Supplemental Data Yoshida et al., (2009) Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen *Magnaporthe oryzae*.

M. oryzae Ina168

Supplemental Figure 1. Ambiguous symptoms caused by 70-15 isolate infected to various rice cultivars. Each isolate was sprayed onto the leaves of diagnostic rice cultivars differentially harboring eleven known resistance (*R*-) genes, *Pia*, *Pii*, *Pik*, *Pik-m*, *Pik-p*, *Piz*, *Pita*, *Pita2*, *Piz-t*, *Pib*, *Pit* cognate to the *AVR* genes (Kiyosawa, 1986) as well as susceptible cultivars Moukoto and Shin-2, and compatible or incompatible interaction was observed among them. It is notable that in our experiments, the reaction between the isolate 70-15 and these eleven rice *R*-genes could not be precisely defined since the disease symptoms caused by 70-15 were not clear, and we could not assign each reaction as compatible or incompatible. In addition, 70-15-inoculated Moukoto and Shin-2 also showed unclear symptoms. On the contrary, Ina168 induced typical susceptible spindle-shaped lesions on Yahiromochi, K60, Moukoto and Shin-2 leaves, and typical resistance symptoms (few small brown spots) on the leaves of the other cultivars. Photos were taken 10 days after inoculation with 5×10^5 conidia/ml (containing 0.01 % tween 20) of 70-15 or 3×10^5 conidia/ml (containing 0.01 % tween 20) of 70-15 or 3×10^5 conidia/ml (containing 0.01 % tween 20) of 70-15 or 3×10^5 conidia/ml (containing 0.01 % tween 20) of 70-15 or 3×10^5 conidia/ml (containing 0.01 % tween 20) of 70-15 or 3×10^5 conidia/ml (containing 0.01 % tween 20) of 70-15 or 3×10^5 conidia/ml (containing 0.01 % tween 20) of 70-15 or 3×10^5 conidia/ml (containing 0.01 % tween 20) of 70-15 or 3×10^5 conidia/ml (containing 0.01 % tween 20) of 70-15 or 3×10^5 conidia/ml (containing 0.01 % tween 20) of 70-15 or 3×10^5 conidia/ml (containing 0.01 % tween 20) of 70-15 or 3×10^5 conidia/ml (containing 0.01 % tween 20) of 70-15 or 3×10^5 conidia/ml (containing 0.01 % tween 20) of 70-15 or 3×10^5 conidia/ml (containing 0.01 % tween 20) of 70-15 or 3×10^5 conidia/ml (containing 0.01 % tween 20) of 70-15 or

Supplemental Figure 2. Frequency distribution of nucleotide diversity among 1,032 loci of *M. oryzae* putative secreted protein genes.

Nucleotide diversity (θ ;Watterson 1975) is given in x-axis and number of loci in the given θ range is shown in the y-axis. Out of 1,032 loci, 805 were monomorphic. θ of *AVR-Pita* (MG11081.4) is 0.0029.

Supplemental Figure 3. Size distribution of predicted proteins of *M. oryzae.* Siz 11,109 predicted proteins of Isolate 70-15 (blue), 1,306 predicted secreted proteins of iso and 316 predicted secreted proteins in Ina168-unmapped regions (yellow).

a) pex22

ATCGCTTTGCCCTCATTGCACACAACAACCTCCATTAAAATACATACATATTTCTATTCC60CTTTCCATAACAGTATCCCTACCCGCCAGCCCCATACACGAAAATTCTCAAAATGCATTT120TTCGACAATTTTCATCCCCTTTGCCTTAGCTGCTCTAAAAGTAAGCGCTGCGCCAGCTAG180ATTTTGCGTCTATTACGACGGCCACCTTCCCGCGACACGTGTCCTGCTTATGTACGTTAG240AATCGGCACTACAGCGACTATTACGGCCCGTGGGCACGAATTCGAAGTTGAAGCAAAAGA300CCAGAAATTGCAAAGTTATTCTCACCAATGGCAAACAAGCACCGGATTGGCTTGCTGCCGA360GCCTTACTAGGTTTAAAACGGAAGAGCAGCAGCTTGCTGGTTAAACTTCAAAATAAACGC420CAACTCAGTTACTACTTACAATACTATGATTTCTGCCGAAAAATACAAACG480TACGTGTATACCTGGGCTTTTACCAGGTTTACTGGCAAATACCACCACC600CGACGATGAAACCAGGGTAGGCTTTTGTACCTGTGCAATCATGGCAAATTATCACTCTT660TAGCGAAAGTAAATACAAACAAACGAGTTTCCAGGGTAG3294666

b) pex33

ATTTTTCATCTTAAAACTAAACATTTAAATTCAGCTTCAAATATACCAAAATCCCTTTT60ATTCCTTCCAATTTACCAAAATGCAACTTCCAAAATTACTTTCGCTATTGCATTATATG120CAATCGGAATCGCAGCACTTCCCACTCCGGCCAGCCTGAATGGCAACACTGAGGTCGCAA180CCATCTCCGACGTTAAACTTGAGGCCCGCAGCGACACCACTTATCATAAATGCTCCAAAT240GCGGTTATGGCAGCGATGATTCCGACGCGTATTTTAATCATAAATGCAACTAATCGCATA300CAAAGTAAGCTGGATTTTCCAAACGAGCGGCGGACAGTTATGGACTATTGCGGGAATTT360CAAGGATAGGAAAAGCCAATTTGAAATATCCGGAATACTTTTTCCAAGCTTAACCATTAA420ATAACATGTCTTAAATCAATCTACCTTTCGCGTTTAAA458

Tag1145 14 counts

C)

Supplemental Figure 4. pex22, pex33, pex31 transcripts are expressed during *M. oryzae* infection of rice leaf sheath as revealed by SuperSAGE and 3'-RACE RT-PCR. a) DNA sequence of the pex22 gene region. Pex22 ORF is indicated by red color. Location of the SuperSAGE tag Tag3294 is underlined. b) DNA sequence of the pex33 gene region. ORF is indicated by red color. Location of the SuperSAGE tag Tag1145 is underlined. c) 3'-RACE RT-PCR results of pex22, pex33 and pex31.

Supplemental Figure 5. Confirmation of active transcription of pex transgenes by RT-PCR in *M. oryzae* transformants during infection.

O. sativa

M. oryzae	Sasanishiki <i>(Pia⁺</i>)	Shin-2 (Pia ⁻)
TH68-141		
TH68-141 (+contig264)	and the second sec	

b) O. sativa

c)

	O. sativa			
M. oryzae	Kanto51 <i>(Pik</i> ⁺)	Tsuyuake (<i>Pik-m</i> ⁺)	K60 (<i>Pik-p</i> ⁺)	Shin-2 (Pik ⁻ , Pik-m ⁻ , Pik-p ⁻)
Ina72	the state of the state of the	it is the train of		
Ina72 (+pex31-D-genome)				
Ina72 (+22p::pex31-D)				

Supplemental Figure 6. Transformation of *M. oryzae* isolates with pex22, pex33 and pex31-D complements *AVR-Pia*, *AVR-Pii* and *AVR-Plk/km/kp*, respectively.

Names of isolates and DNA fragments used for transformation are given in the left of each panel. (a) Transformation of TH68-141 with pex22 conferred the *AVR-Pia* phenotype. (b) Transformation of Ina86-137 with pex33 conferred the *AVR-Pii* phenotype. (c) Transformation of Ina72 with pex31 conferred the *AVR-Pik/km/kp* phenotypes.

a)

b)

Supplemental Figure 7. Additional results of interactions between *M. oryzae* and rice. a) Results of interaction between *M. oryzae* and rice. The isolate Sasa2 is compatible with a rice cultivar Hitomebore harboring the R-gene *Pii*. Sasa2 transformed with contig389 (+contig389) as well as Sasa2 transformed with a fragment containing pex22 promoter fused with pex33 ORF (+22p::pex33) were incompatible with Hitomebore. Sasa2, [Sasa2(+contig389*)], [Sasa2 (+22p::pex33)] are all compatible with a rice cultivar Moukoto lacking *Pii* suggesting that the effect of transformation with contig389 and 22p::pex33 is *Pii* dependent. Photos were taken 10 days after inoculation with 3 × 10⁵ conidia/ml (containing 0.01 % tween 20) of each strain. b) Interaction between *AVR* aendidates and *R* genes equals call death in rice protoplasts. Pion call visibility after

Supplemental Figure 8. Pulsed field gel electrophoresis images of chromosomes of Ina168 and GFSI1-7-2 isolates of *M. oryzae.* The typical 1.2 Mb supernumerary chromosome of GFSI1-7-2 is indicated by an arrowhead.

Supplemental Figure 9. EcoTILLING result of AVR-Pita. The phenotypes of AVR-Pita (MG11081.4) (top). The bands in red rectangles are significantly associated with the AVR-Pita phenotypes (Fisher's e

Supplemental Table 1.

				•	
Code	Code no.	Isolate	Host	Race	Country
no.	in Table1				
1	2	70-15	Oryza sativa	Unknown	Guiana
2		GUY11	Oryza sativa	137.5	Guiana
3		70-6	Oryza sativa	Unknown	Guiana
4		Br13	Oryza sativa	102	Brazil
5	15	Br18	Oryza sativa	176	Brazil
6	22	Br10	Oryza sativa	403	Brazil
7		Br15	Oryza sativa	507	Brazil
8		VHT6.1	Oryza sativa	002	Vietnam
9		VHG4.5	Oryza sativa	106	Vietnam
10		VTB6.1	Oryza sativa	Unknown	Vietnam
11		VHT3.3	Oryza sativa	Unknown	Vietnam
12		PO-02-7306	Oryza sativa	Unknown	Indonesia
13		PO-02-7501	Oryza sativa	Unknown	Indonesia
14		PO-04-7501	Oryza sativa	Unknown	Indonesia
15		PO-12-7301-2	Oryza sativa	Unknown	Indonesia
16		PO-12-7301	Oryza sativa	Unknown	Indonesia
17		TH3	Oryza sativa	135	Thailand
18		CHNOS60-8-1	Oryza sativa	104.4	China
19	5	Shin85.86	Oryza sativa	001.0	Japan
20		TH68-141	Oryza sativa	003.0	Japan
21		Ken54-04	Oryza sativa	003.0	Japan
22		Ken54-20	Oryza sativa	003.0	Japan
23		0903.4	Oryza sativa	003	Japan
24		TH83-05-15-3	Oryza sativa	003.0	Japan
25		Ina85-182	Oryza sativa	103.0	Japan
26	18	Ina86-137	Oryza sativa	007.0	Japan
27	17	Hoku1	Oryza sativa	007.0	Japan
28	19	2012-1	Oryza sativa	007	Japan

46 isolates of *M. oryzae* used for EcoTILLING and phylogenetic analysis

29	20	2403-1	Oryza sativa	007	Japan
30		22-4-1-1	Oryza sativa	107.0	Japan
31		Naga69-150	Oryza sativa	007	Japan
32	16	TH87-20-BII	Oryza sativa	007.2	Japan
33	6	Ina72	Oryza sativa	031.0	Japan
34	9	1836-3	Oryza sativa	033	Japan
35	10	TH68-126	Oryza sativa	033.1	Japan
36	7	TH68-140	Oryza sativa	035.1	Japan
37	11	24-22-1-1	Oryza sativa	037.1	Japan
38	12	9505-3	Oryza sativa	037.1	Japan
39	13	Sasa2	Oryza sativa	037.1	Japan
40	8	TH69-8	Oryza sativa	071.1	Japan
41	1	Ina168	Oryza sativa	101.1	Japan
42		Ken53-33	Oryza sativa	137.1	Japan
43	14	TH78-15	Oryza sativa	177.1	Japan
44	23	P-2b	Oryza sativa	303.1	Japan
45	21	88A	Oryza sativa	433	Japan
46		P2	Oryza sativa	003	Japan

Supplemental Table 2. A list of *M. oryzae* putative secreted proteins possessing the [RK]CxxCxxxxxxxXH] motif

>gi_39968261_ref_XP_365521.1_ predicted protein [Magnaporthe grisea 70-15] MQISVSQLVTLAGLIMGASARLHSAAVCVQNRSYGSTGNGTPQGITYGSYVDYEIDSAATQCACNFYRNR HTGNNQWDSCPDCVFDGIQCLSNGWHLGGDEITYYCEKLCNSQGAQAN

>gi_39955784_ref_XP_364190.1_ hypothetical protein MG09035.4 [Magnaporthe grisea 70-15] MQIFNIVQVLGLLAVGASALPTPANVGAVQPVEGSQLQARSSNFYSAGWTQYPSANSGYPSNSASTYYYK CNHCGKHTKEESQQKYHQENSHKGKESNYSEVQA

>gi_39946562_ref_XP_362818.1_ hypothetical protein MG08230.4 [Magnaporthe grisea 70-15] MQIFKIVQVLGLLAVGTSALPAPANPAAVQPAQGGQLAVHGQPASCPPECRDVQGAKPGHLQARSRFYAT SDTGRPLANSGYPTHGYRDAYRCLYCGAVRDDVSAVQDHITYRHSNRGGDTSNYDTTTVRDDR >gi_39946240_ref_XP_362657.1_ predicted protein [Magnaporthe grisea 70-15] MHTYKFIQIALLFASVALAIPTPPSPPNPPPVPQLPNSETKSNRLVSHSCEFCGVVKPSGPAYLEHYHQN HREEVWGKLATPSPPNPPPVPTQKVETHAPKTHGCEWCNKVEPSGPAYIKHYKENHEDQVWGKWAGQDAK ASP

>gi_39945196_ref_XP_362135.1_ predicted protein [Magnaporthe grisea 70-15]
MHLSTVSQILALFTAVASSAPTSHAAVRARHVSPPEADLLHVVKRGDDTDFSDWQRYSLWNKRVEALSRN
PELVSRYGYKCNSCGKGRMDENGMRRHIMFDHYSKDIPLEKSAHVNKYIEFRNKGG

>gi_39944940_ref_XP_362007.1_ predicted protein [Magnaporthe grisea 70-15] MKYSKVSFTLALIALGATAAPTDLHKLVARGEVEVCYDPRDPRVPPLQNDPNVEKWIDDKTGHHCFALMR GVQPDHPCKACQGHQADLYLDHIHCLAAGHVHANKGDSCEATRQARLDRYKTALKGFRVPYGTDISKLET GGKGVTFNVNDPSHKLFSGDRSLTQVVKDGNVEFVRPHGEKYRGQGEDLYATIQRQWYALKAAKILKAAR AAKAARTPDASDAGKLEPPAKLATQQRRLDESRSAE

>gi_39973079_ref_XP_367930.1_ predicted protein [Magnaporthe grisea 70-15] MQLHNVCSILALLAAGVFALPAPVNPSEIQARSAADKAKPKPQTERVWMDEPEAAQYLSDPRWKLVKKKY SCGYCDSSSSKVDKINKHRDEVHGTROAOVDHTIYPGETRLTFERVSGYP

>gi_39972083_ref_XP_367432.1_ predicted protein [Magnaporthe grisea 70-15] MLPLFLVTSLFLTQFLAAAHTENFEIVKGLADKARVKLDLTGQQSYAIYEKFPAKVYNPLDYHMRLIVGH VECKDDNDCDFAANAFHMHAHGGSCERVLGSKTNQHSRNRPWKANHYYDKKEDIDKPLPQKNRYQWAGPT RTLSYDEIYALGDKWCGSCFHSRYNKVFNNCHHFVYSLYNKIKQK

>gi_39971991_ref_XP_367386.1_ predicted protein [Magnaporthe grisea 70-15]
MRITRALAPLGLLPLPAAAAAVVGIPLQAIDTTATASSAMEPRQAGDGSGGSLKQCRDVSLVQSRPGLSL
NDTVSATCHVGTAEYVNTLNLNECLGVDPATLELGWGRAGQLSSFCWGCELSELETGGPDGHLAVGRVVF
SCVCYDYGQERATSVRLDDGGIESKDGVLACRNGKRATAIRMNPDAPVRTEPGRCNLGLGDMGYMDCIPK
LYDGKIVPVGERNRYGSVFNDWRGD

Supplemental Table 3 A list of plasmids used for the genetic transformation of *M. oryzae*.

Plasmid name	Sources	Description	Construction methods	<i>M. oryzae</i> isolates used for transformation
pCB1004-pex22	pCB1004	2.2 Kb fragment containing pex22	The 2.2 Kb fragment was amplified with the primers Notl-pex22-U1 (5'- ATAAGAAT <u>GCGGCCGC</u> TTTCGTGACAGGC ACGTCGGG-3'; Notl site is underlined) and Xbal-pex22-L1 (5'- GC <u>TCTAGA</u> ACACGAGAATCAAAACCTGTA CAGACAGGTGGGTGGGC-3'; Xbal site is underlined) using genomic DNA of Ina168 isolate as template, and inserted into pCB1004.	TH68-141 and Ina86-137 isolates that do not have <i>AVR-</i> <i>Pia</i> locus.
pCB1531-pex22p- EGFP	pCB1531	EGFP fused to pex22 promoter	The 1.4 Kb fragment containing pex22 gene promoter was amplified with the primers Notl- pex22-U1 and Xbal-pex22p-L3 (5'- GC <u>TCTAGAATTTTCGTGTATGGGGCTGGC</u> GGGTAGGG-3'; Xbal site is underlined) using pCB1004-pex22 as template, and inserted into pBAGFP (Kimura et al., 2001).	-
pCB1531-pex22p- pex22	pCB1531	pex22 fused to pex22 promoter	The pex22 ORF was amplified with the primers Xba1-pex22-U2 (5'- GCTCTAGACAAAATGCATTTTTCGACAATT TTC-3'; Xbal site is underlined) and BamH1- pex22-L2 (5'- CG <u>GGATCC</u> TAGTAAGGCTCGGCAGCAAG CC-3'; BamH1 site is underlined). EGFP in pCB1531-pex22p-EGFP was replaced with nex22	Ina86-137 isolate that does not have <i>AVR-Pia</i> locus.
pCB1531-pex33	pCB1531	1.4 Kb fragment containing pex33	The 1.4 Kb fragment was amplified with the primers Notl-pex33-U1 (5'- ATAAGAAT <u>GCGGCCGC</u> TTCGCTCTTTGAT TAAATAC-3'; Notl site is underlined) and Xbal-pex33-L1 (5'- GC <u>TCTAGA</u> AAACAGATTTGGAACTTTGGT GAAAACTAGAC-3'; Xbal site is underlined) using genomic DNA of Ina168 isolate as template, and inserted into pCB1531.	Sasa2 and Ina86-137 isolates that do not have <i>AVR-Pii</i> locus.
pCB1531-pex22p- pex33	pCB1531	pex33 fused to pex22 promoter	The pex33 ORF was amplified with the primers pBAFP_kozak_pex33_Xbal_F (5'-GCTCTAGACCAAAATGCAACTTTCCAAAAT TAC-3'; Xbal site is underlined) and pBAFP_pex33_BamHI_R (5'-CGGGATCCTTAGTTGCATTTATGATTAAAAT ACGC-3'; BamHI site is underlined) using pCB1531-pex33 as template. EGFP in pCB1531-pex22p-EGFP was replaced with pex33.	Sasa2 and Ina86-137 isolates that do not have <i>AVR-Pii</i> locus.
pCB1004-pex31-D	pCB1004	2.2 Kb fragment containing pex31- D	The 2.2 Kb fragment was amplified with the primers Notl-pex31-U1 (5'- ATAAGAAT <u>GCGGCCGC</u> AAAAGGAATAAGG CGGACCTCT-3'; Notl site is underlined) and Xbal-pex31-L1 (5'- GC <u>TCTAGA</u> TTAAAAGCCGGGCCTTTTTTTC CCCAA-3'; Xbal site is underlined) using genomic DNA of Ina86-137 isolate as template, and inserted into pCB1004.	Sasa2, and Ina72 isolates that do not have <i>AVR-Pik, AVR-Pikm</i> and <i>AVR-Pikp</i> loci.
pCB1531-pex22p- pex31-D	pCB1531	pex31-D fused to pex22 promoter	The pex31-D ORF was amplified with the primers Xba1_kozak_pex31_U1 (5'- GCTCTAGAAAAGTCAATATGCGTGTTACCA CTTT-3'; Xbal site is underlined) and pBAFP_pex31_BamHI_R (5'- CGGATCCTCGTCAAACCTCCCTACG-3'; BamHI site is underlined) using genomic DNA of Ina86-137 isolate as template. EGFP in pCB1531-pex22p-EGFP was replaced with pex31-D.	Sasa2, and Ina72 isolates that do not have <i>AVR-Pik, AVR-Pikm</i> and <i>AVR-Pikp</i> loci.

Kimura, A, Takano, Y, Furusawa, I, Okuno, T. (2001) Peroxisomal metabolic function is required for appressorium-mediated plant infection by *Collectotrichum lagenarium*. Plant Cell 13: 1945-1957.

for the linkage with secrete	for the linkage with secreted protein genes				
Name Accession number					
DNA transposons					
Pot 2	Z33638.1				
Pot 3	U60989.1				
Occan	AB074754.1				
LTR retrotransposons					
MAGGY	L35053.1				
Pyret	AB062507.1				
MGLR-3	AF314096				
Inago1	AB334124.1				
Inago2	AB334125.1				
Non-LTR retrotransposons					
MGL (MGR583)	AF018033				
Mg-SINE	MGU35313				
Other retrotransposons					
Tf2	AY849688.1				
MINE-C	EF585237.1				
MINE-B	EF585236.1				
MINE-A	A EF585235.1				
MINE	AJ851229.1				

Supplemental Table 4. A list of transposons analyzed for the linkage with secreted protein genes

Primer name	Sequences (5' - 3')	Description	
NotI-pex22-U1	ATAAGAATGCGGCCGCTTTCGTGACAGGCACGTCGGG	Constructions of the plasmids pCB1004-pex22 and pCB1531-pex22p-EGFP	
Xbal-pex22-L1	GCTCTAGAACACGAGAATCAAAACCTGTACAGACAGGTGGGTG	Constructions of the plasmid pCB1004-pex22	
Xbal-pex22p-L3	GCTCTAGAATTTTCGTGTATGGGGGCTGGCGGGTAGGG	Constructions of the plasmid pCB1531-pex22p-EGFP	
Xba1-pex22-U2	GCTCTAGACAAAATGCATTTTTCGACAATTTTC	Constructions of the plasmid	
BamH1-pex22-L2	CGGGATCCTAGTAAGGCTCGGCAGCAAGCC	pCB1531-pex22p-pex22	
Notl-pex33-U1	ATAAGAATGCGGCCGCTTCGCTCTTTTGATTAAATAC	Constructions of the plasmid	
Xbal-pex33-L1	GCTCTAGAAAACAGATTTGGAAACTTTGGTGAAAACTAGAC	pCB1531-pex33	
pBAFP_kozak_pex33_Xb al_F	GCTCTAGACCAAAATGCAACTTTCCAAAATTAC	Constructions of the plasmid	
pBAFP_pex33_BamHI_R	CGGGATCCTTAGTTGCATTTATGATTAAAATACGC	pCB1531-pex22p-pex33	
NotI-pex31-U1	ATAAGAATGCGGCCGCAAAAGGAATAAGGCGGACCTCT	Constructions of the plasmid pCB1004-pex31-D	
Xbal-pex31-L1	GCTCTAGATTAAAAGCCGGGCCTTTTTTTCCCCAA		
Xba1_kozak_pex31_U1	GCTCTAGAAAAGTCAATATGCGTGTTACCACTTT	Constructions of the plasmid	
pBAFP_pex31_BamHI_R	CGGATCCTCGTCAAACCTCCCTACG	pCB1531-pex22p-pex31-D	
RTpex22-U1	CCGCTCGAGCAAAATGGCGCCAGCTAGATTTTGCG		
RTpex22-L1	CTAGTAAGGCTCGGCAGCAA	RI-PCR for pex22	
RTpex33-U1	x33-U1 CTTCCCACTCCGGCCAGCCTGAATGGCA		
RTpex33-L1	ATACTAGTTTAGTTGCATTTATGATTAA	RI-PCR for pex33	
RTpex31-U1	CGACCTAAGTCGAGAGCGAGACCCTAAC		
RTpex31-L1	TTAAAAGCCGGGCCTTTTTTCCCCAA	RI-PCR for pex31	
RiceActin-U1	CTGAAGAGCATCCTGTATTG	DT DCD for rise actin D4a7	
RiceActin-L1	GAACCTTTCTGCTCCGATGG	n I-PUR IOT TICE ACTIN HAC/	
MgActin-U1	TCGACGTCCGAAAGGATCTGT	RT-PCR for Magnaprothe oryzae Actin	
MgActin-L1	ACTCCTGCTTCGAGATCCACATC		

Supplemental Table 5. Primers used for plasmid construction and RT-PCR .