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Our model to account for the results from the multiple-choice RDM discrimination experiment of Churchland et al. (1) is based
on the network introduced by Brunel and Wang (2). It was originally intended to model object working memory and persistent
activity, but was already successfully applied to model neural activity of LIP neurons in the RDM task with two alternatives (3). We
extended this neurodynamical framework to decision making with up to 4 alternatives. The competition mechanisms are thereby
implemented in the properties of the attractor network, namely high recurrent connectivity and global feedback inhibition. Single
neurons are modeled as integrate-and-fire neurons with conductance-based synaptic responses, described by realistic synaptic
kinetics.

Experimental Conditions. We tested our model on experimental data from the multiple-choice random-dot motion (RDM)
discrimination experiment of Churchland et al. (1). In the RDM task, the subject has to fixate on a central point and is then presented
with a number of targets indicating the choice alternatives. One of the targets is located in the response field (RF) of the recorded
LIP neuron. After a delay, a patch of dynamic random dots appears with a proportion of dots moving coherently toward one of the
targets, while the remaining dots keep moving randomly. The amount of coherence controls the task difficulty. The monkey has to
decide on the net direction of motion and report its choice by a saccadic eye movement to the corresponding target. Churchland
et al. (1) tested monkeys on the RDM task, comparing 3 different experimental paradigms. Either 2 opposing targets, 4 targets (90°
apart) or 2 targets with an angular distance of 90° (90°-case) were presented to the monkey as possible motion directions to decide
on.

Network. The network consists of Ng = 1600 excitatory pyramidal neurons and N; = 400 inhibitory interneurons, consistent with
the neurophysiologically observed proportion of 80% pyramidal cells versus 20% interneurons (4). All simulations were run with
a total number of 2,000 neurons. The network is fully connected.

Some of the excitatory neurons are thought to have a selective response to 1 of the 4 targets used in the experiment (1) and, hence,
reflect the possible alternatives. Thus, the excitatory neurons are subdivided into 5 populations (pools), the 4 selective pools and
a fifth pool of nonselective neurons. The nonselective pool emulates the activity in the surrounding brain areas. Each selective pool
contains f + Ng neurons. The fraction f is called the “coding level” of the selective pools. Neuronal pools generally are defined as
groups of neurons sharing the same inputs and connectivities. All excitatory neurons are connected to one pool of inhibitory neurons,
which regulates the overall activity by implementing competition in the network.

Connectivity Weights. The synaptic efficacies are assumed to be already formed and, therefore, are kept fixed during the simulation.
They are consistent with a Hebbian rule: the synapse between 2 cells is strong if their activity was correlated in the past, low if it
was anticorrelated. The baseline connection weight between uncorrelated excitatory populations is set to 1. Cells within one selective
pool, thus, have stronger weights for recurrent connections (w+ > 1), whereas cells between selective pools and from the nonselective
to selective pools have weaker connection weights (w < 1). To model the spatial distribution of the targets in the experiments of
Churchland et al. (1), each selective pool in our model is thought to have two “neighboring” selective pools, corresponding to the
two targets perpendicular, and one “opposing” pool, representing the target at 180° distance. The connections to and from the
neighboring pools are enhanced by a value wr, assuming a slightly higher correlation between the neighboring pools than between
the anticorrelated opposing pools.

The average excitatory synaptic efficacy should not have changed during the learning process. Therefore, the connections in the
network are normalized so that the overall excitatory recurrent synaptic drive remains constant with only baseline input applied to
the network (spontaneous state) (2). This is accomplished by adapting w. according to

o =1-fQRuwr+ w,y —1)/(1—f), [s1]

where fis the coding level. Excitatory-to-inhibitory connections and the mutual connections within the inhibitory pool and the
nonselective pool have an intermediate baseline weight of @ = 1. Inhibitory-to-excitatory connections are denoted by a weight wy.

Spiking Dynamics. Neurons. All neurons in the network are modeled as leaky integrate-and-fire (LIF) neurons (5). For the mathematical
description of neurons and synapses, we follow the framework of Brunel and Wang (2). Below, we present a summary of the network
dynamics. A list of all of the parameters used in our final spiking simulation can be found in Table S1.

LIF neurons are characterized by their subthreshold membrane potential (v) dynamics, given by the equation:

Vi)

Cn =gy = ~&m(V() = V1) = Lau(0), [s21

with a resting potential J;, = —70 mV, a membrane capacitance Cy, = 0.5 nF and a membrane leak conductance gn = 25 nS
for pyramidal cells, whereas for interneurons Cp, = 0.2 nF and g, = 20 nS. Iy, is the total synaptic current flowing into the cell.
When the membrane potential of a LIF neuron reaches the firing threshold Vy, = —50 mV, a spike is fired and the membrane
potential is reset to Vieser = —55 mV with a refractory period of 7ef = 2 ms for excitatory neurons and 7,.f = 1 ms for inhibitory
neurons.
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Synapses. The neurons in the networks are connected via 3 types of receptors that mediate the synaptic currents flowing into them:
AMPA, NMDA glutamate, and GABAAx receptors. The excitatory recurrent postsynaptic currents (EPSCs) are considered to be
mediated by fast AMPA (Iampa rec) and slow NMDA (Inmpa rec) T€Ceptors. Neurons, in addition, receive external inputs, representing
spontaneous noisy background activity from outside the local network and sensory information processed by other brain areas. These
external inputs are assumed to be driven only by AMPA receptors (Iampa.ext)- Inhibitory postsynaptic currents (IPSCs) to both
excitatory and inhibitory neurons are mediated by GABA, receptors (Igaga). The total synaptic current is thus given by the sum:

Isyn(t) = IAMPA,rec(t) + INMDA,reC(t) + IGABA(t) + IAMPA,ext(t)’ [53]
The currents are defined by:
NE
Inparect) = gamparecV(1) = Vi) 2 w; spMA(0) [54]
j=1
NE
B gxmpalV (1) = Vi) NMDA
Innpasree (0 = 75 TMg ] exp (=0.062V (1))/3.57 E} i) [s5]
=
N1
Igasa(t) = gcapa V(1) = V) E sz_fGABA(t) [s6]
j=1
Next
Iampaexi(t) = gampaext V(1) — VE) E S,AMPA’eXt(f), [s7]
j=1
where Vg = 0mV, V1 = =70 mV and w; are the synaptic weights. Each receptor has its own fraction s; of open channels and its own

synaptic conductance g. The NMDA synaptic current is potential dependent, controlled by the extracellular concentration of
magnesium ([Mg2*] = 1 mM) (6).

The neuronal and synaptic capacities and time constants of our model are taken from the original model of persistent activity (2).
The conductances there were calibrated to obtain a physiological spontaneous spiking rate of 3 Hz for excitatory neurons and 9 Hz
for inhibitory neurons in the unstructured network. As we used 2,000 not 1,000 neurons for all our spiking simulations, the recurrent
conductances are scaled by a factor of 1/2 to keep the mean recurrent input constant. In addition, in the model of Brunel and Wang
(2), recurrent excitation is largely mediated by NMDA receptors, taking advantage of their slower synaptic dynamics to stabilize the
sustained activity state. In our model we could accomplish a better approximation to the experimental findings of Churchland et
al. (1) by slightly increasing the amount of AMPA relative to NMDA. Because in the original model the ratio of the NMDA over
the AMPA component near firing threshold is 10 in terms of charge entry, a decrease in gnmpa has to be compensated by a 10-fold
increase in gampa to not change the spontaneous state:

gnmpa = &nmpall — 8), gampa = gampal(l + 108). [s8]

Our simulations were run with 8 = 0.1, and the recurrent conductances of NMDA and AMPA (both inhibitory and excitatory) were
changed according to these rules. Thus, for excitatory neurons gampa,ext = 2.08 nS, gampa rec = 0.104 nS, gnmpa = 0.14715 nS and
gcasa = 0.625 nS; and for inhibitory neurons gampa,ext = 1.62 nS, gamparec = 0.081 nS, gnmpa = 0.1161 nS and geapa = 0.4865
nS. The fraction of open channels or gating variable s; for AMPA and GABA, receptor mediated currents is described by:

ds;(t) _ _ ﬂ+ E &(t — tjk)! o
k

dt Tdecay

where the rise time constants have been neglected because they are smaller than 1 ms. This is not possible for NMDA mediated
currents with a rise time constant of Tnmpa rise = 2 ms. There s; is determined by:

dsNMDA( §NMDA
! O _ _ 5 @ + ax;(1) (1 — s)™MPA(r)) [s10]
dt 7-NMDA,dccay
dx;(t xi(t
0 _ 50 > 8 — 1)), [s11]
dt TNMDA, rise A

with @ = 0.5 kHz. The sums over k represent a sum over the spike train #; with 8-Peaks (8(¢)) emitted by presynaptic neuron j at
time tjk The values for the decay time constants are Tampa = 2 ms for AMPA synapses, Tnmpa,decay = 100 ms for NMDA synapses
(7, 8), and tgaa = 10 ms for GABA synapses (9, 10).

Network Inputs. Background activity. To simulate spontaneous background activity in the cerebral cortex from outside the local network,
all neurons receive an AMPA-mediated external input of uncorrelated Poisson spike trains with a rate of vey = 2.4 kHz, equivalent
to 800 excitatory connections from external neurons firing at a rate of 3 Hz.

Sensory information. During the random-dot motion experiments of Churchland et al. (1), which we aimed to replicate with our model,
the monkeys received 2 sensory stimuli: the target signals and the random-dot motion. One target was always located in the response
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field of the recorded neuron. The 4 selective pools in our model are thought to represent the populations of neurons in LIP where
the spatial information about one respective target signal and the motion directed toward this target are combined. Therefore,
mimicking the experimental protocol, during the spiking simulation an external target and motion input were applied to the network
as described below.

Target input. Depending on the number and location of the targets in the different experimental conditions the neurons of either all
4 selective pools, the 2 opposing pools or, in the 90°-case, 2 neighboring pools receive the same target input during the model
simulation. We assume that the target input is passed on to the respective pools as a Poisson spike train with a time-dependent firing
rate of

0 0<tr< ttargct
= (400 + 100 exp(_(t - ttarget)/Tl)) Hz ttarget =t < ? motion + 80 ms, [512]
(25 + 375 exp(—(f = tmotion)/T2)) HZ  t = t04i0n + 80 ms

Vtargct

where tiarget = 500 ms and fmoiion = 1300 ms are the onset times for the target and the motion stimulus, respectively. The time course
of the target signal follows the approach of Wong et al. (11) and is in accordance with experimental findings (1, 12). The initial
exponential decay, 7 = 100 ms, can be explained by short-term adaptation. The “dip” in the firing rate observed immediately after
the onset of the motion stimulus is assumed to result from an attentional shift from the targets to the random-dot stimulus or upstream
inhibition of the targets with the onset of motion (11, 13). This shift is modeled by an exponential decrease of the target input with
7, = 15 ms starting with a latency of 80 ms after motion stimulus onset.

Motion input. During the motion stimulus, LIP neurons are thought to receive inputs from MT neurons depending on the coherence
and direction of the random dots. Based on electrophysiological recordings from MT neurons (14, 15), the motion stimulus at zero
coherence was simulated in our model as a Poisson spike train with a time invariant rate of motion = 20 Hz to all selective pools.
Coherent motion was modeled as a positive bias to one selective pool, balanced by a reduction of the motion input in the other three
selective pools, as to keep the total motion input to the network constant. A motion coherence of 100% then corresponds to a bias
of 60 Hz to one selective pool, resulting in a motion input of 80 Hz to one and 0 Hz to the other selective pools. As latencies of 200
ms are assumed for the visual information to reach area LIP, the input mimicking the motion stimulus is applied to the selective
pools at 1,500 ms. Thus, the there is a gap of 120 ms before the motion input onset where the target input is already decaying, leading
to the experimentally observed “dip” in the firing rate.

Simulations. Each trial in the network simulation was run for a total of 4,000 ms. We used a second-order Runge—Kutta routine with
a time step of 0.02 ms to perform numerical integration of the coupled differential equations that describe the dynamics of all cells
and synapses. The population firing rates were calculated by performing a spike count over a 50-ms window. This sum was then divided
by the number of neurons in the population and by the window size. The time window was slided with a time step of 5 ms. A decision
was reached when one selective pool crossed a threshold of 50 Hz and surpassed the other selective pools by at least 5 Hz. For each
parameter set a block of 1,000 trials with different random seeds was simulated. For the 4-alternative condition in some cases, for
small coherence levels, no decision was reached within the 4,000-ms simulation, as all selective pools stayed in the spontaneous state
of low firing rate (at most 20 of 1,000 trials). These trials were discarded as failed trials and excluded from the average. In the 90°
condition on the other hand, some trials had to be excluded, because the 2 neighboring selective pools stayed in a symmetric double
state of enhanced activity and no decision was made (at most 54 of 1,000 trials, for low coherence levels). The mean firing rates and
reaction times displayed in Figs. 2 and 3B and Fig. S1B, S2, and S4 are the average over all trials for the zero coherence case, or
else, over all correct trials. In Fig. 3B and S1B the average population firing rates were grouped into “winning,” “losing,” and
“perpendicular” selective pools. The response time RT was calculated as the difference between the motion onset #otion and the
time the threshold was reached finres, plus an additional time fsaccade = 80 ms to account for saccade initiation and execution:

RT = tthres - tmotion + tsaccade‘ [S13]

Fits to Behavioral Data. The reaction time curve (Fig. 24) was fitted as in Furman and Wang (13) by:

A
RT = KX coh tanh (Ak X coh) + tg, [s14]

with the coherence level coh and the free parameters A, k and fr. The psychometric function (Fig. 2C) was fitted by a Weibull function:
Fraction correct = (1 — C) X exp (—(coh/a)P), [s15]

where C is set as the chance level (0.25 and 0.5 for 2 and 4 choices respectively) and « and B are free parameters.

Mean Field Approximation:. Spiking network simulations are computationally expensive and thus unsuited for systematic parameter
explorations. Therefore, we used the mean field approximation derived in Brunel and Wang (2) to scan the parameter space to find
a parameter set matching the experimental findings. In addition, the mean-field approximation allowed us to determine conditions
where the competition regimes for the 2- and 4-choice cases overlap. This enables decision making between 2 and 4 alternatives with
the same set of parameters.

The mean-field approximation provides fixed points of the population firing rates, the stationary states of the populations after
the period of dynamical transients. In this formulation the potential of a neuron is calculated as:

dv(t) —
Tx dt = _V(t) + wy + oy \/Txn(t)a [816]
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where V' (¢) is the membrane potential, x labels the populations, 7, is the effective membrane time constant, w, is the mean value

the membrane potential would have in the absence of spiking and fluctuations, o, measures the magnitude of the fluctuations and

7 is a Gaussian process with absolute exponentially decaying correlation function and time constant Tampa. The quantities w, and
2 .

o} are given by:

AMPA NMDA NMDA GABA
~ (Tewex + Tampanty Ty Ve pon V) + TV + VL
™ S

[s17]

CXI V NCX VCX T2 TX
0'3 gAMPA (V) - g E) tVextTAMPA [s18]

where vy is the external incoming spiking rate, vy is the spiking rate of the inhibitory population, 7, = Cp/gm With the values for
the excitatory or inhibitory neurons depending of the population considered. The other quantities are given by:

Sy =1+ Texex + Tampan ™2 + (py + p)ny™MPA + Tin JABA [s19]
_ L 20
" gmS, [s20]
AMPA E f, AMPA,, ; [s21]
NMDA E f, NMDA (V,-) [s22]
GABA E f, GABA,, [s23]
VTNMDA / 1 - (* aTNMDA,rise)"Tn(V)
v = 1+ VTNMDA\I * 1 + vTnmpa % (n+ 1)! [s24]
° n TampAsise(1 T PTampa)
T,(v) = -1 k( ) : s25
®) 2( ) k TNMDA,rise(l + vTnmpa) kTNMDA,decay : !
TNMDA — ®TNMDA,rise TNMDA,decay [s26]
€X T
To = 8 AMPA extTAMPA [s27]
8m
Tanipa = gAaMPA recVETAMPA (28]
8m
_ gnvpalNE
p1= T end [s29]
Ne((Vy) —Ve)(J =1
py = BgNMDA (V) _ B)( ) [s30]
gmd
J=1+yexp(—B(Vy) [s31]
N1
T, :gGABA 1TGABA [s32]
8m
<I/x> = M — (I/thr - Vrcsct) VxTxs [533]

where p is the number of excitatory populations, f; is the fraction of neurons in the excitatory population x, w;, the weight of the
connections from population x to population j, v, is the spiking rate of the excitatory population x, y = [Mg2*]/3.57, B = 0.062 and
the average membrane potential (V) has a value between —55 mV and —50 mV.

The mean-field approximation finally yields a set of » nonlinear equations describing the average firing rates of the different
populations in the network as a function of the defined quantities u, and oy:
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v=¢(p, o), x=1,...,n, [s34]

where ¢ is the transduction function of population x, which gives the output rate of a population x in terms of the inputs, which in
turn depend on the rates of all of the populations.

a(px,0%)
b 0) = | 7 + 7, du\m exp(p?)[1 + erf(u)] [s35)
B(px,0%)
V r - Mx
g, oy = L T ) (1 +0.5 M) 11,03, AMPA g 5 % [s36]
(Vrese - I-Lx)
Bl o) = b [s37]

Ox

with erf(u) the error function and 7, the refractory period which is considered to be 2 ms for excitatory neurons and 1 ms for
inhibitory neurons. To solve the equations defined by Eq. s34 for allx we numerically integrate Eq. s33 and the differential equation
below, whose fixed-point solutions correspond to solutions to Eq. s34:

dv,
TXI = TV + (b(“'x’ O-x)- [538]

For the numerical integration, we used an Euler routine with a step size of 0.1 ms. To find all of the possible fixed points that coexist
for a given parameter set, we integrated Eq. s38 with different initial conditions of population firing rates. We used 4 initial conditions
spanning the possible firing rates at different temporal stages of the spiking simulation and the different experimental conditions:

1. all selective pools with an initial firing rate of 0 Hz,

2. 1 selective pool 120 Hz, the other 3 pools 0 Hz,

3. 2 opposing selective pools 30 Hz, the other 2 0 Hz,

4. all selective pools with 30 Hz.

For our modeling purpose, decision making between 2 and 4 alternatives, we intended to find a region of multistability with
competition, so that always just 1 selective pool would terminate in an up-state of high firing rate. For specific sets of model
parameters, the stable fixed points were calculated over a range of external inputs from 0 to 100 Hz in steps of 0.5 Hz for the 2-
and 4-choice condition (Fig. 44). The range of external inputs where for all initial conditions and both experimental paradigms a
decision is reached, i.e., 1 and just 1 pool is in an up-state, was termed “range of decision making.” Keeping the other parameters
fixed, the value of the neighboring connectivity wr with the optimal, i.e., broadest, range of decision making was determined by
performing the fixed-point analysis explained above for wr = 0. .. 0.1 with steps of 0.0025 (Fig. 4B). To explore the relation between
the coding level f and the range of decision making, the optimal value of wr was determined for 11 different values of f from 0.1
to 0.225. When changing the coding level, the network connectivities have to be adapted (Fig. 4C) to keep the up-state fixed-point
firing rates at the same values. Thus, the connectivity w- was adjusted in steps of 0.0025 until the up-state fixed points matched the
values for the parameters of the spiking simulation (f = 0.2 and w+ = 1.48) (Fig. 44). Note, that with changing w. also w_ changes,
because of the normalization condition Eq. S1. For the final values of w. for the respective coding levels, the up-state fixed-point
values deviated by less than 2 Hz in the range of external inputs from 20 to 60 Hz. The optimal range of decision making was plotted
against the coding level and fitted by a linear function (Fig. 4D).

EEEERENAS - PN AS  DNAS

Parameters. See Table S1 for the default parameter set used in the integrate-and-fire simulation.
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Fig.S1. Network exhibits persistent activity after the external inputs are switched off. (A and B) Displayed are a single trial (A) and the trial average over 1,000
network simulations (B) at zero motion coherence for the 2-choice case (colors asin Fig. 3, main text, red and black lines denote inhibitory and nonselective pools).
The time course of the external inputs is the same as shown in Fig. 1D, until at 4,000 ms, all external inputs are switched off. The selective population that ““won’
the competition sustains its activity at about 48 Hz in all trials. (C) The attractor state is persistent due to the strong recurrent connectivity. Shown are the stable
attractor states of the network calculated in the mean-field approximation (see S/ Text) for different values of the recurrent connectivity w.. The initial condition
was: 1 pool initialized at 120 Hz, the other 3 pools at 0 Hz, which corresponds to the situation when 1 pool has already ““won’’ the decision. For w; >1.44, the
decision state exists and is stable even for zero external input. For smaller values of w., a decision state with high firing rates occurs only at higher external inputs.
In our simulations, we use w; = 1.48 and, therefore, reliably obtain persistent activity with our network.
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Fig. S2. Network simulations without target stimulus. (A) Time course of the external input. To investigate the network’s behavior without the target input,
we performed 2 sets of simulations, 1 with a motion signal of 20 Hz and 1 with 45 Hz applied to the 4 selective pools. (B) For the 20-Hz motion signal for small
coherence levels (until 12.5%), the input to the selective populations is too low to induce a decision. The number of decisions is shown by the blue bars (right
ordinate). In most of the trials with small coherences, all pools stay in their spontaneous states (see also Fig. 4 A, main text: The black line represents the mean-field
initial condition where all pools start at 0 Hz. For 20-Hz external input, the network stays in its spontaneous state). However, for higher coherence levels, the
model is capable of reaching a decision in nearly all cases, with realistic reaction times (red dots, left ordinate). At these high coherence levels, the network only
takes correct decisions. (C) Single trial at 0% coherence for a motion signal of 45 Hz. The integration process starts at 500 ms, a decision is reached at ~2,000
ms. (D) Speed and accuracy of the 45-Hz simulations. Red (left ordinate): reaction times of correct trials as a function of motion coherence, fitted by a hyperbolic
tangent function (see S/ Text). For lower coherences, decisions take longer than with the target signal (Fig. 2 A, main text). This is very realistic, because the
random-dot motion task is more difficult without knowledge about the possible targets. Blue (right ordinate): Psychometric function, fitted by a Weibull function
(see S/ Text). Accuracy starts at chance level, as with the target signal, and reaches 100% for higher coherence levels. One thousand trials were simulated for each
data point. At low motion coherence, at most 4% of the trials had to be excluded, because they failed to reach a decision within the simulation time of 4,000
ms. Our simulations show that for a strong enough motion signal, our network is capable of decision making without the target signal. This corresponds to
possible experiments where subjects have to decide on the direction of coherent motion without previously being shown any target possibilities. However, it
must be noted that our model is restricted to its 4 selective populations. To model continuous decision making, a higher number of pools would be needed (see
Discussion, main text).
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Fig. S3. Spike raster plot of simulated neural activity for sample neurons of each network pool in a 4-choice trial with zero motion coherence. Shown is the
same trial as in Fig. 3B Middle. Displayed are 20 inhibitory neurons (red, top row), 20 nonselective neurons (black, bottom row), and 10 neurons of each selective
pool, colored according to the schematic illustration of target location (right). All selective neurons (21 to 60) receive the same input, because the motion
coherence is zero. Nevertheless, the network exhibits competition due to its stochastic dynamics. Eventually (at ~2,000 ms) the symmetry is broken, and, in this
case, the activity of the left pool (purple) shifts to an attractor state with increased activity (up-state).
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Fig. S4. Population-averaged temporal evolution of firing rates at different motion strengths for the 3 tested conditions. The average of the correct trials of
each motion coherence level is shown for the 3 different experimental conditions. Different colors denote different motion coherence (see legend). The build-up
rate increases with increasing motion coherence in all cases, as observed experimentally in LIP neurons. This explains the faster reaction times for increasing
motion coherence.
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Fig.S5. Range of decision making for smaller AMPA/NMDA ratio. A linear relation between the range of decision making and the coding level was also found
for the original AMPA/NMDA ratio used in the model of Brunel and Wang (1) (S/ Methods), Eq. S8 § = 0). We tested 2 conditions: (i) (4, B) All network parameters
are the same as in Fig. 4, except for a smaller AMPA/NMDA ratio. In this case, the up-state fixed-point firing rates are lower than the firing rates found in the
experiments. (A) The connectivity ;. was adapted as in Fig. 4C, so that the up-states deviated by less than 2 Hz from the up-state value at w, = 1.48 (value used
in the spiking simulations). (B) The optimal range of decision making (see Fig. 4D) still increases linearly with the coding level. (ii) (C, D) The connectivity w; was
adapted with the AMPA/NMDA ratio, so that firing rates are in the same range as in the spiking simulations and experiments. The range of decision making again
increased linearly with the coding level. However, due to the higher w values (C), the optimal range of decision making resulting was much smaller, and already
for a coding level of 0.175, no common decision state could be found for the 2- and 4-choice task.

1. Brunel N, Wang XJ (2001) Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. J Comput Neursci 11(1):63-85.
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Table S1. The default parameter set used in the
integrate-and-fire simulation

Parameter Value
Ne 1,600

M 400

Next 3800

Vet 2.4 kHz

f 0.20

@ 1.48

! 1.125

pd 0.015

Cn (excitatory) 05 nF

Cm (inhibitory) 0.2 nF

gm (excitatory) 25 nS

Jm (inhibitory) 20 nS

Tref (€XCitatory) 2ms

Tref (inhibitory) 1'ms

Ve 0mv

vi —-70 mv

v -70 mV

Vanr —50 mV
Vreset —55 mV
gamPA,ext (excitatory) 2.08 nS
9amPA rec (€xcitatory) 0.104 nS
Jgnvpa (excitatory) 0.14715 nS
gaasa (excitatory) 0.625 nS
gampaext (inhibitory) 162 nS
9AMPA, rec (lnhlbltory) 0.081 nS
gnwmpa (inhibitory) 0.1161 nS
9aasa (inhibitory) 0.4865 nS
TNMDA, decay 100 ms
TNMDA, rise 2 ms
TAMPA 2ms
TGABA 10 ms

@ 0.5ms!
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