
Multiple mixture model components provide flexibility to describe condition-specific 

gene patterns and relationships. Boutilier et al. [31] presented an algorithm to capture 

context-specific independencies induced by specific variable assignments, but this 

approach was not applied to networks. Our approach differs from Boutilier et al. [31] in 

that, if the network including a relationship has a higher BIC score than the network 

excluding the relationship, then the final network will include the relationship, and the 

mixture parameter estimates can be used to detect conditions in which the covariance 

between the genes is nearly zero. The identification of relationships between genes 

implemented in this study relies on the comparison of the BIC score of the full (parent-

child relationship) and reduced (child alone) models. Thus, in addition to the comparison 

of BIC scores, other variable selection approaches (e.g. forwards selection [32], 

backward elimination [32], LASSO [33]) can also be used to identify the gene 

relationships supported by the data.  

 

The use of a mixture of Gaussian distributions to describe the probability density function 

of the genes had numerous advantages including ease of interpretation of parameter 

estimates, identification of condition-dependent or independent gene behaviors (location 

or mean, dispersion or variances) and relationships (co-dispersion or co-variances), and 

availability of  the EM algorithm to estimate mixture model parameters applied to 

Bayesian networks [8, 11]. The approach can be extended to consider other distributional 

assumptions such as mixtures of t- or Cauchy distributions. Likewise, Cobb and Shenoy 

[34] used a mixture truncated exponential densities to describe hybrid Bayesian networks 

containing discrete nodes and continuous parents, and applied this model to a waste 
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incinerator emission and crop price networks. Additionally, non-mixture distributions 

that capture the potential complexity of the probability distribution across conditions can 

be considered. For example, although not applied to Bayesian networks and condition-

dependent gene network profiles, Purdom and Holmes [35] proposed using asymmetric 

Laplace distributions to describe the log-ratio of gene expression measurements. 

Likewise, Khondoker et al. [36] used a Cauchy distribution to account for gene 

expression outliers and pixel censoring, Kuznetsov [37] and Kuruoglu et  al. [38] used 

Pareto and Pareto-tail distributions (stable distribution) to capture potentially skewed 

gene expression distributions, and Hoyle et al. [39] used log-Normal distributions to 

describe spot intensities. 

 

The results presented in this study assume no prior knowledge of any mixture parameter 

(e.g. covariance between genes) or network structure (parent-child gene relationships). 

This approach evaluated the ability of the method to detect true relationships between 

genes, and precisely characterize gene co-expression profiles, regardless of the 

information available. Within the Bayesian framework, knowledge or belief of any 

unknown parameter can be incorporated through prior distributions and corresponding 

hyper-parameters [5]. For example, Werhli and Husmeier [40, 41] described the 

integration of prior knowledge to improve the reconstruction of gene regulatory networks 

by expressing the prior knowledge in terms of energy functions. This approach can be 

used to combine data from different experiments, but it can also result in higher 

computational demands.  


