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We use the following notation in the proofs:

Qn(β) = n−1
∑
i<j

bij|ei − ej|+ n

d∑
j=1

p′λ(|β0
j |)|βj|

Dn(β) = n−1
∑
i<j

bij|ei − ej|

Sn(β) = n−1
∑
i<j

bij(xi − xj)sgn((Yi − Yj)− (xi − xj)
′β)

An(β) = (2
√

3τ)−1(β − β0)
′X′WX(β − β0)− (β − β0)

′Sn(β0) + Dn(β0),

where sgn(x) stands for the sign of x.

We first present and prove two useful lemmas about the unpenalized weighted Wilcoxon

estimator under possible local contamination. These results will be useful later to es-

tablish the asymptotic properties of the penalized Wilcoxon estimator. In the proof of

the two lemmas, we frequently refer to the book of Hettmansperger and McKean (1998),

abbreviated as HM in the sequel.

Lemma 0.1 Assume the regularity conditions in Section 3.1, then ∀ε > 0, ∀c > 0,

[
sup

√
n||β−β0||≤c

|Dn(β)− An(β)| ≥ ε

]
p→ 0 (1)

under either H or H∗
n.

Proof. The result under H was given in Sievers (1983), see also Section 5.2 of HM. To

prove it under H∗
n, let Un(t) = n−1/2[Sn(β0+t/

√
n)−Sn(β0)]. Then Un(t)−(

√
3τ)−1Ct =

op(1) under H. Since H∗
n is contiguous with respect to H, by Le Cam’s first lemma (see,
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for example, Chapter 6 of van der Vaart, 1998),

Un(t)− (
√

3τ)−1Ct
p→ 0 under H∗

n. (2)

Let Dn(t) = Dn(β0 + t/
√

n) and An(t) = An(β0 + t/
√

n), then (2) implies that

5(Dn(t)− An(t))
p→ 0 under H∗

n.

Using the diagonal subsequencing argument (see the proof of Theorem A.3.7 of HM), we

can show that Dn(t)−An(t)
a.s.−→ 0 under H∗

n for all rational t and n ∈ Ñ , an infinite set of

positive integers defined on page 414 of HM. Let Jn(t) = Dn(t)−Dn(0) + tn−1/2Sn(β0),

then Jn(t) is convex in t and Dn(t) − An(t) = Jn(t) − (2
√

3τ)−1t′(n−1X′WX)t. By

the same convexity argument as in proof of Theorem A.3.7 of HM, we can show that

{Jn(t)−(2
√

3τ)−1t′(n−1X′WX)t}n∈Ñ

a.s.−→ 0 under H∗
n uniformly on each compact subset

of Rd. By the way Ñ is constructed, Theorem 4 of Tucker (1967, page 103) implies that

Dn(t) − An(t)
p→ 0 under H∗

n uniformly on each compact subset of Rd. Equation (1)

follows by considering the compact subset {t : |t| ≤ c}. 2

Lemma 0.2 Assume the regularity conditions in Section 3.1, then n−1/2Sn(β0)
d→ N(0,V/3)

under H and n−1/2Sn(β0)
d→ N(η,V/3) under H∗

n, where η is defined in Theorem 2.

Proof. The result under H was given in Sievers (1983), see also Section 5.2 of HM. Note

that Sn(β0) = n−1
∑

i<j bij(xi − xj)sgn(εi − εj) and it’s straightforward to check that

the projection of Sn(β0) under H is Tn(β0) = n−1
∑n

i=1

∑n
k=1 bki(xk − xi)[2F (εk) − 1].

Since n−1/2[Sn(β0)− Tn(β0)]
p→ 0 under H, applying Le Cam’s first lemma, we obtain

n−1/2[Sn(β0)− Tn(β0)]
p→ 0 under H∗

n.
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Thus it’s sufficient to derive the asymptotic distribution of n−1/2Tn(β0) under H∗
n.

EH∗
n

[
n−1/2Tn(β0)

]

= n−3/2

n∑
i=1

n∑

k=1

∫∫
b(x1,x2)(x1 − x2)[2F (y1 − x′1β0)− 1]dH∗

n(x1, y1)dH∗
n(x2, y2)

= n−3/2

(
1− ε√

n

)2 ∫∫
b(x1,x2)(x1 − x2)[2F (y1 − x′1β0)− 1]dH(x1, y1)dH(x2, y2)

+n−3/2

(
1− ε√

n

)
ε√
n

n∑
i=1

n∑

k=1

∫∫
b(x1,x2)(x1 − x2)[2F (y1 − x′1β0)− 1]

dH(x1, y1)d∆(x∗,y∗)(x2,y2)

+n−3/2

(
1− ε√

n

)
ε√
n

n∑
i=1

n∑

k=1

∫∫
b(x1,x2)(x1 − x2)[2F (y1 − x′1β0)− 1]

d∆(x∗,y∗)(x1, y1)dH(x2, y2)

+n−5/2ε2

n∑
i=1

n∑

k=1

∫∫
b(x1,x2)(x1 − x2)[2F (y1 − x′1β0)− 1]

d∆(x∗,y∗)(x1, y1)d∆(x∗,y∗)(x2, y2)

= ε[2F (y∗ − x∗
′
β0)− 1]

∫
b(x∗,x)(x∗ − x)dM(x) + op(1).

And

V arH∗
n

[
n−1/2Tn(β0)

]

= n−3

n∑

k=1

EH∗
n

{
n∑

i=1

bki(xk − xi)[2F (εk)− 1]

}2

−n−3

{
EH∗

n

[
n∑

i=1

n∑

k=1

bki(xk − xi)[2F (εk)− 1]

]}2

= n−3

n∑

k=1

EH

{
n∑

i=1

bki(xk − xi)[2F (εk)− 1]

}2

+ o(1)

= n−3

n∑

k=1

EH

{
[2F (εk)− 1]2

n∑
i=1

n∑
j=1

bkibkj(xk − xi)
′(xk − xj)

}
+ o(1)

= (3n)−1EH

{
n∑

k=1

n∑
i=1

n∑
j=1

wkiwkj(xk − xi)
′(xk − xj)

}
+ o(1)

→ V/3.
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Finally, to prove the asymptotic normality, note that we can write

n−1/2Tn(β0) =
n∑

k=1

[
n−3/2

n∑
i=1

bki(xk − xi)

]
[2F (εk)− 1].

Conditional on X first, this is a sum of independent but not identically distributed

random variables. We can establish the conditional normality via the Lindeberg-Feller

central limit theorem. The unconditional normality follows by Slutsky’s theorem. 2

We next derive the asymptotic properties of the WW-SCAD. The proof is similar to

that of Fan and Li (2001) but is more challenging since the function Dn is nonsmooth.

Lemma 0.3 below shows that the WW-SCAD estimator is
√

n-consistent. Lemma 0.4

below suggests that the WW-SCAD estimator must possess the sparsity property. These

two lemmas prepare us for the proof of Theorem 1 and Theorem 2.

Lemma 0.3 Assume the regularity conditions in Section 3.1. If λn → 0, then the WW-

SCAD estimator β̂ satisfies ||β̂ − β0|| = Op(n
−1/2).

Proof. We will show that ∀ ε > 0, there exists a large constant C such that

P

(
inf

||u||=C
Qn(β0 + n−1/2u) > Qn(β0)

)
≥ 1− ε,

where u = (u1, . . . , ud)
′. Since Qn(β) is convex in β, this implies that with probability

at least 1− ε that the WW-SCAD estimator lies in the ball {β0 + n−1/2u : ||u|| ≤ C}.

Let Gn(u) = Qn(β0 + n−1/2u)−Qn(β0) and

Hn = An(β0 + n−1/2u)− An(β0) + n

d∑
j=1

p′λn
(|β0

j |)(|βj0 + n−1/2uj| − |βj0|).

Then by Lemma 0.1, Gn(u) −Hn(u)
p→ 0 uniformly on {u : ||u|| ≤ C}. It is sufficient

to show that with probability approaching one, Hn(u) is positive for sufficiently large
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C.

Hn(u) = (2
√

3)−1u′[n−1X′WX]u− u′n−1/2Sn(β0) + n

d∑
j=1

p′λn
(|β0

j |)(|βj0 + n−1/2uj| − |βj0|)

≥ (2
√

3)−1u′[n−1X′WX]u− u′n−1/2Sn(β0)−
√

n

s∑
j=1

p′λn
(|β0

j |)|uj| (3)

Note that n−1X′WX
p→ C, a positive definite matrix, and n−1/2Sn(β0) = Op(1) by

Lemma 0.2. Furthermore, p′λn
(|β0

j |) = p′λn
(|β0

j |)I(|β0
j | ≤ aλn). Thus for any ε > 0,

P (
√

np′λn
(|β0

j |) > ε) ≤ P (|β0
j | ≤ aλn) → 0 by the fact |β0

j | − aλn
p→ |β0j| > 0 for

j = 1, . . . , s. This implies that
√

np′λn
(β0

j ) = op(1). Therefore, for n sufficiently large,

the first term on the right-hand side of (3) asymptotically dominates, which can be made

positive and large with sufficiently large C. 2

Lemma 0.4 Assume the regularity conditions in Section 3.1. If λn → 0 and
√

nλn →∞

as n → ∞, then with probability tending to one, for any β1 satisfying ||β1 − β10|| =

Op(n
−1/2) and any constant C,

Q








β1

0








= max
||β2||≤Cn−1/2

Q








β1

β2








.

Proof. Since Qn(β) is a convex, piecewise linear and almost everywhere differentiable

function of β, it suffices to show that with probability tending to one, for any β1 satis-

fying ||β1 − β10|| = Op(n
−1/2) and for any small εn = Cn−1/2,

∂Qn(β)

∂βj





> 0, 0 < βj < εn

< 0, −εn < βj < 0,
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at any differentiable point β, for j = s + 1, . . . , d. Note that

n−1/2∂Qn(β)

∂βk

= −n−3/2
∑
i<j

bij(xik − xjk)sgn((Yi − Yj)− (Xi −Xj)
′β)

+n1/2p′λn
(|β0

k|)sgn(βk).

By Lemma 0.2 and the regularity conditions, the first term on the right side is Op(1).

Furthermore,

p′λn
(|β0

k|)
λn

=
p′λn

(|β0
k|)

λn

I(|β0
k| ≤ λn) +

p′λn
(|β0

k|)
λn

I(|β0
k| > λn) = 1 +

p′λn
(|β0

k|)
λn

I(|β0
k| > λn).

Thus for any ε > 0, P (|p′λn
(|β0

k|)/λn − 1| > ε) ≤ P (|β0
k| > λn) = P (

√
n|β0

k| >

√
nλn) → 0 by the fact that

√
n|β0

k| is bounded in probability (because
√

n(|β0
k| − βk0)

is asymptotically normal) and
√

nλn → ∞. This implies that p′λn
(β0

k)/λn
p→ 1 and

thus n1/2p′λn
(|β0

k|) = (n1/2λn)(p′λn
(|β0

k|)/λn)
p→∞ as n →∞. Therefore, the sign of the

derivative is completely determined by that of βk. This completes the proof. 2

Proof of Theorem 1. It follows from Lemma 0.4 that part (i) holds. Below, we

prove part (ii). Let β̃ = (β̃1, β̃2)
′ be the minimizer of

Q∗
n(β) = An(β) + n

d∑
j=1

p′λ(|β0
j |)|βj|. (4)

Similarly as in the proof of Lemma 0.3 and Lemma 0.4, we can show that β̃ is
√

n-

consistent and P (β̃2 = 0) → 1 as n → ∞. We next prove the asymptotic normality of

β̃1. With probability approaching one,

∂Q∗
n(β)

∂β

∣∣∣∣
β=(β̃

′
1,0′)′

= 0.
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Consider the first s-dimension of the above derivative, we obtain

(
√

3τ)−1(β̃1 − β10)
′(X′WX)11 − Sn1(β0) + n(p′λn

(|β0
1 |)sgn(β1), . . . , p

′
λn

(|β0
s |)sgn(βs))

′ = 0s,

where (X′WX)11 denotes the s × s submatrix in the upper-left corner of X′WX, and

Sn1(β0) is the first d-dimension of Sn(β0). Thus

√
n(β̃1 − β10) =

√
3τ(X′WX)−1

11

[
n−1/2Sn1(β0) +

√
n(p′λn

(|β0
1 |)sgn(β1), . . . , p

′
λn

(|β0
s |)sgn(βs))

′]

d→ Ns(0s, τ
2C−1

11 V11C11).

We will finish the proof by showing
√

n(β̂ − β̃)
p→ 0, which implies that

√
n(β̂1 − β̃1)

p→

0. This is done using a convexity argument due to Jaeckel (1972), see also the proof of

A.3.9. of HM, which we outline below. Choose ε > 0 and δ > 0. Since
√

n(β̃ − β0) =

Op(1), there exists a C0 such that

P (||β̃ − β0|| ≥ C0n
−1/2) < δ/2, (5)

for n sufficiently large. Let

T = min{Q∗
n(β) : ||β − β̃|| = εn−1/2} −Q∗

n(β̃). (6)

Since β̃ minimizes Q∗
n(β), T > 0. Hence by Lemma 0.1,

P
[
max||β−β0||<(C0+ε)n−1/2|Qn(β)−Q∗

n(β)| ≥ T/2
]
≤ δ/2, (7)

for sufficiently large n. By (5) and (6), with probability greater than 1 − δ, Q∗
n(β̃) <

Qn(β̃) + T/2 and ||β̃−β0|| < C0n
−1/2 for sufficiently large n. Next, consider β such

that ||β−β̃|| = εn−1/2. For ||β̃−β0|| < C0n
−1/2, it follows that ||β−β0|| ≤ (C0+ε)n−1/2.
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Arguing as above, we have with probability greater than 1−δ that Qn(β) > Q∗
n(β)−T/2

for sufficiently large n. From this, (6) and (7), we obtain that

Qn(β) > Q∗
n(β)− T/2

≥ min{Q∗
n(β) : ||β − β̃|| = εn−1/2} − T/2

= T + Q∗
n(β̃)− T/2 = T/2 + Q∗

n(β̃) > Qn(β̃).

Thus Qn(β) > Qn(β̃) for ||β− β̃|| = εn−1/2. Since Qn is convex, it follows that Qn(β) >

Qn(β̃) for ||β − β̃|| > εn−1/2. But Qn(β) > Qn(β̂) since β̂ minimizes Qn. Hence β̂

must lie inside the disk ||β − β̃|| = εn−1/2 with probability at least 1 − 2δ. That is

P (||β − β̃|| < εn−1/2) > 1− 2δ. This yields the results. 2

Proof of Theorem 2. First note that the conclusions of Lemmas 0.3 and 0.4 also

hold under H∗
n. This is because all the Op and op terms in the proofs of the two lemmas

remain their orders under H∗
n. Next we mimic the proof of Theorem 1. It’s clear that

part (i) holds. To prove part (ii), let β̃ = (β̃1, β̃2)
′ be the minimizer of Q∗

n(β) in (4).

With probability approaching one (under H∗
n),

∂Q∗
n(β)

∂β

∣∣∣∣
β=(β̃

′
1,0′)′

= 0.

Consider the first s-dimension of the above derivative, we obtain

(
√

3τ)−1(β̃1 − β10)
′(X′WX)11 − Sn1(β0) + n(p′λn

(|β0
1 |)sgn(β1), . . . , p

′
λn

(|β0
s |)sgn(βs))

′ = 0s.

By Lemma 0.2, we have under H∗
n,

√
n(β̃1 − β10) =

√
3τ(X′WX)−1

11

[
n−1/2Sn1(β0) +

√
n(p′λn

(|β0
1 |)sgn(β1), . . . , p

′
λn

(|β0
s |)sgn(βs))

′]

d→ Nd(η, τ 2C−1
11 V11C11).
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Finally, the same convexity arguments yields that
√

n(β̂1 − β̃1) = op(1) under H∗
n. 2

Proof of Theorem 3. The proof proceeds as in Wang, Li and Tsai (2001). First,

similarly as in their Lemma 3, P (BICλn = BICST
) → 1, which implies BICλn

p→

log(LST ). Next we verify that P (infλ∈Ω−∪Ω+ BICλ > BICλn) → 1. This is done by

considering two separate cases.

Case 1: Underfitted model, i.e., the model misses at least one covariate in the true

model. For any λ ∈ Ω−, we have

BICλ = log

(
n−2

∑
i<j

bij|(Yi −X ′
iβ̂λ)− (Yj −X ′

jβ̂λ)|
)

+ dfλlog(n)/n

≥ log

(
n−2

∑
i<j

bij|(Yi −X ′
iβ̂λ)− (Yj −X ′

jβ̂λ)|
)

≥ log

(
n−2

∑
i<j

bij|(Yi −X ′
iβ̂Sλ

)− (Yj −X ′
jβ̂Sλ

)|
)

≥ inf
S 6⊃ST

log

(
n−2

∑
i<j

bij|(Yi −X ′
iβ̂S)− (Yj −X ′

jβ̂S)|
)

→ inf
S 6⊃ST

log(LS
n) > log(LST )

in probability, where in the third step β̂Sλ
is the unpenalized weighted Wilcoxon esti-

mator for model Sλ.

Case 2: Overfitted model, i.e., the model contains all the covariates in the true model

and at least one covariate that does not belong to the true model. For any λ ∈ Ω+,

we have
√

12
τ

[Dn(β̂ST
)−Dn(β̂Sλ

)] → ∑q
i=1 γiχ

2
i (1), where the γi’s are positive constants

and q is a positive integer, and χ2
1(1), . . . , χ2

q(1) are i.i.d. χ2 random variables each with

one degree of freedom (Theorem 5.2.12 of HM, 1998). Thus for any overfitted model S,

9



Dn(β̂ST
)−Dn(β̂S) = Op(1). With probability approaching one,

n(BICλ −BICλn) = nlog

(
Dn(β̂λ)

Dn(β̂λn
)

)
+ (dfλ − dfλn)logn

= {[n−1Dn(β̂λn
)]−1(Dn(β̂λ)−Dn(β̂λn

)) + op(1)}+ (dfλ − s + op(1))logn

≥ (log(LST ))−1(Dn(β̂Sλ
)−Dn(β̂ST

)) + op(1) + (1 + op(1))logn.

With probability approaching one,

inf
λ∈Ω+

n(BICλ −BICλn) ≥ (log(LST ))−1minS⊃ST
(Dn(β̂S)−Dn(β̂ST

)) + op(1) + (1 + op(1))logn.

The first term on the right-hand side of the above is Op(1) and the last term diverges

to +∞ as n →∞, which implies that P (infλ∈Ω+ n(BICλ −BICλn) > 0) → 1. 2
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