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SI Appendix

Device Characterization.  Cantilever dimensions were measured for 40 cantilevers (20

each from 2 independent substrates) for each geometry under differential interference

contrast (DIC) microscopy using a 20X Plan-Apochromat objective on a Zeiss Axiovert

200M (Carl Zeiss MicroImaging, Inc.).  The elastic modulus of the PDMS was measured

via uniaxial tensile testing on an Instron 5848 Microtester equipped with a 50 N load cell

(Instron, Canton, MA).  3 strips each from 3 independent preparations were measured

using digital calipers, preloaded to 0.5 N and then stretched at a strain rate of 1%/second.

The elastic modulus was calculated via a linear fit of the stress vs. strain curves over the

region of 10-20% strain.  These measurements were then used to numerically estimate

cantilever spring constants and variability under linear bending assumptions (SI Fig

1A,B).  To confirm our numerical estimations, we experimentally measured the spring

constants from 3 sequential deflections of 20 cantilevers of each geometry (10 each from

2 separate substrates) using calibrated glass micropipettes (see supplementary methods

for micropipette calibration).  Our experimental measurements fell within the range of

values predicted by linear beam bending with an average spring constant of 0.098 ±0.017

μN/μm for the flexible geometry and of 0.397 ± 0.039 μN/μm for the rigid geometry (SI

Fig 1C).  For deformations spanning the range of those exerted by microtissues, all plots

were linear with an average R2 value of 0.96 and 0.99 for the flexible and rigid

geometries respectively.  Spring constant estimates from sequential deflections of

individual cantilevers had an average repeatability of 5% (standard deviation).  The

inherent uncertainty of each force measurement was incorporated into all statistical

comparisons using standard propagation of error formulas.
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Micropipette Calibration. Glass micropipettes (World Precision Instruments, Sarasota,

FL) were calibrated by hanging thin wire weights (0.538-6.000 mg) from the needle tip.

Needles were mounted horizontally with a micromanipulator on a microscope stage.  A

second micromanipulator was used to position the weights on the end of the needle tip.

The needle tip was imaged with and without the weights in place.  The difference in focal

planes between the images of the loaded and unloaded tip was used to determine the

amount of needle bending.  All measurements were repeated a minimum of three times

and the average values were used to generate load vs. displacement curves, which were

then fit using linear regression.  Two separate needles (k=0.3474 μN/μm, R2=0.996 and

k=0.0609 μN/μm, R2=0.999) were calibrated in order to measure the stiffness of PDMS

cantilevers with different geometries.

Bio-Chemo-Mechanical Model of Microtissue Contractility. We envisage a two-

dimensional tissue, thickness b , lying in the 1 2x x−  plane on top of cantilever posts with

its normal along the 3x -direction (Fig. 3B).  A bio-chemo-mechanical model has been

devised that captures the formation and dissociation of stress fibers, as well as the

associated generation of tension and contractility (1).  The stress fiber formation is

initiated by a nervous impulse or a biochemical or mechanical perturbation that triggers a

signaling cascade within the tissue. We model this signal as an exponentially decaying

pulse having level C  (which may be thought of as the concentration of Ca2+ or Rho)

given by

exp( / )iC t θ= − , (1)
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where θ  is the decay constant and it is the time after the onset of the most recent

activation signal.  The formation of stress fibers is parameterized by an activation level,

designated η  ( 0 1η≤ ≤ ), defined as the ratio of the concentration of the polymerized

actin and phosphorylated myosin within a stress fiber bundle to the maximum

concentrations permitted by the bio-chemistry.  The evolution of the stress fibers at an

angle φ  with respect to the 1x  axis (Fig. 3B) is characterized by a first-order kinetic

equation
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where the overdot denotes time-differentiation.  In this formula, ( )σ φ  is the tension in

the fiber bundle at orientation φ , while ( )0 maxσ φ ησ≡  is the corresponding isometric

stress at activation level η , with maxσ  being the tensile stress at full activation ( 1η = ).

The dimensionless constants fk  and bk  govern the rates of stress fiber formation and

dissociation, respectively.  In turn, the stress σ  is related to the fiber

contraction/extension rate ε  by the cross-bridge cycling between the actin and myosin

filaments.  The simplified version of the Hill-like equation (2) employed to model these

dynamics is specified as
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where the rate sensitivity coefficient, vk , is the fractional reduction in fiber stress upon

increasing the shortening rate by 0ε .

A two-dimensional constitutive description for the stress fiber assembly has been

derived by noting that the axial fiber strain rate ε  at angle φ  is related to the material

strain rate ijε  by

2 2
11 22 12cos sin sin 2ε ε φ ε φ ε φ≡ + + , (4)

The average stress generated by the fibers follows from a homogenization analysis as
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The constitutive description for the tissue is completed by including contributions from

passive elasticity, attributed mainly to the collagen matrix.  The passive stresses act in

parallel with the active cellular response, whereupon additive decomposition gives the

total stress:

(1 2 )(1 ) (1 )ij ij kk ij ij
E ES ν ε δ ε
ν ν ν

⎛ ⎞
Σ = + +⎜ ⎟− + +⎝ ⎠

, (6)

where ijδ  is the Kronecker delta and (for a linear response) E is the effective Young’s

modulus and ν  the Poisson ratio.

The corresponding characterizing parameter for the actin (or stress-fiber)

orientation imaged in the experiments is not straightforward.  Most techniques only

image the dominant stress-fibers.  The very fine mesh-work of actin filaments is not

visible when standard epifluorescence or confocal microscopes are used.  Thus, to

correlate the observations with the predictions we define a circular variance
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max1 ( / )η ηΓ = − , used by (3) that provides an estimate of how tightly the stress-fibers are

clustered around a particular orientation φ .  Here maxη  is the maximum polymerization

level, which occurs at orientation Sφ  while η  is an average value defined as

π/2

-π/2
1/ π dη η φ≡ ∫ .  The value of Γ  varies from 0 to 1, corresponding to perfectly

distributed and totally aligned distributions, respectively.

Finite Element Method Simulations of Microtissue Contractility. The microtissue

contractility model was implemented in ABAQUS (Dassault Systemes) as a user-defined

material as described previously (1, 3).  The tissue was modeled using membrane

elements (M3D4 in ABAQUS) of unit thickness and the response solved for in a finite

strain setting.  Solutions are presented using an average element size of 1 μm.  Mesh

sensitivity studies confirmed that reducing the mesh size further did not significantly

change the results.  Cantilevers were modeled as rigid plates constrained to move in the

1 2x x−  plane.  Dimensions of these 2D plates were same as the top face of the cantilevers

used in the experiments.  The displacement id  of the plates within the 1 2x x−  plane is

constrained by a spring of stiffness k  such that the force iF  applied by the tissue is

related to id  via the relation i iF kd= .  Spring elements are modeled using the SPRING1

option in ABAQUS.  The values of spring constant k were chosen to match with the

cantilever stiffness used in the experiments.  The contact between the tissue and the 2D

plate, representing the top face of the cantilever, is implemented by employing the TIE

CONSTRAINT option between the tissue and the periphery of the rigid plate in

ABAQUS.



6

Unless otherwise specified, the reference material parameters used in this study were the

same as those previously published in (1).  To capture the effects of the collagen matrix

density and cantilever stiffness as well as variance in tissue type specific contractility,

parametric analysis was conducted for the passive Young’s modulus (E) and the

maximum tension capable of being exerted by the stress fibers ( maxσ ); refer to (1) for

further details about these parameters.  Suitable agreement to experimental results was

found using E=5 kPa, 15 kPa, and 25 kPa for microtissues constructed from 1.0, 1.75,

and 2.5 mg/ml collagen respectively (SI Table 1).  These values gave very close

agreement with experimental measurements of microtissue forces under each condition

and are in the range of previously published values for tissue-populated collagen matrices

(4).  Maximum isometric stress, maxσ , was determined to be 250 kPa.  The non-

dimensional reaction rate constants are 10fk = , 1bk = , 2vk =  with 3 13.0 10 soε
− −= ×

and the Poisson ratio 0.3ν = .
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