac1⁺) precursors. The number of *lkzf1^{-/-}* pro-B cells plated per well is plotted against the percentage of negative wells for growth of Mac1⁺ progeny. Solid line represents the best-fit regression and the dashed line intercepts the y-axis at 37%, which indicates the frequency of trans-differentiation. Under these conditions, all the wells plated with 100 *Pax5^{-/-}* pro-B cells scored positive for the generation of Mac-1⁺ progeny (data not shown). Three independent clones were analyzed in this experiment. Data from two clones is shown.

Supplementary Figure 7a-b Reynaud et al

Cells plated per well

а

b

Figure S7. Restoration of Ik-1 expression in *Ikzf1^{-/-}* pro-B cells severely restrained their myeloid potential.

(a) *lkzf1*^{-/-} pro-B cells transduced with MIGR1 or MIG-lk-1 were cultured as described in **Fig. 2a** and analyzed at day 6 by flow cytometry for the expression of Mac-1 and CD19. (b) Transduced *lkzf1*^{-/-} pro-B cells were sorted directly at the indicated cell numbers onto S17 stromal cells in individual wells and were cultured for 8 days as described in (a). The number of transduced *lkzf1*^{-/-} pro-B cells plated per well is plotted against the percentage of negative wells for growth of Mac1⁺ progeny. Solid line represents the best-fit regression used to determine the frequency of generation of Mac1⁺ progeny. Data are representative of two independent experiments.

Supplementary Figure 8 Reynaud et al

Figure S8. Attenuation of IL-7 signaling does not activate expression of *Rag gene* expression in *Ikzf1*^{-/-} pro-B cells.

Q-PCR analysis of *Rag1* and *Rag2* mRNA expression in *lkzf1^{-/-}* pro-B or *lrf4^{-/-}lrf8^{-/-}* pre-B cells cultured in the indicated concentrations of IL-7 (3 days). *Hprt1* transcripts were used for normalization. Data are representative of two independent experiments. n.d. stands for not detectable.

Supplementary Figure 9 Reynaud et al

Figure S9. Analysis of Ikaros binding sites in the *Rag* **locus by EMSA.** EMSAs were performed using nuclear extracts from 293T cells as described in **Fig. 5c**. Control extracts were generated from 293T cells transfected with an empty vector (lane 1) or with Ikaros-159A DNA binding mutant (lane 2). The Ikbs4 probe contains a high affinity Ikaros binding site and was used as positive control. Other probes spanned putative Ikaros binding sites in *Rag2* promoter as well as Ep and Ed enhancers. Where indicated binding reactions included competitor DNA in 50-fold molar excess or either pre-immune (PI) or anti-Ikaros antiserum⁶⁰ (Ik serum). Data are representative of two independent experiments.

Figure S10. Increased expression of Ikaros in $Pax5^{-/-}$ pro-B cells promotes *Rag* gene expression.

Q-PCR analysis of *lkzf1 (lkaros)*, *Rag1, Rag2* and *Tcfe2a* (*E2A*) transcripts in *Pax5^{-/-}* pro-B cells transduced with MIGR1, MIG-Ik-1 or MIG-Ik-7 vectors. *Hprt1* transcripts were used for normalization. The relative expression of each gene is expressed as a fold difference in relation to that detected in MIGR1 transduced cells (set to 100). Data are from two independent experiments each involving three samples per condition. Error bars represent the standard deviation from the mean.

Figure S11. Ikaros is not required for the nuclear repositioning of the *Igh* locus.

Three-dimensional immuno-FISH analysis was performed on the *Igh* locus as described in **Fig. 7**. Signals co-localizing with lamin B1 were scored as peripheral. At least 110 nuclei were scored with each cell type. Graph indicates percentage of cells representing two (stripes), one (grey) or none (black) of their *Igh* alleles at the nuclear lamina.

TABLE 1: Antibodies used in this study

Name	Alternative name	Clone	Fluorochrome	Source
CD19		1d3 1d3	PE APC	Becton Dickinson / Pharmingen Becton Dickinson / Pharmingen
CD11b	Mac-1, Integrin α	M1/70	PE	Becton Dickinson / Pharmingen
CD43	Ly-48, Leukosialin	s7	PE	Becton Dickinson / Pharmingen
CD127	IL-7Rα	SB/199	PE	Becton Dickinson / Pharmingen
CD117	c-Kit	2B8 2B8	PE APC	Becton Dickinson / Pharmingen Becton Dickinson / Pharmingen
Sca1	Ly-6a/e	d7	FITC	Becton Dickinson / Pharmingen
CD115	M-CSFR, CSF1R	AFS98	PE	eBioscience

Antibodies used for lineage depletion

CD19		1d3	Biotin	Becton Dickinson / Pharmingen
CD45R	B220	RA3-6B2	Biotin	Becton Dickinson / Pharmingen
IgM		II/43	Biotin	Becton Dickinson / Pharmingen
CD3ɛ		145-2C11	Biotin	Becton Dickinson / Pharmingen
CD8a	Ly-2	53-6.7	Biotin	Becton Dickinson / Pharmingen
CD11b	Mac-1, Integrin α	M1/70	Biotin	Becton Dickinson / Pharmingen
Gr1	Ly-6C	RB6-8C5	Biotin	Becton Dickinson / Pharmingen
Ter119	Ly-76	TER119	Biotin	Becton Dickinson / Pharmingen

TABLE 2: Primers used for RT-PCR analysis

Gene		Sequence 5'⇔3'	Gene		Sequence 5'⇔3'
Hprt1	Forward Reverse	GTAATGATCAGTCAACGGGGGGAC CCAGCAAGCTTGCAACCTTAACCA	Ebf1	Forward Reverse	CAAGACAAGAACCCTGAAATG GTAACCTCTGGAAGCCGTAGT
lkzf1 (lkaros)	Forward Reverse	CACTACCTCTGGAGCACAGC ATAGGGCATGTCTGACAGGCA	Sfpi1	Forward Reverse	CGGATGTGCTTCCCTTATCAAAC TGACTTTCTTCACCTCGCCTGTC
lkzf3 (Aiolos)	Forward Reverse	TGCGGGTTATCCTGCATTAGC TTGGCATCGAAGCAGTGCCG	Cebpa	Forward Reverse	GGTGGACAAGAACAGCAACGAGTA TAGAGATCCAGCGACCCGAAACCA
endogenous Ebf1	Forward Reverse	ACCTTCCTCAATGGCTCAG TCGTAGCAGAATCCAACCTC	Fcer1a	Forward Reverse	GCATCCAGGATATAGCAGAC GTGATCTTGTTCTTGCTCCT
exogenous Ebf1	Forward Reverse	ACCTTCCTCAATGGCTCAG ATTCCTAGCCCATCTGCTG	Csf2ra	Forward Reverse	GAGGTCACAAGGTCAAGGTG GATTGACAGTGGCAGGCTTC
Pax5	Forward Reverse	CGGGTCAGCCATGGTTGTG GTGCTGTCTCTCAAACACG	Epor	Forward Reverse	CGGACACATCGAGTTTTGTG TCATAGGTGCTCCAGGAGGT
Igll1	Forward Reverse	CTTGAGGGTCAATGAAGCTCAGAAGA CTTGGGCTGACCTAGGATTG	Gata1	Forward Reverse	ACTTTCCCAGTCCTTTCTTC CAGGTAGTGACCTGTCCTGT
VpreB1	Forward Reverse	CGTCTGTCCTGCTCATGCTGC ACGGCACAGTAATACACAGCC	Notch1	Forward Reverse	GGTATGCAAGGAGTCTGAAG CACACTCATTGATGTCAACC
Rag1	Forward Reverse	TGCAGACATTCTAGCACTCTGGCC ACATCTGCCTTCACGTCGATCCGG	Gata3	Forward Reverse	CTGTCAGACCACCAC CGATTTGCTAGACATCTTCC
Rag2	Forward		Germ-line transcri	pts	-
Dntt (TdT)	Forward	GAAGATGGGAACAACTCGAAGAG	V _H J558	Forward Reverse	TAACCATGGRATGGAGCTG TTTCTGACACWCTCAGGATGTG
Csf1r	Forward	GCGATGTGTGAGCAATGGCAGT	V _H 7183	Forward Reverse	CGGTACCAAGAASAMCCTGTWCCTGCAAATGASC GTCTCTCCGCGCCCCTGCTGGTCC
			V _H Q52	Forward Reverse	AGCTATGGTGTACAC TATGAAAGCTGCATT
			lμ	Forward Reverse	ACCTGGGAATGTATGGTTGTGGCTT ATGCAGATCTCTGTTTTTGCCTCC
			μΟ	Forward	AACATCTGAGTTTCTGAGGCTTGG

Reverse

TCATCTGAACCTTCAAGGATGCTC

TABLE 3: Primers used for Q-PCR

Gene		Sequence 5'⇔3'
Hprt1	Forward Reverse	CAACAACAAACTTGTCTGGA ACCTCTCGAAGTGTTGGATA
lkzf1 (lkaros)	Forward Reverse	GAAGACCTGTGCAAGATAGG TCCTTCTCATAGTTGGCACT
Rag1	Forward Reverse	CTGCAGACATTCTAGCACTC AACTGAAGCTCAGGGTAGAC
Rag2	Forward Reverse	CCTTCAGTGCCAAAATAAGA TCATAAGTGAGAAGCCTGGT
Tcfe2a (E2A)	Forward Reverse	CCAGTCTTTTGCATAACCAT AGGTCCTTCTTGTCCTCTTC
Csf1r	Forward Reverse	TACTGCTGTTGCTGCTCTT GCTATTGCCTTCGTATCTCT

TABLE 4: Primers used for analyzing lgh DNA rearrangements

Gene		Sequence 5'⇔3'
lgh locus	Forward VHJ558-5' VHQ52-5' VH7183-5' DHL-5'	CGAGCTCTCCARCACAGCCTWCATGCARCTCARC CGGTACCAGACTGARCATCASCAAGGAC CGGTACCAAGAASAMCCTGTWCCTGCAAATGASC GGAATTCGMTTTTTGTSAAGGGATCTACTACTGTG
	Reverse JH3-3'	GTCTAGATTCTCACAAGAGTCCGATAGACCCTGG
<i>Acta1</i> (α-actin)	Forward Reverse	GGCATCGTGTTGGATTCTG CACGAAGGAATAGCCACGC

TABLE 5: Primers used for ChIP analysis

Gene		Sequence 5'⇔3'
γ-satellite	Forward Reverse	TATGGCGAGGAAAACTGAAA TTCACGTCCTAAAGTGTGTAT
Rag1 promoter	Forward Reverse	AGCCAGGTGCAGCTGGAGCTGGG CAACATATGCTGTCTACTCTCTC
Rag2 promoter	Forward Reverse	GAAGGAGGTCACAGTCAGTT CAGGGTAGAGTGTTTGTGTG
Proximal Enhancer <i>Rag</i> locus	Forward Reverse	CCTAACTGTAGATCGCATCC AGGTGAATTGAGAACTGGAG
Distal Enhancer <i>Rag</i> locus	Forward Reverse	GTCACTTGGAAACCACGTGGTTA TAGTGCACATGCTGCTGCTTATA
Erag <i>Rag</i> locus	Forward Reverse	TATTCAGGAGGGAATTAAATGAC GACAGAACCCGAGGGCTTAGCAT
Acta1 (α -actin)	Forward Reverse	AGAGTCAGAGCAGCAGGTAG CAAGGCTCAATAGCTTTCTT
Actb (β -actin)	Forward Reverse	CGCCATGGATGACGATATCG CGAAGCCGGCTTTGCACATG

TABLE 6: Oligonucleotide probes used for EMSA

Probe		Sequence
Control		
Ik-bs4 (wild type)	Forward Reverse	TGACA <mark>GGGA</mark> ATACACAT <u>TCCC</u> AAAAGC GCTTTTGGGAATGTGTATTCCCTGTCA
mutant	Forward Reverse	TGACA <u>ttt</u> AATACACATT <u>aaa</u> AAAAGC GCTTTTttttAATGTGTATTaaaTGTCA
Rag1 promoter		
wild type	Forward Reverse	TCTGTGGTGT <mark>GGGA</mark> GAGT <mark>GGGAA</mark> GGGCAGTGAG CTCACTGCCCTTCCCACTCTCCCACACCACA
mutant	Forward Reverse	TCTGTGGTGT <u>ttt</u> AGAGT <u>ttt</u> AAGGGCAGTGAG CTCACTGCCCTTaaaACTCTaaaACACCACAGA
Rag2 promoter		
wild type	Forward Reverse	GGTCACAGTCAGTTACTCCCGTTACACCAGCACA TGTGCTGGTGTAACGGGAGTAACTGACTGTGACC
mutant	Forward Reverse	GGTCACAGTCAGTTACT <u>aaa</u> GTTACACCAGCACA TGTGCTGGTGTAACttAGTAACTGACTGTGACC
Rag proximal enhancer		
Ep (wild type)	Forward Reverse	TTTCTACAGCT <u>TCCC</u> TAAGCATTAGCTCCCACTACCCGAG CTCGGGTAGTGGGAGCTAATGCTTAGGGAAGCTGTAGAA
mutant	Forward Reverse	TTTCTACAGCTT <u>aaa</u> TAAGCATTAGCT <u>aaa</u> ACTACCCGAG CTCGGGTAGTtttAGCTAATGCTTAtttAAGCTGTAGAAA
Rag distal enhancer		
Ed (wild type)	Forward Reverse	CGAGAGAT <mark>GGGA</mark> GAAAAA <u>TCCC</u> CTCGCC <mark>TCCC</mark> AGAAGTC GGACTTCTGGGAGGCGAGGGGGATTTTTCTCCCATCTCCC
mutant	Forward Reverse	CGAGAGAT <u>ttt</u> AGAAAAAT <u>aaa</u> CTCGCCT <u>aaa</u> AGAAGTCC GGACTTCTtttAGGCGAGtttATTTTTCTaaaATCTCTCG
Rag Erag		
Erag (wild type)	Forward Reverse	TGCTCGACTGAAA <mark>TTCC</mark> TCT <mark>CC</mark> TGCTT <mark>GGAA</mark> AT <mark>GGG</mark> TAAG CCTCTTACCCATTTCCAAGCAGGAGAGGAATTTCAGTCGA
mutant 1	Forward Reverse	TGCTCGACTGAAATT <u>aa</u> TCTCCTGCTT <u>tt</u> AAATGGGTAAGAG CCTCTTACCCATTTaaAAGCAGGAGAttAATTTCAGTCGAGG
mutant 2	Forward Reverse	TGCTCGACTGAAATT <u>aa</u> TCT <u>aa</u> TGCTT <u>tt</u> AAAT <u>ttt</u> TAAGAGG CCTCTTAaaaATTTaaAAGCAttAGAttAATTTCAGTCGAGCA

Ikaros binding motifs are indicated in red
Mutant Ikaros binding motifs are indicated in lower case