Supplemental Table 9. Analysis of published NHR structures with experimentally observed structural disorder. Where predicted disorder for each residue with PONDR VL3H has a probability > 50%.

		Experimentally observed	Agreement in	Reference
		disordered region	observed and	
			predicted disorder	
			domain from this	
Family	Name		study	
		D domain (hinge, R152 – T161) is	Yes	1
		disordered in TR α (only a fraction of		
		the areas could be seen in the electron		
		density). In contrast this area in $TR\beta$		
		is an α -helix. Authors suggest it		
		could either fold into segments of an		
		extended DBD and LBD or unfold to		
		form true unstructured hinge that		
		would facilitate rotational flexibility		
1A1	TR a	between LBD and DBD		
1A2	ΤR β	No disorder mentioned		2
		Mouse- Helix H2 and the connection		3
		between H2 and H3 could not be		
1 B 1	RAR a	modeled due to poor electron density		

in this region.

		Mouse- D-region and the last 30	Yes	4
		residues of the F-region in RAR β ,		
		could not be modeled due to poor		
		electron density in these regions.		
		Electron density was observed for		
		only 10 residues (out of 40) of the		
1B2	RAR b	RAR β C-terminal F region.		
1B3	RAR γ	No mention of disorder		5
1C1	PPAR a	No mention of disorder		6
		NMR studies on PPAR- α indicate	No	7
		that the LBD is a flexible protein fold		
		that does not have a well defined		
		structure until a ligand occupies the		
		binding site.		
1C2	PPAR β/δ	No mention of disorder		8
		Could not get reliable structure for	Yes	9
		the loop between H2 and H3 of		
1C3	PPAR γ	ΡΡΑRγ		
1D1	Rev-Erb α	No crystal structures found		
1D2	Rev-Erb β	No crystal structures found		
1F1	ROR a	Most ROR α amino acids had well-	Yes	10

		defined electron density, except for		
		amino acids 461–464 in loop L9-10,		
		which had the highest B factors.		
		Rat- a residue (D403) located in loop	Not tested	11
		9-10 is partially disordered according		
1F2	ROR b	to the electron density map		
		No mention of disorder		12
1F3	ROR y	No crystal structures found		
		Tobacco budworm: Disorder in 321-	Yes (4 of 6 residues)	13
1H1	EcR	323, 389, 482, 517-518		
		Sweet potato whitefly: no mention of		14
		disorder		
		Drosophila - A-box (residues 78-91)	Yes (13 of 14	15
		of EcR DBD disordered in EcR-USP	residues)	
		complex but not EcR-RXR complex		
		Red flour beetle EcR: no mention of		16
		disorder		
		Crystal structure of amino acids 207-	Yes (helix 2 residues	17
		447 Helix 2 (230-247) and loop	230-247) and No for	
		after strand 2 in beta sheet (315-317)	residues 315-317	
		not resolved due to lack of		
1H3	LXRα	interpretable electron density		
1H2	LXRβ	Amino acids 214-461 crystallized		18

		could not get apo structures, structure		
		may change in absence of ligand – no		
		mention of disorder		
		Hairpin loop area displays disorder		19
		and differences even between		
		receptor molecules bound to the same		
		ligand. The weak electron density of		
		H12 is comparable with the density		
		of the ligand, suggesting that		
		H12 is flexible in solution when there		
		is no ligand		
		bound.		
		Amino acid residues 205-218 at the N	Yes (residues 205-	20
		terminal end of the LBD and a	218) and 4 of 11	
		stretch of 11 residues between helix 1	residues in between	
		and helix 3 (residues 238–248) are	helix 1 and 3	
		disordered.		
		15 residue insertion (270-285)	Yes (9 of 15 residues)	21
1H4	FXR	between helices 1 and 3 is disordered		
		Rat- no mention of disorder		22
		Amino acid residues 165-215, part of	Yes	23
		the long flexible loop between helices		
1I1	VDR	1 and 3, were deleted because their		

		present prevented stable crystal		
		formation. This loop does not		
		contribute to ligand interaction.		
		Large disordered insertion domain at	Yes	24
		the N-terminal part of the LBD		
		All PXR structures previously	Yes 17 of 20 residues	25
		showed residues 178-197 were	(178-197) yes all	
		disordered and 198-210 form a	residues from 198-210	
		pseudo helix in this structure formed		
		an α -helix through residue 205 – this		
		is unique to PXR.		
		CD data shows stability with ligand		
112	PXR	and SRC-1 binding.		
		Rifampicin induces structural	Residues 229-235 and	
		disorder at 178-209, 229-235, 310-	310-317 are predicted	26
		317, all regions at the base of the	as ordered	
		LBD. The 2 additional areas were		
		observed in other structures but had		
		high thermal displacement indicative		
		of structural mobility. 192-198-202		
		pseudo helix changes position and		
		accommodates ligand binding		
		No discussion of disorder		27

		No discussion of disorder		28
1I3	CAR	Mouse- No discussion of disorder		29
		No discussion of disorder		30
		Electron density is	Yes (residues 133-	31
		apparent for all residues except those	140) and for 5	
		at the amino (133–140)	residues in 368-382	
		and carboxyl (368–382) termini of	and 8 out of 9 for	
		the domain and within the	residues 157-165	
		loop between helices 1 and 3 (the $1/3$		
2A1	HNF4A	loop, residues 157–165).		
2A2	HNF4A γ	No crystal structures found		
		Tobacco budworm USP: Disorder in	Yes (residues 206-	13
		206-207, 304, 315-318	207), No (304), yes	
2B	USP/RXR		(315-318)	
		Drosophila USP -No mention of		15
		disorder		
		Red flour beetle USP: no mention of		16
		disorder		
		Has an additional helix 2 in the same		
		position that FXR has disorder which		32
		becomes disordered on ligand		
2B1	RXR a	binding		
		No mention of disorder		33

		Residues Arg182 to Cys187 form a	Yes	34
		distorted helix in the X-ray structure		
		that is not seen in the mean NMR		
		structure. The disorder observed in		
		the D-box of RXR, residues 172 to		
		176, may well arise from an inherent		
		lack of NOEs because the		
		protein is flexible and undergoes		
		conformational fuctuations.		
2B2	RXR β	No crystal structures found		
2B3	RXR γ	No mention of disorder		35
2C1	TR2	No crystal structures found		
2C2	TR4	No crystal structures found		
2E1	TLX	No crystal structures found		
2E3	PNR	No crystal structures found		
2F1	COUP TFI	No crystal structures found		
2F2	COUP TFII	No crystal structures found		
2F6	EAR 2	No crystal structures found		
		Residues 301-304 and 549-553 are	Yes (301-304) No	36
3A1	ΕR α	disordered	(549-553)	
		Residues K416-M421 and Y526-	No	37
		L536 are disordered		
		15 residues in DBD disorder		38

		ERa-NTD unstructured in solution	Yes	39
		H12 (486-) and Met336 are	Yes (486) No (336)	40
3A2	ΕR β	disordered		
		H12 disordered in presence of ICI	No	41
		ligand. Met 479 disordered.		
		ER beta-N terminal unstructured in	Yes	39
		solution		
		Residues P309-P319 and R462-E470	Yes (309-319)	42
		disordered	Residues 462-470 not	
3B1	ERR a		determined	
		NMR structure of DBD residues	Yes	43
3B2	ERR β	R182, Y185, and 187-194 disordered		
3B3	ERR γ	No mention of disorder		44
		No mention of disorder.		45
3C1	GR	No mention of disorder.		46
		No mention of disorder.		47
		NTD AF-1 region shown to be	Yes	48
		unstructured in solution using NMR		
		and circular dichroism		
3C2	MR	No mention of disorder.		49
		DBD: residues L562, 640-648	Yes 7 of 9 residues	50
		disordered.	(640-648) No (residue	
3C3	PR		562)	

		No mention of disorder.		51
		NTD sensitive to rapid degradation in	Yes	52
		limited proteolysis experiments		
		indicated disorder		
		H9-H10 interloop (844-849)	Yes	53
3C4	AR	disordered		
		Rat LBD: N-terminal 664-671	No	54
		disordered		
		DBD residues 533-536, 612-637	Yes (612-637) No	55
		disordered	(533-536)	
		Human N-terminal domain residues	Yes	56, 57
		142-485 (AF1) disordered		
4A1	Nur77	No mention of disorder		58
4A2	Nurr1	No mention of disorder		59
4A3	NOR-1	No crystal structures found		
5A1	SF1	No mention of disorder		60
		No mention of disorder (crystal		61
		structures of both SF-1 and LRH-1)		
		No mention of disorder (crystal		62
		structures of both SF-1 and LRH-1)		
		No mention of disorder (crystal		61
5A2	FTZ-F1β	structures of both SF-1 and LRH-1)		
		No mention of disorder.		63

		No mention of disorder (crystal	62
		structures of both SF-1 and LRH-1)	
		DBD of LRH-1: no mention of	64
		disorder	
		LBD: no mention of disorder	65
6A1	GCNF	No crystal structures found	
0B1	DAX1	No crystal structures found	
0B2	SHP	No crystal structures found	

DBD = DNA-binding domain, NTD = N-terminal domain, and LBD = ligand binding domain, NHR in bold show disorder or no density in X-ray/NMR.

References

Nascimento, A. S.; Dias, S. M.; Nunes, F. M.; Aparicio, R.; Ambrosio, A. L.;
 Bleicher, L.; Figueira, A. C.; Santos, M. A.; de Oliveira Neto, M.; Fischer, H.; Togashi,
 M.; Craievich, A. F.; Garratt, R. C.; Baxter, J. D.; Webb, P.; Polikarpov, I., Structural rearrangements in the thyroid hormone receptor hinge domain and their putative role in the receptor function. *J Mol Biol* 2006, 360, (3), 586-98.

Ribeiro, R. C.; Apriletti, J. W.; Wagner, R. L.; Feng, W.; Kushner, P. J.; Nilsson,
 S.; Scanlan, T. S.; West, B. L.; Fletterick, R. J.; Baxter, J. D., X-ray crystallographic and
 functional studies of thyroid hormone receptor. *J Steroid Biochem Mol Biol* 1998, 65, (1-6), 133-41.

3. Bourguet, W.; Vivat, V.; Wurtz, J. M.; Chambon, P.; Gronemeyer, H.; Moras, D., Crystal structure of a heterodimeric complex of RAR and RXR ligand-binding domains. *Mol Cell* **2000**, 5, (2), 289-98.

4. Pogenberg, V.; Guichou, J. F.; Vivat-Hannah, V.; Kammerer, S.; Perez, E.; Germain, P.; de Lera, A. R.; Gronemeyer, H.; Royer, C. A.; Bourguet, W., Characterization of the interaction between retinoic acid receptor/retinoid X receptor (RAR/RXR) heterodimers and transcriptional coactivators through structural and fluorescence anisotropy studies. *J Biol Chem* **2005**, 280, (2), 1625-33.

Klaholz, B. P.; Renaud, J. P.; Mitschler, A.; Zusi, C.; Chambon, P.; Gronemeyer,
 H.; Moras, D., Conformational adaptation of agonists to the human nuclear receptor RAR
 gamma. *Nat Struct Biol* 1998, 5, (3), 199-202.

Xu, H. E.; Stanley, T. B.; Montana, V. G.; Lambert, M. H.; Shearer, B. G.; Cobb,
J. E.; McKee, D. D.; Galardi, C. M.; Plunket, K. D.; Nolte, R. T.; Parks, D. J.; Moore, J.
T.; Kliewer, S. A.; Willson, T. M.; Stimmel, J. B., Structural basis for antagonistmediated recruitment of nuclear co-repressors by PPARalpha. *Nature* 2002, 415, (6873), 813-7.

7. Cronet, P.; Petersen, J. F.; Folmer, R.; Blomberg, N.; Sjoblom, K.; Karlsson, U.; Lindstedt, E. L.; Bamberg, K., Structure of the PPARalpha and -gamma ligand binding domain in complex with AZ 242; ligand selectivity and agonist activation in the PPAR family. *Structure* **2001**, *9*, (8), 699-706.

 Fyffe, S. A.; Alphey, M. S.; Buetow, L.; Smith, T. K.; Ferguson, M. A.; Sorensen,
 M. D.; Bjorkling, F.; Hunter, W. N., Recombinant human PPAR-beta/delta ligandbinding domain is locked in an activated conformation by endogenous fatty acids. *J Mol Biol* 2006, 356, (4), 1005-13.

Gampe, R. T., Jr.; Montana, V. G.; Lambert, M. H.; Miller, A. B.; Bledsoe, R. K.;
 Milburn, M. V.; Kliewer, S. A.; Willson, T. M.; Xu, H. E., Asymmetry in the
 PPARgamma/RXRalpha crystal structure reveals the molecular basis of
 heterodimerization among nuclear receptors. *Mol Cell* **2000**, *5*, (3), 545-55.

10. Kallen, J. A.; Schlaeppi, J. M.; Bitsch, F.; Geisse, S.; Geiser, M.; Delhon, I.; Fournier, B., X-ray structure of the hRORalpha LBD at 1.63 A: structural and functional data that cholesterol or a cholesterol derivative is the natural ligand of RORalpha. *Structure* **2002**, 10, (12), 1697-707.

11. Stehlin, C.; Wurtz, J. M.; Steinmetz, A.; Greiner, E.; Schule, R.; Moras, D.; Renaud, J. P., X-ray structure of the orphan nuclear receptor RORbeta ligand-binding domain in the active conformation. *Embo J* **2001**, 20, (21), 5822-31.

12. Stehlin-Gaon, C.; Willmann, D.; Zeyer, D.; Sanglier, S.; Van Dorsselaer, A.; Renaud, J. P.; Moras, D.; Schule, R., All-trans retinoic acid is a ligand for the orphan nuclear receptor ROR beta. *Nat Struct Biol* **2003**, 10, (10), 820-5.

Billas, I. M.; Iwema, T.; Garnier, J. M.; Mitschler, A.; Rochel, N.; Moras, D.,
 Structural adaptability in the ligand-binding pocket of the ecdysone hormone receptor.
 Nature 2003, 426, (6962), 91-6.

14. Carmichael, J. A.; Lawrence, M. C.; Graham, L. D.; Pilling, P. A.; Epa, V. C.; Noyce, L.; Lovrecz, G.; Winkler, D. A.; Pawlak-Skrzecz, A.; Eaton, R. E.; Hannan, G. N.; Hill, R. J., The X-ray structure of a hemipteran ecdysone receptor ligand-binding domain: comparison with a lepidopteran ecdysone receptor ligand-binding domain and implications for insecticide design. *J Biol Chem* **2005**, 280, (23), 22258-69.

15. Devarakonda, S.; Harp, J. M.; Kim, Y.; Ozyhar, A.; Rastinejad, F., Structure of the heterodimeric ecdysone receptor DNA-binding complex. *Embo J* **2003**, 22, (21), 5827-40.

16. Iwema, T.; Billas, I. M.; Beck, Y.; Bonneton, F.; Nierengarten, H.; Chaumot, A.; Richards, G.; Laudet, V.; Moras, D., Structural and functional characterization of a novel type of ligand-independent RXR-USP receptor. *Embo J* **2007**, *26*, (16), 3770-82.

17. Svensson, S.; Ostberg, T.; Jacobsson, M.; Norstrom, C.; Stefansson, K.; Hallen, D.; Johansson, I. C.; Zachrisson, K.; Ogg, D.; Jendeberg, L., Crystal structure of the heterodimeric complex of LXRalpha and RXRbeta ligand-binding domains in a fully agonistic conformation. *Embo J* **2003**, *22*, (18), 4625-33.

Williams, S.; Bledsoe, R. K.; Collins, J. L.; Boggs, S.; Lambert, M. H.; Miller, A.
B.; Moore, J.; McKee, D. D.; Moore, L.; Nichols, J.; Parks, D.; Watson, M.; Wisely, B.;
Willson, T. M., X-ray crystal structure of the liver X receptor beta ligand binding
domain: regulation by a histidine-tryptophan switch. *J Biol Chem* 2003, 278, (29), 27138-43.

19. Farnegardh, M.; Bonn, T.; Sun, S.; Ljunggren, J.; Ahola, H.; Wilhelmsson, A.; Gustafsson, J. A.; Carlquist, M., The three-dimensional structure of the liver X receptor beta reveals a flexible ligand-binding pocket that can accommodate fundamentally different ligands. *J Biol Chem* **2003**, 278, (40), 38821-8.

20. Hoerer, S.; Schmid, A.; Heckel, A.; Budzinski, R. M.; Nar, H., Crystal structure of the human liver X receptor beta ligand-binding domain in complex with a synthetic agonist. *J Mol Biol* **2003**, 334, (5), 853-61.

Downes, M.; Verdecia, M. A.; Roecker, A. J.; Hughes, R.; Hogenesch, J. B.;
 Kast-Woelbern, H. R.; Bowman, M. E.; Ferrer, J. L.; Anisfeld, A. M.; Edwards, P. A.;
 Rosenfeld, J. M.; Alvarez, J. G.; Noel, J. P.; Nicolaou, K. C.; Evans, R. M., A chemical,
 genetic, and structural analysis of the nuclear bile acid receptor FXR. *Mol Cell* 2003, 11,
 (4), 1079-92.

22. Mi, L. Z.; Devarakonda, S.; Harp, J. M.; Han, Q.; Pellicciari, R.; Willson, T. M.; Khorasanizadeh, S.; Rastinejad, F., Structural basis for bile acid binding and activation of the nuclear receptor FXR. *Mol Cell* **2003**, 11, (4), 1093-100.

23. Adachi, R.; Shulman, A. I.; Yamamoto, K.; Shimomura, I.; Yamada, S.; Mangelsdorf, D. J.; Makishima, M., Structural determinants for vitamin D receptor response to endocrine and xenobiotic signals. *Mol Endocrinol* **2004**, 18, (1), 43-52.

24. Rochel, N.; Tocchini-Valentini, G.; Egea, P. F.; Juntunen, K.; Garnier, J. M.; Vihko, P.; Moras, D., Functional and structural characterization of the insertion region in the ligand binding domain of the vitamin D nuclear receptor. *Eur J Biochem* **2001**, 268, (4), 971-9.

25. Watkins, R. E.; Davis-Searles, P. R.; Lambert, M. H.; Redinbo, M. R., Coactivator binding promotes the specific interaction between ligand and the pregnane X receptor. *J Mol Biol* **2003**, 331, 815-828.

Chrencik, J. E.; Orans, J.; Moore, L. B.; Xue, Y.; Peng, L.; Collins, J. L.; Wisely,
G. B.; Lambert, M. H.; Kliewer, S. A.; Redinbo, M. R., Structural disorder in the
complex of human pregnane X receptor and the macrolide antibiotic rifampicin. *Mol Endocrinol* 2005, 19, (5), 1125-34.

27. Xue, Y.; Chao, E.; Zuercher, W. J.; Willson, T. M.; Collins, J. L.; Redinbo, M. R., Crystal structure of the PXR-T1317 complex provides a scaffold to examine the potential for receptor antagonism. *Bioorg Med Chem* **2007**, 15, (5), 2156-66.

Xue, Y.; Moore, L. B.; Orans, J.; Peng, L.; Bencharit, S.; Kliewer, S. A.; Redinbo,
M. R., Crystal structure of the pregnane X receptor-estradiol complex provides insights
into endobiotic recognition. *Mol Endocrinol* 2007, 21, (5), 1028-38.

29. Suino, K.; Peng, L.; Reynolds, R.; Li, Y.; Cha, J. Y.; Repa, J. J.; Kliewer, S. A.; Xu, H. E., The nuclear xenobiotic receptor CAR: structural determinants of constitutive activation and heterodimerization. *Mol Cell* **2004**, 16, (6), 893-905.

30. Xu, R. X.; Lambert, M. H.; Wisely, B. B.; Warren, E. N.; Weinert, E. E.; Waitt,G. M.; Williams, J. D.; Collins, J. L.; Moore, L. B.; Willson, T. M.; Moore, J. T., A

structural basis for constitutive activity in the human CAR/RXRalpha heterodimer. *Mol Cell* **2004,** 16, (6), 919-28.

31. Dhe-Paganon, S.; Duda, K.; Iwamoto, M.; Chi, Y. I.; Shoelson, S. E., Crystal structure of the HNF4 alpha ligand binding domain in complex with endogenous fatty acid ligand. *J Biol Chem* **2002**, 277, (41), 37973-6.

32. Egea, P. F.; Mitschler, A.; Rochel, N.; Ruff, M.; Chambon, P.; Moras, D., Crystal structure of the human RXRalpha ligand-binding domain bound to its natural ligand: 9-cis retinoic acid. *Embo J* **2000**, 19, (11), 2592-601.

33. Zhao, Q.; Chasse, S. A.; Devarakonda, S.; Sierk, M. L.; Ahvazi, B.; Rastinejad,
F., Structural basis of RXR-DNA interactions. *J Mol Biol* 2000, 296, (2), 509-20.

Holmbeck, S. M.; Foster, M. P.; Casimiro, D. R.; Sem, D. S.; Dyson, H. J.;
Wright, P. E., High-resolution solution structure of the retinoid X receptor DNA-binding domain. *J Mol Biol* 1998, 281, (2), 271-84.

35. Renaud, J. P.; Rochel, N.; Ruff, M.; Vivat, V.; Chambon, P.; Gronemeyer, H.; Moras, D., Crystal structure of the RAR-gamma ligand-binding domain bound to all-trans retinoic acid. *Nature* **1995**, 378, (6558), 681-9.

Brzozowski, A. M.; Pike, A. C.; Dauter, Z.; Hubbard, R. E.; Bonn, T.; Engstrom,
O.; Ohman, L.; Greene, G. L.; Gustafsson, J. A.; Carlquist, M., Molecular basis of
agonism and antagonism in the oestrogen receptor. *Nature* 1997, 389, (6652), 753-8.

37. Vajdos, F. F.; Hoth, L. R.; Geoghegan, K. F.; Simons, S. P.; LeMotte, P. K.;
Danley, D. E.; Ammirati, M. J.; Pandit, J., The 2.0 A crystal structure of the ERalpha
ligand-binding domain complexed with lasofoxifene. *Protein Sci* 2007, 16, (5), 897-905.

38. Schwabe, J. W.; Chapman, L.; Finch, J. T.; Rhodes, D.; Neuhaus, D., DNA recognition by the oestrogen receptor: from solution to the crystal. *Structure* **1993**, 1, (3), 187-204.

39. Warnmark, A.; Wikstrom, A.; Wright, A. P.; Gustafsson, J. A.; Hard, T., The N-terminal regions of estrogen receptor alpha and beta are unstructured in vitro and show different TBP binding properties. *J Biol Chem* **2001**, 276, (49), 45939-44.

40. Pike, A. C.; Brzozowski, A. M.; Hubbard, R. E.; Bonn, T.; Thorsell, A. G.; Engstrom, O.; Ljunggren, J.; Gustafsson, J. A.; Carlquist, M., Structure of the ligandbinding domain of oestrogen receptor beta in the presence of a partial agonist and a full antagonist. *Embo J* **1999**, 18, (17), 4608-18.

41. Shiau, A. K.; Barstad, D.; Radek, J. T.; Meyers, M. J.; Nettles, K. W.; Katzenellenbogen, B. S.; Katzenellenbogen, J. A.; Agard, D. A.; Greene, G. L., Structural characterization of a subtype-selective ligand reveals a novel mode of estrogen receptor antagonism. *Nat Struct Biol* **2002**, *9*, (5), 359-64.

42. Kallen, J.; Schlaeppi, J. M.; Bitsch, F.; Filipuzzi, I.; Schilb, A.; Riou, V.; Graham, A.; Strauss, A.; Geiser, M.; Fournier, B., Evidence for ligand-independent transcriptional activation of the human estrogen-related receptor alpha (ERRalpha): crystal structure of

ERRalpha ligand binding domain in complex with peroxisome proliferator-activated receptor coactivator-1alpha. *J Biol Chem* **2004**, 279, (47), 49330-7.

43. Gearhart, M. D.; Holmbeck, S. M.; Evans, R. M.; Dyson, H. J.; Wright, P. E., Monomeric complex of human orphan estrogen related receptor-2 with DNA: a pseudodimer interface mediates extended half-site recognition. *J Mol Biol* **2003**, 327, (4), 819-32.

44. Greschik, H.; Flaig, R.; Renaud, J. P.; Moras, D., Structural basis for the deactivation of the estrogen-related receptor gamma by diethylstilbestrol or 4-hydroxytamoxifen and determinants of selectivity. *J Biol Chem* 2004, 279, (32), 33639-46.

45. Greschik, H.; Wurtz, J. M.; Sanglier, S.; Bourguet, W.; van Dorsselaer, A.;
Moras, D.; Renaud, J. P., Structural and functional evidence for ligand-independent transcriptional activation by the estrogen-related receptor 3. *Mol Cell* 2002, 9, (2), 303-13.

46. Kauppi, B.; Jakob, C.; Farnegardh, M.; Yang, J.; Ahola, H.; Alarcon, M.; Calles, K.; Engstrom, O.; Harlan, J.; Muchmore, S.; Ramqvist, A. K.; Thorell, S.; Ohman, L.; Greer, J.; Gustafsson, J. A.; Carlstedt-Duke, J.; Carlquist, M., The three-dimensional structures of antagonistic and agonistic forms of the glucocorticoid receptor ligand-binding domain: RU-486 induces a transconformation that leads to active antagonism. *J Biol Chem* **2003**, 278, (25), 22748-54.

Bledsoe, R. K.; Montana, V. G.; Stanley, T. B.; Delves, C. J.; Apolito, C. J.;
McKee, D. D.; Consler, T. G.; Parks, D. J.; Stewart, E. L.; Willson, T. M.; Lambert, M.
H.; Moore, J. T.; Pearce, K. H.; Xu, H. E., Crystal structure of the glucocorticoid receptor
ligand binding domain reveals a novel mode of receptor dimerization and coactivator
recognition. *Cell* **2002**, 110, 93-105.

48. Dahlman-Wright, K.; Baumann, H.; McEwan, I. J.; Almlof, T.; Wright, A. P.; Gustafsson, J. A.; Hard, T., Structural characterization of a minimal functional transactivation domain from the human glucocorticoid receptor. *Proc Natl Acad Sci U S A* **1995,** 92, (5), 1699-703.

Bledsoe, R. K.; Madauss, K. P.; Holt, J. A.; Apolito, C. J.; Lambert, M. H.;
Pearce, K. H.; Stanley, T. B.; Stewart, E. L.; Trump, R. P.; Willson, T. M.; Williams, S.
P., A ligand-mediated hydrogen bond network required for the activation of the mineralocorticoid receptor. *J Biol Chem* 2005, 280, (35), 31283-93.

50. Roemer, S. C.; Donham, D. C.; Sherman, L.; Pon, V. H.; Edwards, D. P.; Churchill, M. E., Structure of the progesterone receptor-deoxyribonucleic acid complex: novel interactions required for binding to half-site response elements. *Mol Endocrinol* **2006**, 20, (12), 3042-52.

51. Madauss, K. P.; Deng, S. J.; Austin, R. J.; Lambert, M. H.; McLay, I.; Pritchard, J.; Short, S. A.; Stewart, E. L.; Uings, I. J.; Williams, S. P., Progesterone receptor ligand binding pocket flexibility: crystal structures of the norethindrone and mometasone furoate complexes. *J Med Chem* **2004**, 47, (13), 3381-7.

52. Bain, D. L.; Franden, M. A.; McManaman, J. L.; Takimoto, G. S.; Horwitz, K. B., The N-terminal region of the human progesterone A-receptor. Structural analysis and the influence of the DNA binding domain. *J Biol Chem* **2000**, 275, (10), 7313-20.

53. Pereira de Jesus-Tran, K.; Cote, P. L.; Cantin, L.; Blanchet, J.; Labrie, F.; Breton, R., Comparison of crystal structures of human androgen receptor ligand-binding domain complexed with various agonists reveals molecular determinants responsible for binding affinity. *Protein Sci* **2006**, 15, (5), 987-99.

54. Sack, J. S.; Kish, K. F.; Wang, C.; Attar, R. M.; Kiefer, S. E.; An, Y.; Wu, G. Y.; Scheffler, J. E.; Salvati, M. E.; Krystek, S. R., Jr.; Weinmann, R.; Einspahr, H. M., Crystallographic structures of the ligand-binding domains of the androgen receptor and its T877A mutant complexed with the natural agonist dihydrotestosterone. *Proc Natl Acad Sci U S A* **2001**, 98, (9), 4904-9.

55. Shaffer, P. L.; Jivan, A.; Dollins, D. E.; Claessens, F.; Gewirth, D. T., Structural basis of androgen receptor binding to selective androgen response elements. *Proc Natl Acad Sci U S A* **2004**, 101, (14), 4758-63.

56. Lavery, D. N.; McEwan, I. J., The human androgen receptor AF1 transactivation domain: interactions with transcription factor IIF and molten-globule-like structural characteristics. *Biochem Soc Trans* **2006**, 34, (Pt 6), 1054-7.

57. Lavery, D. N.; McEwan, I. J., Structural Characterization of the Native NH2-Terminal Transactivation Domain of the Human Androgen Receptor: A Collapsed Disordered Conformation Underlies Structural Plasticity and Protein-Induced Folding. *Biochemistry* **2008**, 47, (11), 3360-9.

58. Flaig, R.; Greschik, H.; Peluso-Iltis, C.; Moras, D., Structural basis for the cellspecific activities of the NGFI-B and the Nurr1 ligand-binding domain. *J Biol Chem* **2005**, 280, (19), 19250-8.

59. Wang, Z.; Benoit, G.; Liu, J.; Prasad, S.; Aarnisalo, P.; Liu, X.; Xu, H.; Walker, N. P.; Perlmann, T., Structure and function of Nurr1 identifies a class of ligandindependent nuclear receptors. *Nature* **2003**, 423, (6939), 555-60.

60. Li, Y.; Choi, M.; Cavey, G.; Daugherty, J.; Suino, K.; Kovach, A.; Bingham, N.
C.; Kliewer, S. A.; Xu, H. E., Crystallographic identification and functional characterization of phospholipids as ligands for the orphan nuclear receptor steroidogenic factor-1. *Mol Cell* 2005, 17, (4), 491-502.

Krylova, I. N.; Sablin, E. P.; Moore, J.; Xu, R. X.; Waitt, G. M.; MacKay, J. A.;
 Juzumiene, D.; Bynum, J. M.; Madauss, K.; Montana, V.; Lebedeva, L.; Suzawa, M.;
 Williams, J. D.; Williams, S. P.; Guy, R. K.; Thornton, J. W.; Fletterick, R. J.; Willson,
 T. M.; Ingraham, H. A., Structural analyses reveal phosphatidyl inositols as ligands for
 the NR5 orphan receptors SF-1 and LRH-1. *Cell* 2005, 120, (3), 343-55.

Wang, W.; Zhang, C.; Marimuthu, A.; Krupka, H. I.; Tabrizizad, M.; Shelloe, R.;
Mehra, U.; Eng, K.; Nguyen, H.; Settachatgul, C.; Powell, B.; Milburn, M. V.; West, B.
L., The crystal structures of human steroidogenic factor-1 and liver receptor homologue-*Proc Natl Acad Sci U S A* 2005, 102, (21), 7505-10.

63. Sablin, E. P.; Krylova, I. N.; Fletterick, R. J.; Ingraham, H. A., Structural basis for ligand-independent activation of the orphan nuclear receptor LRH-1. *Mol Cell* 2003, 11, (6), 1575-85.

64. Solomon, I. H.; Hager, J. M.; Safi, R.; McDonnell, D. P.; Redinbo, M. R.; Ortlund, E. A., Crystal structure of the human LRH-1 DBD-DNA complex reveals Ftz-F1 domain positioning is required for receptor activity. *J Mol Biol* **2005**, 354, (5), 1091-102.

65. Ortlund, E. A.; Lee, Y.; Solomon, I. H.; Hager, J. M.; Safi, R.; Choi, Y.; Guan, Z.; Tripathy, A.; Raetz, C. R.; McDonnell, D. P.; Moore, D. D.; Redinbo, M. R., Modulation of human nuclear receptor LRH-1 activity by phospholipids and SHP. *Nat Struct Mol Biol* **2005**, 12, (4), 357-63.