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Morphogen Concentration Profile. The simplest mechanism by
which a morphogen profile is generated in development is from
a morphogen diffusing from a source (such as maternally
implanted mRNA transcripts in the case of bicoid) that are
degraded in a concentration-dependent manner. If the morpho-
gen has a diffusion constant D and degradation rate k, both being
uniform in space, and its source is at x � 0 this mechanism gives
rise to an exponential gradient in concentration M(x) � M0e��x,
where � � �k/D and M0 is related to the rate of production of
the morphogen, J. However, this expression is only valid if �L ��
1, such that the boundary of the embryo at x � L is not
important. For a more general expression valid for any �, the
reaction-diffusion equation �tM � D�x

2M � kM can be solved
with boundary conditions �xM x�0 � �J/D and �xM x�L � 0 to
give the steady-state morphogen gradient as,

M�x� � M0

cosh ��x � L�

sinh �L
. [s1]

We use Eq. s1 to calculate how the concentration profile of the
morphogen changes across the embryo as the morphogen steep-
ness � is mutated.

Probability of Transcription Factor Binding. To calculate this prob-
ability, we use the canonical ensemble of statistical mechanics,
for which the partition function Z is most simply expressed in
terms of a spin-like variable, which represents the occupation of
each binding site, �j � {0, R, M},

Z � �
�P

�
�1

e���E�P P � E�11 � ��P � ��1 � 	E�P�1�

with E0j � 0, 	Eii� � 0, for either i � 0 or i� � 0 and �0 � 0, where
��j

� 1
�
ln[�j] represents the chemical potentials of the protein

species at the jth binding site, � is the inverse of thermal
temperature and 0 represents a free binding site. Formally this
construction is known as a 3-state Pott’s model. So given a
‘‘genome’’ G � [bR, bM, rP, r1, gR, gM] from which the binding and
glue energies can be calculated (Eij and 	Eii� given by Eq. 1 and
Eq. 2, respectively, in the main text), pRP is given schematically
by

pRP � p��1 � R �

�
1
Z

��0 � R � � �M � R � � �R � R �� [s2]

where, for example,

�M � R � � e���ERP � EM1 � �R � �M � 	ERM�

is the Boltzmann factor for cooperative binding of the morpho-
gen and RNAP to the regulatory region of DNA.

Calculation of Fitness Landscape for Fixed Genome. To calculate the
fitness landscape for spatial patterning of the anterior of an
embryo, based on the fitness functional given by Eq. 4 in the main
text, we approximate the concentration profile of the TF by

T�x , �� �
1 � aM�x�

1 � bM�x�
. [s3]

This arises from directly evaluating Eq. s2, but ignores the term
in the denominator related to the cooperative binding of mor-
phogen binding with itself to the regulatory region of T, which
is responsible for repression of transcription for large M(x). In
relation to the results in the main paper (Fig. 2, main text) this
amounts to ignoring the small negative curvature in T(x) for x �
0. The parameters a and b are functions of the energies {Eij} and
{	Eii�} or equivalently the genome G. Calculating the functional
in Eq. 4 from the main text and using M(x)� M0e��x, gives

F��� �
1

�L
b � a

a
ln � �1 � be��L/2�2

�1 � b��1 � be��L�� .

In Fig. S1 A, we plot Eq. s4 with random values of the parameters
a and b, restricted to a range equivalent to constraining 0 kBT 

Eij 
 20kBT and �5kBT 
 	Eii� 
 0kBT, consistent with the
ranges used in the simulations in the main paper; each separate
curve is a different random pair of a and b. It is clear that each
of the curves look qualitatively like the curves seen in Fig. 5 in
the main text, suggesting that each of these curves is the fitness
landscape F(�) for different genotypes or fixed values of {Eij}
and {	Eii�}, with � allowed to vary. In Fig. S1B, we also show a
scatter plot for a simulation of length 107 mutations or Monte
Carlo steps at a population size of N � 10; comparison to Fig.
S1A gives qualitative agreement, further supporting that each of
these curves is a fitness landscape for fixed genotype.

Threshold Mechanism of Cooperative Binding of M–R. For our simple
model of spatial gene regulation, the approximate expression for
the concentration profile of the TF given by Eq.s3 gives rise to
a simple sigmoidal response with respect to ln(M) as shown
schematically in Fig. S2 A for 2 different sets of values of a and
b, for a/b 		 1, such that T is switched on (T 3 a/b) when M is
large and off (T 3 1) when it is small. It is simple to show the
threshold concentration is M* 
 1/(b � 2a) 
 e�EM1, where EM1

is the binding energy of the morphogen binding to the first
binding site. Now an exponentially decaying morphogen gradient
across the field of cells of the embryo leads to a linear mapping
of the sigmoidal profile shown in Fig. S2B, where it is clear that
the ‘‘rate’’ of mapping (dT/dx) is proportional the morphogen
gradient steepness �. So as the morphogen gradient becomes
steeper, the switch from high to low T is sharper, as shown in Fig.
2C, leading to an increase in fitness. However, as shown in Fig.
S2B, for a given genome G and in particular the binding energy
EM1, we see that only one optimum value of � will give a spatial
switch positioned exactly at the midpoint of the embryo; from
the functional Eq. 4 in the main text, for any � smaller or larger,
the fitness must decrease, and thus we see where the general
form of Eq. 4 arises. In addition, we note that the gene regulatory
module has a maximum sensitivity set roughly by EM1 � 0, so that
there is, in addition, an ultimate limit to fitness imposed by the
largest optimum value of � to which this corresponds. This is seen
by a decrease in number of viable solutions or phenotypes at
large � in Fig. 1 and Fig. 5 in the main text or equivalently by the
decrease in free fitness for large � in Fig. 4 in the main text.

Ergodicity of Simulations at Low Population Sizes. A system that is
ergodic is one in which time averages of quantities are equal to
ensemble or phase–space averages. To test for ergodicity of the
Monte Carlo simulations of evolution, we compared the free
fitness (Eq. 6 in the main text) landscape calculated using an
average over a time series (Fig. S2 A and B, solid lines), from
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simulations of length 107 attempted mutations (Monte Carlo
steps) to the free fitness calculated using an ensemble average
(Fig. 2 A and B, red circles) over the end state of 100 shorter
simulations of length 2 � 104 attempted mutations. Fig. S2 A and
B shows this comparison for the population sizes of N � 20 and
N � 110, respectively, for an initial value morphogen gradient
�0 � 10. The time series of the morphogen gradient � for the 100
shorter simulations are shown in Fig. 2 C and D for N � 20 and
N � 110, respectively. It is clear that there is very good overlap
of the free fitness calculated via a time average and ensemble

average (the greater variation in the ensemble average is due to
the lower sample size used compared to the time average), and
we conclude that these simulations are ergodic for these range
of population sizes. In addition, we also repeated the longer
simulations (107 mutations) for initial morphogen gradients of
�0 � 1 and �0 � 7, as shown in Fig. S2 A and B, where it is seen
that the simulations are also independent of initial conditions for
these range of parameters, further indicating the ergodicity of
the simulations.
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Fig. S1. Fitness landscape for fixed genotype. (A) Eq. s3 plotted many times, each with random values of the parameters with constraints on the parameters
a and b equivalent to the constraints used for the binding and glue energies in the main text. (B) Scatter plot of fitness vs. morphogen gradient (F vs. �) from
a simulation for patterning the anterior of an embryo for a population size of N � 10. The congruence of the two plots and Fig. 5 in the main text, indicate that
the landscape is structured into multiple solutions Fi(�) for fixed genotype.
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Fig. S2. Threshold patterning mechanism. (A) A schematic linear log plot of the sigmoidal relationship of T to M, for 2 different sets of values of the parameters
a and b. The threshold value of the morphogen concentration M*, represent when T is approximately half its maximum value. (B) A schematic linear-log plot
of x vs. ln(M), illustrating that different genotypes (represented by the parameters a and b) which gives rise to different sigmoidal responses in A), require a
different morphogen gradient steepness �, in order that the profile of T is mapped to x with the threshold at the midpoint of the embryo. (C) A schematic plot
(on a linear–linear scale) of T(x) showing that the larger morphogen steepness �2 gives rise to a sharper profile, than �1. We see that sharper patterning means
higher values of �, which in turn requires a regulatory apparatus that is more sensitive to morphogen concentrations (i.e., lower M*).
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Fig. S3. Ergodicity of simulations. (A and B) Free fitness landscapes for populations sizes of N � 20 (A) and n � 110 (B), calculated using a time average of Monte
Carlo simulations of length 107 mutations (solid lines) and using an ensemble-average from the end point of 100 simulations of length 2 � 104 (shown as time
series of � in C and D for N � 20 and N � 110, respectively). (C and D) Time series of the morphogen gradient � from 100 independent simulations of length 2 �
104 mutations, for populations sizes of N � 20 (C) and N � 110 (D).
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