SUPPORTING ONLINE MATERIAL FOR

Poly(ADP-ribose) Binding to Heterogeneous Nuclear Ribonucleoproteins Modulates

Alternative Splicing Activity

Yingbiao Ji and Alexei V. Tulin

This PDF file includes:

Figures 1 to 8.

Figure 1. The expression level of Squid/hrp40 is strongly reduced in the *Squidhrp40* mutant, indicating the specificity of the Squid/hrp40 antibody (8D2). **A.** 10 µg total proteins from the third-instar larvae of the homozygous *Squid/hrp40* mutant (sqd^{j6E3}) and the wild-type (y,w) fly was immunoblotted with the Squid/hrp40 antibody (8D2). The residual Squid/hrp40 present in the *Squid/hrp40* mutant came from the maternal expression of the *Squid/hrp40* gene. **B.** The same blot as in (**A**) was stripped and probed with mouse anti-alpha-tubulin (Sigma) to show the equal loading.

Figure 2. The transcript structure and expression of the hrp38:GFP fusion gene.

A. The transcript structure of the *Hrb98DE/hrp38* gene.

GFP was inserted between the exon1A and exon2 of the *Hrb98DE/hrp38* gene. Sequencing the RT-PCR products using indicated primers (arrow) showed that GFP was also spliced in-frame to exon1A and exon2 using the 3'-most (3'') splice site, producing the Hrb98DE-PE:GFP

C. The amino acid sequence of Hrp38-PE:GFP fusion protein:

The amino acid sequence of hrp38-PE:GFP fusion protein was derived from the RT-PCR

sequences obtained in Figure B and the hrp38-PE sequence in the flybase. The 6X His-

GFP insertion is highlighted in green. The pADPr-binding motif is highlighted in yellow.

Based on our sequences, it appears that the pPGC construct (ATC-6XHis-GFP-

TCGACACTCGAG) (Morin et al., 2001) was inserted into the intron between exon 1A

and exon 2 of the Hrb98DE/hrp38 gene in the ZCL588 strain.

D. The expression of hrp38:GFP fusion protein. Upper panel: 50 µg total proteins from the third-instar larvae of the indicated genotypes was subjected to immunoblotting analysis using anti-GFP antibody, showing that about 55 kDa hrp38:GFP fusion protein was detected from the *ZCL588* (hrp38:GFP) and *PARP1-DsRed; hrp38:GFP* fly strains, respectively, but not from the wild-type strain (*yw*). Lower panel: The same blot as shown in the upper panel was stripped and probed with the mouse actin antibody (Millipore) as the loading control. It appears that the *ZCL588* (hrp38:GFP) strain had an expression level equal to the hrp38:GFP fusion protein with the *PARP1-DsRed; hrp38:GFP* strain after normalization with the loading control.

Figure 3.

A. The accumulation of hrp38:GFP in the 93D puffs after heat-shock treatment. *Drosophila* polytene chromosomes of the hrp38:GFP line were immunostained with the anti-GFP antibody: Hrp38:GFP, green; DNA, red.

B. There is no significant difference in the expression levels of hrp38:GFP and Squid between the hrp38:GFP and *Parg;* hrp38:GFP lines after heat-shock treatment. After one hour of heat-shock treatment, 30 μg total proteins from the third-instar larvae of the hrp38: GFP and *Parg;* hrp38:GFP lines was immunoblotted with anti-GFP and anti-Squid antibody (8D2), respectively. The blot was stripped and probed with mouse anti-actin antibody for loading control. HS: heat-shock treatment.

Figure 4.

A. RT-PCR confirmed the genotypes for the real-time RT-PCR assay in Figure 8B in the main text and Figure 4B in the Supplemental Materials. Lane 1. *Parg* (-/-), the third-instar larvae male; 2. *yw*, the third-instar larvae male (control); 3. *Parg* (+/-), the third-instar female; 4. *Parg* (-/-), pharate male; 5. *yw* pharate male (control).

B. There is no significant difference in the *RpL32* expression level relative to the wild type among the indicated genotypes and treatment in Figure 7C in the main text. The *RpL32* expression level as an internal control in Figure 8B was measured by real-time RT-PCR. The error bar represents the standard deviation from two independent experiments. Lane1. *Parg* (-/-), the third-instar larvae male; 2. *yw*, the third-instar larvae male (control); 3. *Parg* (+/-), the third-instar female; 4. *Parg* (-/-), pharate male; 5. *yw* pharate male (control).

Figure 5. Inhibition of alternative splicing of the *dsx* gene by PARG loss-of-function. **A.** The structures of dsx pre-mRNA (unspliced) and dsx-male (spliced) transcripts in the *doublesex* (dsx) locus. The primers (arrows) specific for the dsx-male transcript were used for dsx-male quantification. **B.** The *dsx-male* expression level relative to *RpL32* in the indicated genotypes measured by real-time RT-PCR. The error bar represents the standard deviation from two independent experiments. Lane1. *Parg* (-/-), the third-instar larvae male; 2. *yw*, the third- instar larvae male (control); 3. *Parg* (+/-), the third-instar female; 4. *Parg* (-/-), pharate male; 5. *yw* pharate male (control). **: P<0.01.

B.

A.

Figure 6. There is no significant difference in the *RpL32* expression level relative to the wild type among the indicated genotypes and treatment in Figure 8D in the main text. The error bar represents the standard deviation from two independent experiments. The expression level of the *RpL32* expression level as an internal control was measured by real-time RT-PCR.

Figure 7. The structure of Hrsr-Omega-RC. Introns in lower case are marked in blue; G triple and quarters in exon 2 are marked in red.

1	ACTCTCAAAT	GAAAAGTGTT	CAAGTGCATT	CAAAGTGAAG	CTGAAAAAAT	AACCAGTTAA
61	AAATAGTACA	AAGAAATTTT	CTTTCTTGCA	ATTTGCAAGC	AGTAGCTACA	ACCAAAAATG
121	GAAAAGTGTA	AAAATCGTGT	CCCAGCAGAC	GAGCAGCAGC	AGTACGAGTA	TTGCAAAATG
181	CAGGGGCAAG	GGCCCACGTA	GTATTTTTCC	ACGTCGGGCA	TTTAATGCTC	TCGAGTTGGA
241	AACAATGAAA	CCATACGCAA	ACCCCCTGGA	AAAGATGTGA	TTAGTCATCG	ATTTTGCTGG
301	TCAGCGTCGG	GGAATTTCGC	AATGCAGCAG	GCAGTTTTCT	CAAATTTGGC	TAGAAAGTGA
361	CCCACTAGGC	AGTCTGAGGC	AGTTATCCAG	GATGTAAGGA	TGTGTGCAGT	ACTCTCTGTG
421	TCGAATGGCG	ATGGCCCTGA	CCTGCGGATT	TTGAAAGATT	GAAATAGGAA	GCCAGgtata
481	catacacagc	aacgaatgca	gcgtgttcta	tattcttaat	tcgtaagcca	aacctatgtt
541	taagacgtag	tttatataac	cgtacatatg	tatgtagcga	aacacgtttt	caaacgtcgc
601	atcgaagcca	tttcttctgc	agccattgca	atttcatcgt	gttgcgtaat	cgcaaattgt
661	aaatgtgtcc	ctactacttc	acatttgtgt	gtatccaagt	cgaaagttct	cgaactattc
721	tcgtgagcaa	cccccggatc	gaaaggccac	caactggctc	gttctctctc	tccagaaaca
781	gcttactctt	acgtttacaa	ttgactctct	acctatcggg	tatacacatt	tttatatatg
841	tatacactca	gagacacccc	aatcccccac	catacatatg	gcgagatgtg	tgaatgtatc
901	gcagttggac	gaaaacggca	gctgcgcaga	aaacgctgcg	gcgtacatac	aaacgagctc
961	tttgtttgcc	tttcccc ag t	tttgcttccc	catacgtata	actggtgttt	atcagcggta
1021	atctcgccag	cctgactttg	tccctgtcgc	ttctattgac	attctaaact	agattgtaga
1081	cgttttaaca	tttacctagc	tgttaatctt	atttgtaaac	atctctatat	gcaacctgcc
1141	ataccactta	accaagcaat	atgtatttct	ttctctaaac	tttatagTT G	GG CGTTGAAA
1201	GTTGATATCG	ATATCGATCC	GTGAAAAGTC	GATACCCTGC	GCAAGCAT <mark>GG</mark>	GG CGGCATAT
1261	GGG TGCTGAA	AACGCACTCG	GCCCGATCCC	GATTGCAGCG	TTATTCGAAA	GCTGTGTCTG
1321	CGACCGTGAC	TGAGATCATA	TGCGTACATA	TATCTAATGT	CC GGGG TCGT	AGGCCAGCCA
1381	GGG TGCTCGA	TTCTGTCAGA	TTGATTGTGC	GGATTGTGTT	ATAGGAACAC	TGGTGTATCG
1441	ACTTCTCTGC	TCCACTAT GG	G TGAAGGATA	CCCTACCGAA	AAGGCCTTCT	GTCGCTTACT
1501	ATCATCGAAC	AAGTTCCGTA	AA GGG CAGAC	ATACGTACAC	GTGGCAGCAT	ATTACGTTCA
1561	ATGACACATC	GTCTCTGGAT	TAGTAGTTGA	ACCAACGAGC	TCGAATATAC	CCTGCCAGTT
1621	GGTTGTAAAT	ATTAATTTTG	TTCTTATATT	CAGTTGTAAA	GTCAATACGG	AAGACATTTC
1681	CACACCAACC	ATGTGTCACT	TATGTTCTTA	AATACCAGAA	ACTGTTTAAA	TTTTTGTTCT
1741	TATACACTTC	ACCAATTAAG	AATTACCTGT	ACTGATGTAA	GTGTACCTGT	TGAATCACAA
1801	CAAAAATAGA	AAAAATGAAT	AACAAAAGAG	CTCTATAACA	GAAAAGCCAC	AGAAAAAGTG
1861	ААТААААТТ	САААААТТСА	АААААТАААТ	TTCGAAACAT	ТТ	

Figure 8. The structure of the *Ddc(dopa decarboxylase)* gene. Introns in lower case are

marked in blue; G triple and quarters in intron 1 and 2 are marked in red.

1	TCAGTTAAGA	GGAGAACGCC	AAGCGCACAG	CAATCAGCAC	CGAAATATCA	GCATCGAAAT
61	ATCAGCAAAT	AAATATTAGC	TGTTCTAAAC	CAGGAGGGCA	AACTGAACTT	GGAGCAAAGA
121	TTTAGTTCGG	AACGGAAGTA	AAGCTCGGCA	ACAAGTGCAA	ACAATTAAAA	GCAGTTAACT
181	AAAGTGCAAC	Gqtqaqaqac	gaaagtgtgg	ctcctcaaca	gcctcagctg	cctgaagtgc
241	ttggccaaca	taatgagtgc	atgtgcatgc	gaaagattca	tttcaaaact	aacgctgcgt
301	atacotaato	totatctaaa	act ggg cata	tactatagec	ttacttcaat	tcaatttgat
361	agttcggggcc	ccgaatteta	tagtgcttaa	acttttctca	actttcaata	tctgcatgct
421	tttatatata	tattaaaata	agatttagg	taacaacaaa	tcatcatctc	aatoccaact
4.81	tatttacatt	attaaatta	agatttage	22222222222	aataaarcar	tottoattaa
5/1	tgcccacgtc	gettaaacty	tataattaa		acadadeag	cttaaggagg
601	geadgaatg	gaaaaagget	ttaactatt	actactact	tagettatta	ttataactat
661	tataataata	gyaaaacycc	tapatatt	adtatterat	atorttatta	tataatatt
721	rangerator	gittigetta	ttaagtaatt	aglattcaat	geografiatett	
701	geagegalag		LUgayelyel	gcaciyalia	ycactatett	
781 041	CLLCLallaa		aalaalCgCa	CallCillCa		AACCATTCGA
841	GITCATATCA	TTGCAAAAGT	CAAACGAAAA	GTAAATCTCT	GAAATGAGUU	ACATACCCAT
901	TAGTAACACA	ATTCCAACAA	AACAAAC'I'GA	TGGTAATGGT	AAAGC'I'AACA	TTTCGCCGGA
961	TAAGCTGGAT	CCCAAGGTTT	CGgtatgtct	att ggg ttta	ggtatagagc	caacaattat
1021	gcacgtctga	taaccaaata	cttttgcatc	cacatcaagA	TCGACATGGA	GGCGCCGGAG
1081	TTCAAGGATT	TTGCCAAGAC	AATGGTCGAC	TTTATAGCCG	AATATCTGGA	GAATATACGC
1141	GAAAGgtgag	ccagattaag	actccctact	caattagctt	gaattaaact	taatttagcg
1201	tatgaatttc	atttatatgg	tatcagaatc	agtcgcttga	cctcagcatt	ttacgttcga
1261	atcgaaagtt	cgttctgctc	gattcgaatc	cccgggcaag	tgaatgacat	ttcgcacacg
1321	ttttgagatt	agtcacggga	aagtcgcacc	gatcggacat	ttccattgct	atatatatct
1381	atatatat	atcattttgt	ttagggggtt	gaggcgacct	tcccattagc	tcgagggcca
1441	agtactttcg	ctgctcttgg	gccgaaaact	aattaattaa	atggctttgt	tgagttggcg
1501	tgtcaaggtc	gtttttcatg	tatacgagta	tagatataat	tgcactgcta	acgccttggc
1561	caaaagcaat	tcgggtattt	cactattctt	gggcaattct	tctaacggct	tcgtttccat
1621	taccttgaaa	atcaaagtca	gctaagtaaa	caattttctt	actacagetg	ctgagtttgt
1681	ttgcccatcg	acagtcgctg	aaattaatgg	ttaattgaaa	atcaagctta	agtagagcgt
1741	aatataataa	ttcattttqc	tttattaaag	ttccttcgac	attgaagttt	caaaactatt
1801	ttcttagtta	gataactttt	taaacgaatc	tttgttaatt	gaagatacat	atatatagag
1861	aaattatctt	tttattttct	tttttcacct	cttagtagta	cttcctttta	attgaaagga
1921	tagaaaatcc	caccatcatt	atcagcattg	cctctctatc	tatattctqt	tcccatagca
1981	atttgctaca	tattcgtatt	gattttcatg	gcagtggcaa	caaqttqqqq	qtqqttqqat
2041	aaatatcctt	caaccccaat	gattcctgat	acctttatta	gctaactgag	tttcgcagcc
2101	aattagcaag	gagettttae	tgaatggggg	ccaaaatgca	atcagaaget	aacqcaattt
2161	togcaattac	aggCGCGTTC	TGCCGGAAGT	GAAGCCTGGC	TACCTGAAGC	CATTGATTCC
2221	GGATGCTGCG	CCCGAGAAGC	CGGAGAAGTG	GCAGGATGTG	ATGCAGGACA	TCGAGCGAGT
2281	CATCATGCCG	GGCGTGACAC	ACTGGCACAG	TCCCAAGTTT	CATGCCTACT	TCCCCACGGC
2341	CAACTCGTAT	CCAGCGATCG	TTGCGGACAT	GCTGAGTGGA	GCGATTGCCT	GCATCGGATT
2401	CACGTGGATC	GCCAGTCCCG	CGTGCACGGA	ACTCGAGGTG	GTCATGATGG	ATTGGCTGGG
2461	CAACATCCTC	CACCTCCCCC	CAGAGTTCCT	CCCCTCTTCC	CCCCCCACC	CTCCCCCTCT
2501	CARGAIGCIG	ACCCCACTC	ACTICCACACT	CCTCCCTCTC	CTCCCACCCA	
2521	CHICCAGGGC	CTCAACCACC	TCCATCCCCA	GGIGGCICIG	CACACCATCT	TCCCCAAGAA
2501	GIIGAAGGAG	GIGAAGGAGC	ACCOMCACE	GIGGGAIGAG	CACACCAICI	TGGGCAAGII
2041	GGTGGGCTAC	TGCTCGGACC	AGGUTUAUTU	ATCCGTGGAG	CGGGCTGGTC	TTCTGGGCGG
2701	AGTAAAGCTC	CGTTCCGTGC	AGTCCGAGAA	TCACAGAATG	CGTGGTGCTG	CCCTGGAAAA
2761	GGCCATCGAA	CAGGATGTGG	CCGAGGGTTTT	GATTCCCTTC	TACGCGGTGG	TCACCCTGGG
2821	CACCACCAAC	TCCTGCGCCT	TCGACTACTT	GGA'I'GAG'I'G'I'	GGACCGGTGG	GAAACAAGCA
2881	CAATTTGTGG	ATCCATGTGG	ACGCTGCCTA	TGCCGGATCC	GCTTTCATTT	GCCCCGAGTA
2941	TCGCCACCTG	ATGAAGGGCA	TCGAATCAGC	AGACTCTTTC	AATTTCAATC	CACACAAATG
3001	GATGCTGGTG	AACTTTGACT	GCTCGGCCAT	G'IGGCTGAAG	GATCCCAGTT	GGGTGGTCAA
3061	CGCGTTCAAT	GTGGACCCTC	TTTACCTGAA	GCACGACATG	CAGGGATCAG	CTCCGGACTA
3121	TCGTCACTGG	CAAATCCCAC	TTGGACGGCG	ATTCAGGGCA	CTGAAGCTCT	GGTTCGTCCT
3181	CCGGCTGTAC	GGTGTCGAGA	ATCTCCAGGC	CCACATCCGC	AGACACTGCA	ACTTTGCCAA
3241	GCAGTTCGGG	GATCTCTGCG	TGGCGGACTC	CAGATTTGAA	CTGGCCGCCG	AGATCAATAT
3301	GGGATTGGTC	TGCTTCCGGC	TGAAGGGCAG	CAACGAGCGG	AACGAAGCTC	TTCTCAAGCG
3361	AATCAATGGA	CGCGGCCACA	TCCACTTGGT	TCCCGCCAAG	ATCAAGGATG	TCTACTTCCT
3421	GCGCATGGCC	ATTTGCTCGC	GATTCACCCA	GTCCGAGGAC	ATGGAGTACT	CGTGGAAGGA

3481 GGTCAGCGCC GCTGCCGACG AGATGGAACA GGAGCAGTAA AGTGGTTGTG CAGGTCTGTT
3541 CCGTGTTTAG TATATAAATT AATATAGTAA ACTTAAATTG GACCAGTATG ATATATAATG
3601 CATTGTGACT TGGAACCCGG AACAGACCAT ACACTTTCCA CTTGCGACAT GTTTAGGGAA
3661 TTTACATCGC AACAAAAGAT GGTTCGTCCA TCGCTACATT ATATTTATAG TATCCTATCA
3721 TTGTATCATT GATGTTGTTC ATGATTTTA TTGTTAACGT TATGCGCCTA ATTAAAACAA
3781 ATGTATTCTG CTTAAAATA CAAACGAATT GTAACTATAA A