
Structures of β-Amino Ester Enolates: New Strategies Using the Method of Continuous Variation

Lara R. Liou, Anne J. McNeil, Gilman E. S. Toombes, David B. Collum

Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301

Supporting Information

I.	Experimental Procedures	S6
II.	(S)-β-Valine and (R)-β-Valine	
	A. ⁶ Li NMR spectra of $[^{6}Li](S)$ -6 at various temperatures.	S7
	 B. ⁶Li NMR spectra of a mixture of [⁶Li](<i>R</i>)-6 and [⁶Li](<i>S</i>)-6 (mole fraction R=0.80) at various temperatures. 	S8
	C. ⁶ Li NMR spectra of a mixture of $[^{6}\text{Li}](R)$ -6 and $[^{6}\text{Li}](S)$ -6 (mole fraction R=0.80) at various temperatures.	S9
	D. Variation of enolate concentration for a mixture of $[^{6}\text{Li}](S)$ -6 and $[^{6}\text{Li}](R)$ -6 (mole fraction S=0.30).	S10
	E. ⁶ Li NMR spectra of mixtures of $[^{6}Li](R)$ -6 and $[^{6}Li](S)$ -6 at various mole fractions in 9.0 M THF/toluene at -20 °C.	S11
	F. Table of the relative integrations for the spectra in II.E.	S13
	G. Job Plot of $[{}^{6}\text{Li}](S)$ - 6 / $[{}^{6}\text{Li}](R)$ - 6 hexamers.	S14
III.	(S)-β-Valine and (R)-β-Alanine	
	 A. ⁶Li NMR spectra of mixtures of [⁶Li](<i>R</i>)-6 and [⁶Li](<i>S</i>)-5 (mole fraction 6=0.3) at various temperatures. 	S15
	B. ⁶ Li NMR spectra of mixtures of [⁶ Li](<i>R</i>)- 6 and [⁶ Li](<i>S</i>)- 5 at various temperatures.	S16
	C. Variation of enolate concentration for a mixture of $[^{6}\text{Li}](S)$ -6 and $[^{6}\text{Li}](R)$ -5 (mole fraction 6=0.70).	S17
	D. Variation of enolate concentration for a mixture of $[^{6}\text{Li}](S)$ -6 and $[^{6}\text{Li}](R)$ -5 (mole fraction 6=0.30).	S18
	E. ⁶ Li NMR spectra of mixtures of $[^{6}Li](R)$ - 6 and $[^{6}Li](S)$ - 5 at various mole fractions in 3.0 M THF/toluene at -30 °C.	S19
	F. Table of the relative integrations for the spectra in III.E .	S21
	G. Job Plot of $[{}^{6}\text{Li}](S)$ - 6 / $[{}^{6}\text{Li}](R)$ - 5 hexamers.	S22
IV.	(R)-β-Valine and (R)-β-Alanine	

A. ⁶Li NMR spectra of mixtures of $[^{6}Li](R)$ -6 and $[^{6}Li](R)$ -5 at various

	temperatures.	S23
B.	Variation of enolate concentration for a mixture of $[^{6}\text{Li}](R)$ -6 and $[^{6}\text{Li}](R)$ -5 (mole fraction 6=0.70).	S24
C.	Variation of enolate concentration for a mixture of $[^{6}\text{Li}](S)$ -6 and $[^{6}\text{Li}](R)$ -5 (mole fraction 6=0.30).	S25
D.	⁶ Li NMR spectra of mixtures of $[{}^{6}Li](R)$ - 6 and $[{}^{6}Li](R)$ - 5 at various mole fractions in 3.0 M THF/toluene at -30 °C.	S26
E.	Table of the relative integrations for the spectra in IV.D .	S28
F.	Job Plot of $[^{6}\text{Li}](R)$ -6/ $[^{6}\text{Li}](R)$ -5 hexamers.	S29
G.	The fit in IV.F overlaid with a statistical distribution of hexamers.	S30
(<i>S</i>)	-β-Phenylalanine/(<i>R</i>)-β-Phenylalanine	
А.	⁶ Li NMR spectra of [¹⁵ N, ⁶ Li](S)-7 and [¹⁵ N, ⁶ Li] <i>rac</i> -7 at various temperatures.	S31
B.	⁶ Li NMR spectra of $[^{6}Li](R)$ -7 at various temperatures.	S32
C.	⁶ Li NMR spectra of [⁶ Li] <i>rac</i> -7 at various temperatures.	S33
D.	⁶ Li NMR spectra of a mixture of $[^{6}Li](R)$ -7 and $[^{6}Li](S)$ -7 (mole fraction R=0.80) at various temperatures.	S34
E.	Variation of enolate concentration for $[^{6}Li](S)$ -7.	S35
F.	Variation of enolate concentration for a mixture of $[^{6}\text{Li}](R)$ -7 and $[^{6}\text{Li}](S)$ -7 (mole fraction R=0.30).	S36
G.	Variation of THF concentration for a mixture of $[^{6}\text{Li}](R)$ -7 and $[^{6}\text{Li}](S)$ -7 (mole fraction S=0.30).	S37
H.	⁶ Li NMR spectra of mixtures of $[^{6}Li](R)$ -7 and $[^{6}Li](S)$ -7 at various mole fractions in 9.0 M THF/toluene at -25 °C.	S38
I.	Table of the relative integrations for the spectra in V.H .	S40
J.	Job Plot of $[{}^{6}\text{Li}](R)$ -7/ $[{}^{6}\text{Li}](S)$ -7 hexamers.	S41
K.	Job Plot of $[{}^{6}\text{Li}](R)$ -7/ $[{}^{6}\text{Li}](S)$ -7 fit to tetramer model.	S42

V.

VI. (S)-β-Phenylalanine and (R)-β-Alanine

	А.	⁶ Li NMR spectra of a mixture of $[^{6}Li](S)$ -7 and $[^{6}Li](R)$ -5 (mole fraction 7=0.5) at various temperatures.	S43
	B.	⁶ Li NMR spectra of a mixture of $[^{6}Li](S)$ -7 and $[^{6}Li](R)$ -5 (mole fraction 7=0.7) at various temperatures.	S44
	C.	⁶ Li NMR spectra of mixtures of $[^{6}Li](S)$ -7 and $[^{6}Li](R)$ -5 at various mole fractions in 9.0 M THF/toluene at -40 °C.	S45
	D.	⁶ Li NMR spectra of mixtures of $[^{6}Li](S)$ -7 and $[^{6}Li](R)$ -5 (mole fraction 7=0.3) in non-aromatic co-solvents at various temperatures.	S47
	E.	⁶ Li NMR spectra of mixtures of $[^{6}Li](S)$ -7 and $[^{6}Li](R)$ -5 with benzene or anisole as a co-solvent at various THF concentrations.	S48
	F.	⁶ Li NMR spectra of mixtures of $[^{6}Li](S)$ -7 and $[^{6}Li](R)$ -5 with <i>tert</i> -butylbenzene as a co-solvent at various THF concentrations.	S49
	G.	⁶ Li NMR spectra of mixtures of $[{}^{6}Li](S)$ -7 and $[{}^{6}Li](R)$ -5 with toluene as a co-solvent at various THF concentrations.	S50
	H.	Variation of enolate concentration for a mixture of $[^{6}\text{Li}](S)$ -7 and $[^{6}\text{Li}](R)$ -5 (mole fraction 7=0.70).	S51
	I.	Variation of enolate concentration for a mixture of $[^{6}\text{Li}](S)$ -7 and $[^{6}\text{Li}](R)$ -5 (mole fraction 7=0.30).	S52
	J.	⁶ Li NMR spectra of mixtures of [⁶ Li](<i>S</i>)-7 and [⁶ Li](<i>R</i>)-5 at various mole fractions in 4.0 M THF/toluene at -30 °C.	S53
	K.	Table of the relative integrations for the spectra in VI.J .	S55
	L.	Job Plot of $[^{6}\text{Li}](S)$ -7/ $[^{6}\text{Li}](R)$ -5 hexamers.	S56
VII.	(<i>S</i>)	-β-Phenylglycine/(R)-β-Phenylglycine	
	A.	⁶ Li NMR spectra of [⁶ Li](<i>R</i>)- 8 and a mixture of [⁶ Li](<i>R</i>)- 8 and [⁶ Li](<i>S</i>)- 8 (mole fraction R=0.70) at various temperatures.	S57
	B.	⁶ Li NMR spectra of a mixture of $[^{6}Li](R)$ -8 and $[^{6}Li](S)$ -8 (mole fraction S=0.30) at various THF/toluene concentrations.	S58
	C.	Variation of enolate concentration for a mixture of $[^{6}\text{Li}](R)$ -8 and $[^{6}\text{Li}](S)$ -8 (mole fraction R=0.70).	S59

	D. ⁶ Li NMR spectra of mixtures of [⁶ Li](<i>R</i>)- 8 and [⁶ Li](<i>S</i>)- 8 at various mole fractions in 9.0 M THF/toluene at -40 °C.	S60
	E. Table of the relative integrations for the spectra in VII.D .	S62
	F. Job Plot of $[{}^{6}\text{Li}](S)$ -8/ $[{}^{6}\text{Li}](R)$ -8 hexamers in 9.0 M THF/toluene.	S63
	G. Job Plot of [⁶ Li](<i>S</i>)- 8 /[⁶ Li](<i>R</i>)- 8 fit to tetramer model in 9.0 M THF/ toluene.	S64
	H. ⁶ Li NMR spectra of mixtures of [⁶ Li](<i>R</i>)- 8 and [⁶ Li](<i>S</i>)- 8 at various mole fractions in 3.0 M THF/toluene at -50 °C.	S65
	I. Table of the relative integrations for the spectra in VII.H.	S67
	J. Job Plot of $[^{6}\text{Li}](S)$ -8/ $[^{6}\text{Li}](R)$ -8 hexamers in 3.0 M THF/toluene.	S68
VII	I. (S)- β -Phenylglycine and (R)- β -Alanine *Note this is R/R' mix	
	A. ⁶ Li NMR spectra of mixtures of [⁶ Li](<i>R</i>)-8 and [⁶ Li](<i>S</i>)-5 at various temperatures.	S69
	B. Variation of enolate concentration for a mixture of $[^{6}\text{Li}](R)$ - 8 and $[^{6}\text{Li}](S)$ - 5 (mole fraction 8 =0.70).	S70
	C. Variation of enolate concentration for a mixture of $[^{6}\text{Li}](R)$ - 8 and $[^{6}\text{Li}](S)$ - 5 (mole fraction 8 =0.30).	S71
	D. ⁶ Li NMR spectra of mixtures of $[^{6}Li](R)$ - 8 and $[^{6}Li](S)$ - 5 at various mole fractions in 3.0 M THF/toluene at -40 °C.	S72
	E. Table of the relative integrations for the spectra in VIII.D .	S74
	F. Job Plot of $[{}^{6}Li](S)$ -8/ $[{}^{6}Li](R)$ -5 hexamers.	S75
	G. The fit in VIII.F. overlaid with a statistical distribution of hexamers.	S76
IX.	Multi-author References	S77

I. Experimental Procedures

A. Method for preparation of NMR spectroscopy samples

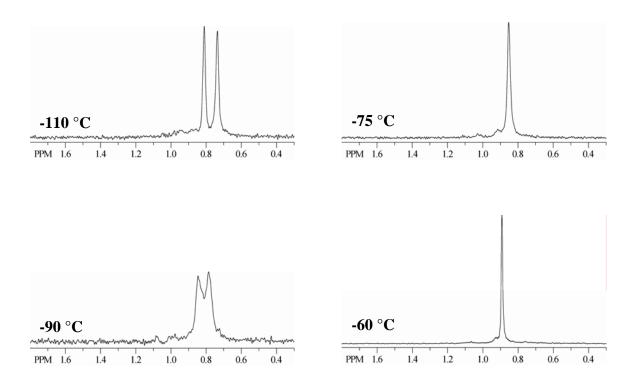
Separate stock solutions of [6 Li]LiHMDS and the appropriate β -amino ester were prepared in small vials. An NMR tube was fit with a septum and connected to a Schlenk line using a vacuum hose and needle. After the NMR tube was flame dried, the tube was placed under argon and in a -78 °C bath. The appropriate amount of base solution was added followed by the substrate and/or solvent solutions using gas-tight syringes. After all the components were added, the sample was placed under partial vacuum, and the sample tube was sealed with an oxygen torch. Prior to recording the spectra, the samples were warmed in a 0 °C bath for 10-15 minutes followed by a few seconds of gentle shaking to ensure complete mixing and enolization.

B. Method of integration

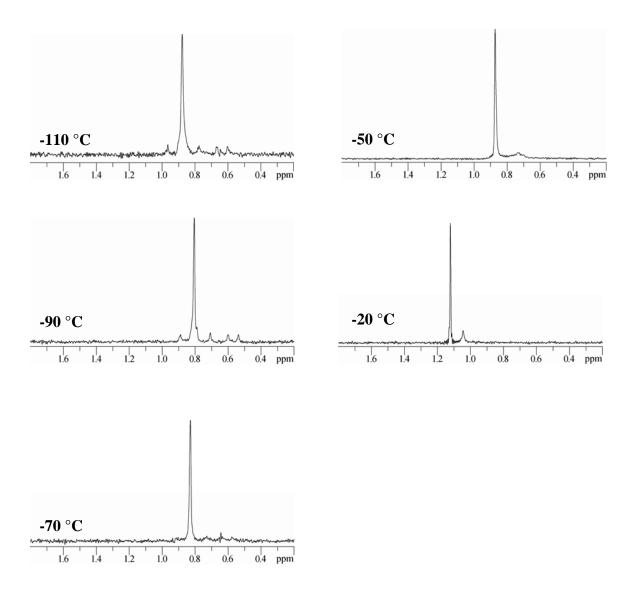
NMR resonances were integrated using Varian's software, VNMR. After weighted Fourier transform with drift correction and 64,000 points and phasing, a baseline correction was applied when possible. Deconvolution was performed in the absolute intensity mode, with the default parameters for contributions from Lorentzian and Gaussian line shapes, and using the line list for well resolved spectra. For poorly resolved spectra, the resonances were indicated using the "mark" and "use mark" commands.

C. Preparation of compounds

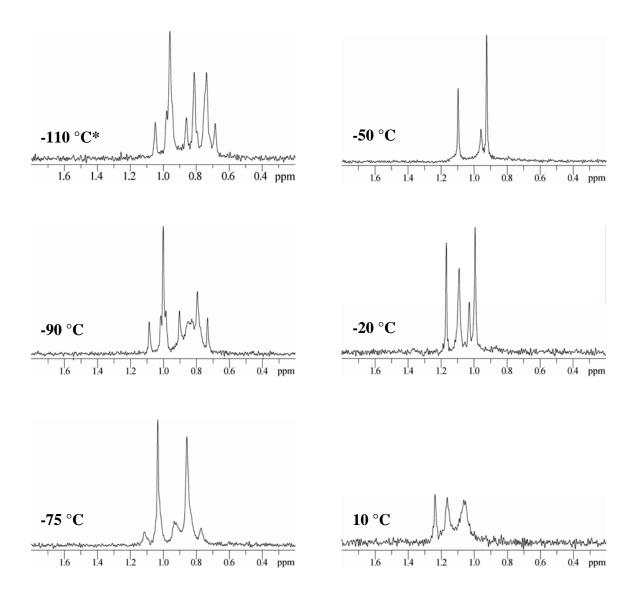
The precursors to 5-7 were prepared from the Boc-protected, optically pure amino acids by Arndt-Eistert homologation.¹ The Boc protection was removed by refluxing 0.25 M Boc- β -amino ester and 1.0 mole equivalent of *p*-toluenesulfonic acid monohydrate in methanol for about 3.5 hours or until deprotection was complete by TLC. The methanol was removed by rotary evaporation followed by full vacuum. The tosylate salt was recrystallized in THF/MeOH overnight in a -20 °C freezer. The free base was obtained by condensing ammonia at -78 °C into a slurry of the tosylate salt and ether. After the reaction was allowed to warm to RT and the excess ammonia had dissipated, the ammonium tosylate was removed by filtration. Ether was removed by rotary evaporation, and the β -amino ester was further purified by a pot-to-pot transfer under reduced pressure.


The precursor to **8** was prepared according to a literature protocol.² Enantiomeric excess of the *N*-trifluoromethylacetyl- β -phenylglycine derivative was measured by gas chromatography on an Alltech Chirasil-Val capillary column.

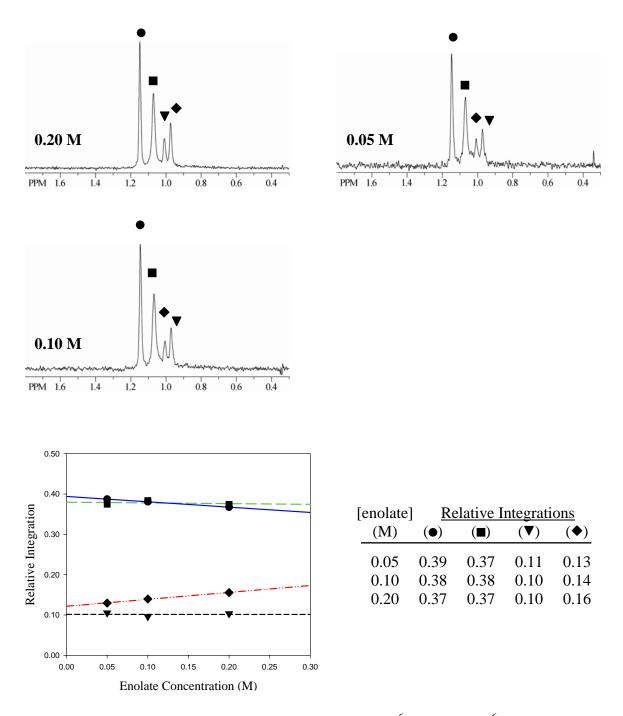
The β -amino esters were stored at -20 °C and were checked for degradation by ¹H NMR spectroscopy prior to use.


¹ Podlech, J.; Seebach, D. Liebigs Ann. 1995, 1217-1228.

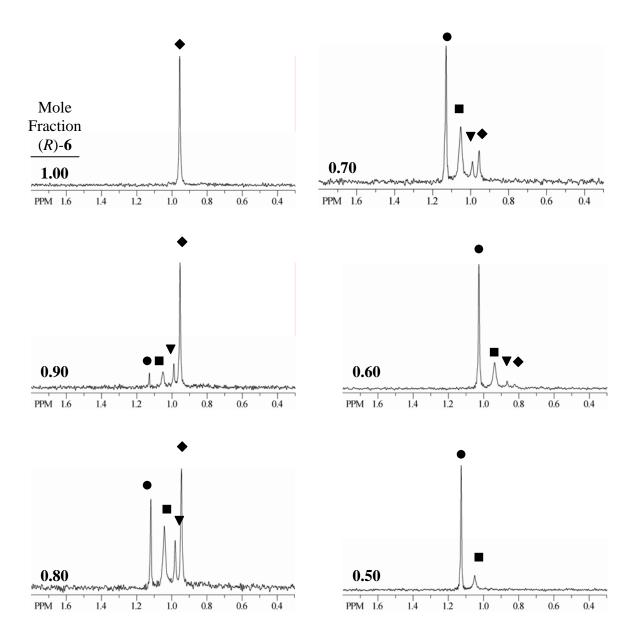
² Davis, F. A.; Reddy, R. E.; Szewczyk, J. M. *J. Org. Chem.* **1995**, *60*, 7037; Davis, F. A.; Reddy, R. E.; Szewczyk, J. M.; Reddy, G. V.; Portonovo, P. S.; Zhang, H.; Fanelli, D.; Reddy, R. T.; Zhou, P.; Carroll, P. J. *J. Org. Chem.* **1997**, *62*, 2555-2563.


II. (S)- β -Valine and (R)- β -Valine

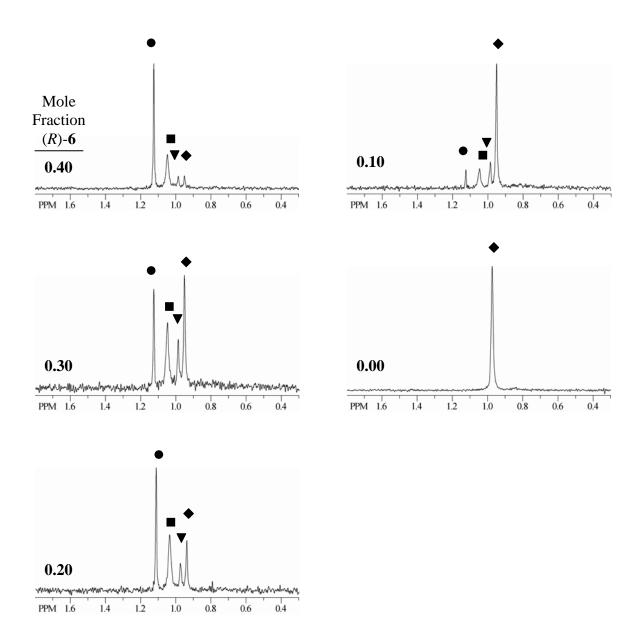
II.A. ⁶Li NMR spectra (58.8 MHz) of $[^{6}Li](S)$ -6 at various temperatures. All samples are 0.10 M total enolate concentration and 9.0 M THF/toluene.



II.B. ⁶Li NMR spectra (58.8 MHz) of [⁶Li]*rac*-**6** at various temperatures. All samples are 0.10 M total enolate concentration and 9.0 M THF/toluene.

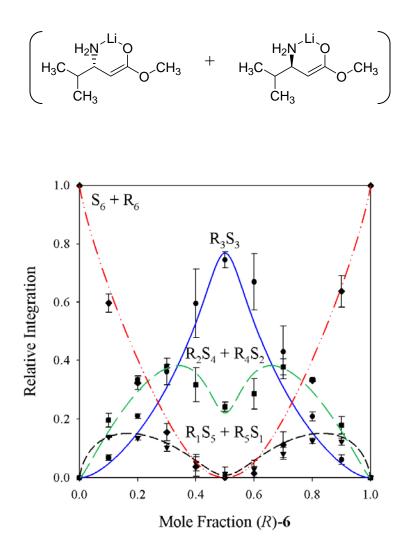


II.C. ⁶Li NMR spectra (58.8 MHz) of a mixture of $[{}^{6}Li](R)$ -6 and $[{}^{6}Li](S)$ -6 (mole fraction of **R**=0.80) at various temperatures. All samples are 0.10 M total enolate concentration and 9.0 M THF/toluene.


* Spectrum recorded at 73.6 MHz.

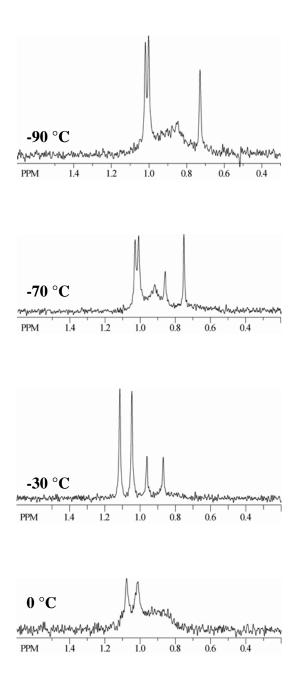
II.D. Variation of enolate concentration for a mixture of $[{}^{6}\text{Li}](S)$ -6 and $[{}^{6}\text{Li}](R)$ -6 (mole fraction of S=0.30). ⁶Li NMR spectra (73.6 MHz) of a mixture of $[{}^{6}\text{Li}](R)$ -6 and $[{}^{6}\text{Li}](S)$ -6 (mole fraction of S=0.30) at various enolate concentrations. All samples are 9.0 M THF/toluene and were recorded at -20 °C. The relative integrations of the peaks are plotted versus the total enolate concentration The lines represent a linear least squares fit. (\blacklozenge) \mathbf{R}_{6} + \mathbf{S}_{6} (∇) $\mathbf{R}_{5}\mathbf{S}_{1}$ + $\mathbf{R}_{1}\mathbf{S}_{5}$ (\blacksquare) $\mathbf{R}_{2}\mathbf{S}_{4}$ + $\mathbf{R}_{4}\mathbf{S}_{2}$ (\blacklozenge) $\mathbf{R}_{3}\mathbf{S}_{3}$ such that $\mathbf{R} = [{}^{6}\text{Li}](R)$ -6 and $\mathbf{S} = [{}^{6}\text{Li}](S)$ -6.

II.E. ⁶Li NMR spectra (73.6 MHz) of mixtures of $[{}^{6}Li](R)$ -6 and $[{}^{6}Li](S)$ -6 at various mole fractions in 9.0 M THF/toluene at -20 °C. Samples are 0.10 M in total enolate concentration. (\blacklozenge) \mathbf{R}_{6} + \mathbf{S}_{6} (∇) $\mathbf{R}_{5}\mathbf{S}_{1}$ + $\mathbf{R}_{1}\mathbf{S}_{5}$ (\blacksquare) $\mathbf{R}_{2}\mathbf{S}_{4}$ + $\mathbf{R}_{4}\mathbf{S}_{2}$ (\blacklozenge) $\mathbf{R}_{3}\mathbf{S}_{3}$ such that $\mathbf{R} = [{}^{6}Li](R)$ -6 and $\mathbf{S} = [{}^{6}Li](S)$ -6.

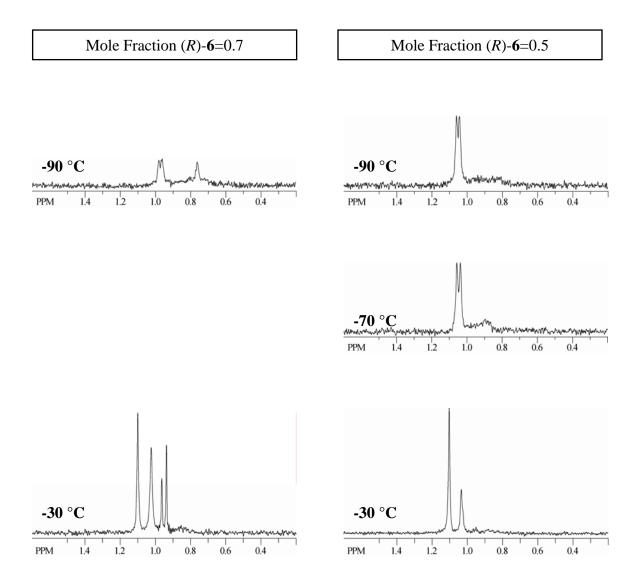


II.E. (cont.) ⁶Li NMR spectra (73.6 MHz) of mixtures of $[{}^{6}Li](R)$ -6 and $[{}^{6}Li](S)$ -6 at various mole fractions in 9.0 M THF/toluene at -20 °C. Samples are 0.10 M in total enolate concentration. (\blacklozenge) \mathbf{R}_{6} + \mathbf{S}_{6} (∇) $\mathbf{R}_{5}\mathbf{S}_{1}$ + $\mathbf{R}_{1}\mathbf{S}_{5}$ (\blacksquare) $\mathbf{R}_{2}\mathbf{S}_{4}$ + $\mathbf{R}_{4}\mathbf{S}_{2}$ (\blacklozenge) $\mathbf{R}_{3}\mathbf{S}_{3}$ such that $\mathbf{R} = [{}^{6}Li](R)$ -6 and $\mathbf{S} = [{}^{6}Li](S)$ -6.

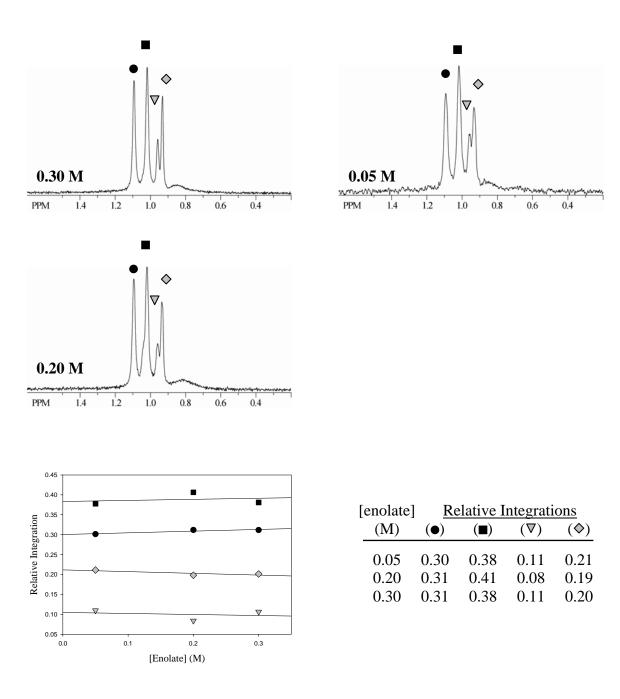
D.S.			
ble Frac. $\mathbf{R}_3\mathbf{S}_3$ $\mathbf{R}_4\mathbf{S}_2+\mathbf{R}_2\mathbf{S}_4$ (<i>R</i>)-6 (\bullet) (\blacksquare)		$\mathbf{R}_{5}\mathbf{S}_{1}+\mathbf{R}_{1}\mathbf{S}_{5}$ $(\mathbf{\nabla})$	$\mathbf{R}_{6}+\mathbf{S}_{6}$ (\blacklozenge)
0.00±0.00	0.00±0.00	0.00±0.00	1.00±0.00
0.06 ± 0.02	0.18 ± 0.03	0.123 ± 0.012	0.64 ± 0.05
0.21 ± 0.02	0.334 ± 0.004	0.126 ± 0.009	0.331±0.00
0.43 ± 0.09	0.38 ± 0.03	0.08 ± 0.02	0.11±0.04
0.670 ± 0.096	0.29 ± 0.05	0.03 ± 0.03	0.01±0.03
0.75 ± 0.03	0.242 ± 0.016	0.01 ± 0.02	0.00 ± 0.00
0.60 ± 0.12	0.32 ± 0.06	0.05 ± 0.03	0.04 ± 0.03
0.36 ± 0.05	0.380 ± 0.006	0.103 ± 0.014	0.16±0.03
0.210 ± 0.008	0.333 ± 0.014	0.134 ± 0.007	0.32 ± 0.02
0.068 ± 0.010	0.20 ± 0.02	0.138 ± 0.002	0.60 ± 0.03
0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	1.00 ± 0.00
	$\begin{array}{c} 0.00 \pm 0.00 \\ 0.06 \pm 0.02 \\ 0.21 \pm 0.02 \\ 0.43 \pm 0.09 \\ 0.670 \pm 0.096 \\ 0.75 \pm 0.03 \\ 0.60 \pm 0.12 \\ 0.36 \pm 0.05 \\ 0.210 \pm 0.008 \\ 0.068 \pm 0.010 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

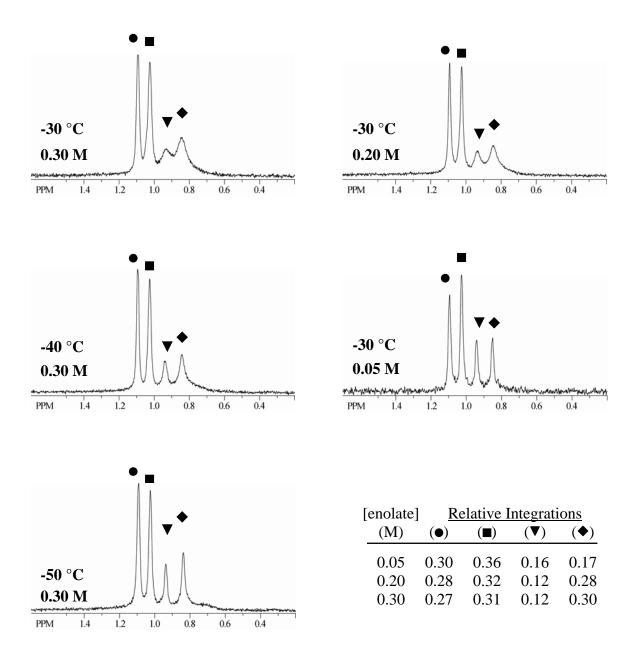

II.F. Table of the relative integrations for the spectra in **II.E.**^{*a*}

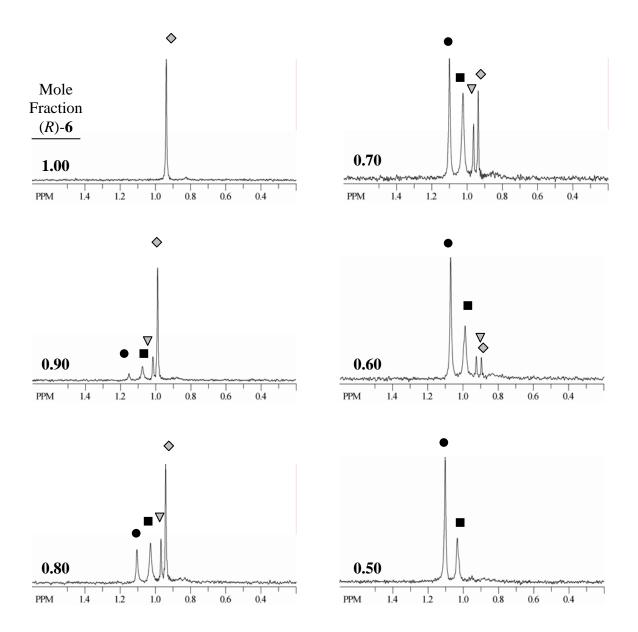
^{*a*} (♦) $\mathbf{R}_6 + \mathbf{S}_6$ (♥) $\mathbf{R}_5 \mathbf{S}_1 + \mathbf{R}_1 \mathbf{S}_5$ (■) $\mathbf{R}_2 \mathbf{S}_4 + \mathbf{R}_4 \mathbf{S}_2$ (●) $\mathbf{R}_3 \mathbf{S}_3$ such that $\mathbf{R} = [{}^6\text{Li}](R) - \mathbf{6}$ and $\mathbf{S} = [{}^6\text{Li}](S) - \mathbf{6}$.

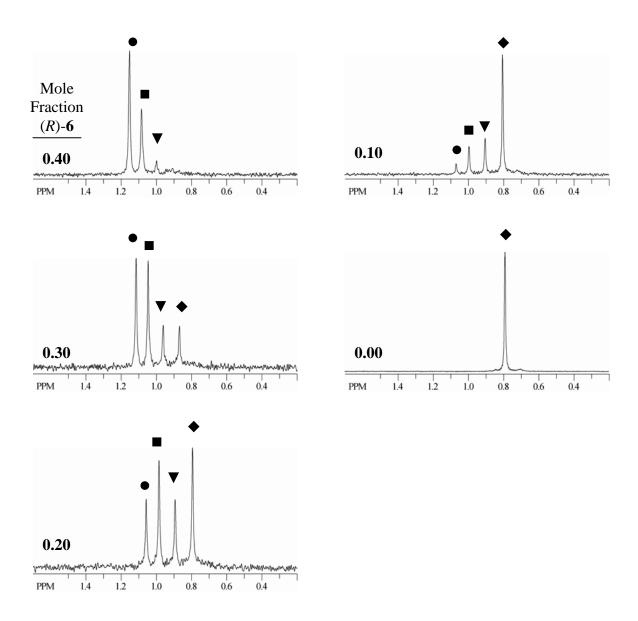


II.G. Job Plot of $[{}^{6}\text{Li}](R)$ -6/ $[{}^{6}\text{Li}](S)$ -6 (9.0 M THF/toluene; -20 °C) hexamers. The relative integrations are plotted as a function of the mole fraction of $[{}^{6}\text{Li}](R)$ -6. (\blacklozenge) \mathbf{R}_{6} + \mathbf{S}_{6} (\blacktriangledown) $\mathbf{R}_{5}\mathbf{S}_{1}$ + $\mathbf{R}_{1}\mathbf{S}_{5}$ (\blacksquare) $\mathbf{R}_{4}\mathbf{S}_{2}$ + $\mathbf{R}_{2}\mathbf{S}_{4}$ (\blacklozenge) $\mathbf{R}_{3}\mathbf{S}_{3}$ such that $\mathbf{R} = [{}^{6}\text{Li}](R)$ -6 and $\mathbf{S} = [{}^{6}\text{Li}](S)$ -6. The curves result from a parametric fit, affording ϕ_{0} =0.01134; ϕ_{1} =0.0924; ϕ_{2} =0.9574; ϕ_{3} =5.


III. (*S*)-β-Valine and (*R*)-β-Alanine

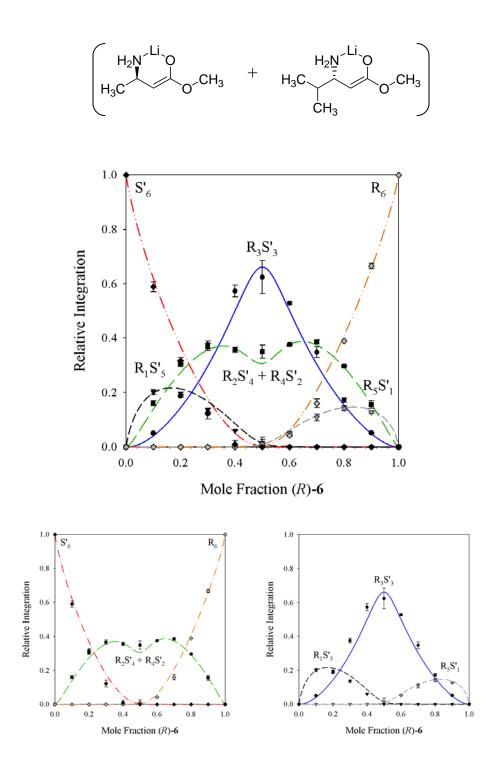

III.A. ⁶Li NMR spectra (73.6 MHz) of mixtures of $[{}^{6}Li](R)$ -6 and $[{}^{6}Li](S)$ -5 (mole fraction of 6=0.3) at various temperatures. Samples are 0.10 M total enolate concentration and 3.0 M THF/toluene.


III.B. ⁶Li NMR spectra (73.6 MHz) of mixtures of $[{}^{6}Li](R)$ -6 and $[{}^{6}Li](S)$ -5 at various temperatures. Samples are 0.10 M total enolate concentration and 3.0 M THF/toluene.


III.C. Variation of enolate concentration for a mixture of $[{}^{6}\text{Li}](S)$ -6 and $[{}^{6}\text{Li}](R)$ -5 (mole fraction of S'=0.70). ⁶Li NMR spectra (73.6 MHz) of a mixture of $[{}^{6}\text{Li}](S)$ -6 and $[{}^{6}\text{Li}](R)$ -5 (mole fraction of S'=0.70) at various enolate concentrations. All samples are 3.0 M THF/toluene and were recorded at -30 °C. The relative integrations of the peaks are plotted versus the total enolate concentration. The lines represent a linear least squares fit. (\diamondsuit) \mathbf{R}_{6} ($\mathbf{\nabla}$) $\mathbf{R}_{5}\mathbf{S}'_{1}$ (\mathbf{m}) $\mathbf{R}_{4}\mathbf{S}'_{2}+\mathbf{R}_{2}\mathbf{S}'_{4}$ (\blacklozenge) $\mathbf{R}_{3}\mathbf{S}'_{3}$ ($\mathbf{\nabla}$) $\mathbf{R}_{1}\mathbf{S}'_{5}$ (\diamondsuit) \mathbf{S}'_{6} such that $\mathbf{S}' = [{}^{6}\text{Li}](S)$ -6 and $\mathbf{R} = [{}^{6}\text{Li}](R)$ -5.

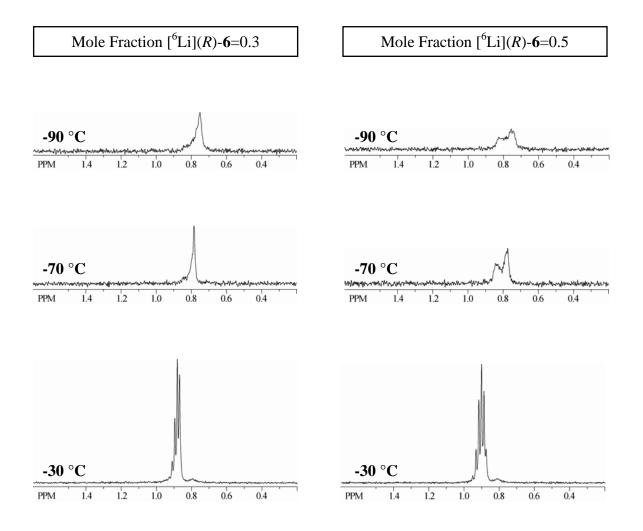
III.D. Variation of enolate concentration for a mixture of $[{}^{6}\text{Li}](S)$ -6 and $[{}^{6}\text{Li}](R)$ -5 (mole fraction of S'=0.30). ⁶Li NMR spectra (73.6 MHz) of a mixture of $[{}^{6}\text{Li}](S)$ -6 and $[{}^{6}\text{Li}](R)$ -5 (mole fraction of S'=0.30) at various enolate concentrations. All samples are 3.0 M THF/toluene. The sample with total enolate concentration of 0.30 M is shown at various temperatures. The data in the table is from the spectra taken at -30 °C. (\blacklozenge) R₆ (\bigtriangledown) R₅S'₁ (\blacksquare) R₄S'₂+R₂S'₄ (\blacklozenge) R₃S'₃ (\bigtriangledown) R₁S'₅ (\diamondsuit) S'₆ such that S' = $[{}^{6}\text{Li}](S)$ -6 and R = $[{}^{6}\text{Li}](R)$ -5.

III.E. ⁶Li NMR spectra (73.6 MHz) of mixtures of [⁶Li](*R*)-6 and [⁶Li](*S*)-5 at various mole fractions in 3.0 M THF/toluene at -30 °C. Samples are 0.10 M total enolate concentration. (\blacklozenge) **R**₆ (\triangledown) **R**₅**S**'₁ (**□**) **R**₄**S**'₂+**R**₂**S**'₄ (\blacklozenge) **R**₃**S**'₃ (\triangledown) **R**₁**S**'₅ (\diamondsuit) **S**'₆ such that **S**' = [⁶Li](*R*)-6 and **R** = [⁶Li](*S*)-5.

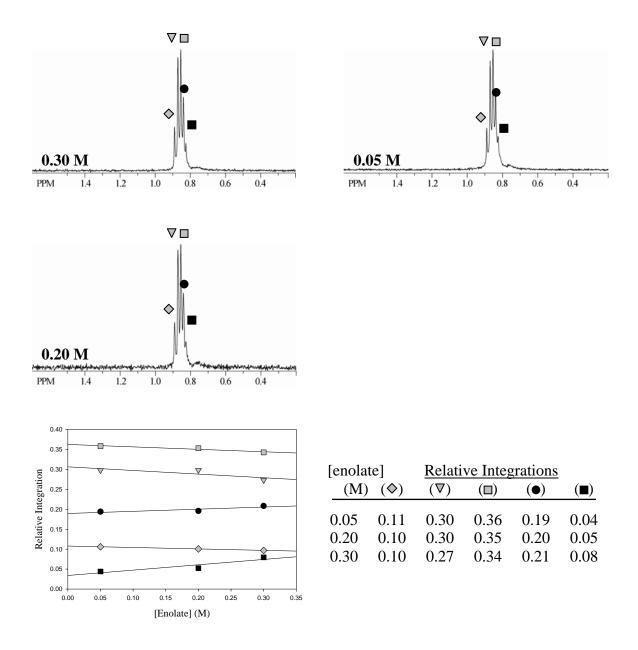

III.E. (cont.) ⁶Li NMR spectra (73.6 MHz) of mixtures of $[{}^{6}Li](R)$ -6 and $[{}^{6}Li](S)$ -5 at various mole fractions in 3.0 M THF/toluene at -30 °C. Samples are 0.10 M total enolate concentration. (\blacklozenge) **R**₆ (\triangledown) **R**₅**S**'₁ (**II**) **R**₄**S**'₂+**R**₂**S**'₄ (\blacklozenge) **R**₃**S**'₃ (\triangledown) **R**₁**S**'₅ (\diamondsuit) **S**'₆ such that **S**' = $[{}^{6}Li](R)$ -6 and **R** = $[{}^{6}Li](S)$ -5.

	Relative Integrations				
Mole Frac. (<i>R</i>)-6	. R ₃ S' ₃ (●)	$ R_4S'_2+R_2S'_4^b $ (■)	$\mathbf{R}_{1}\mathbf{S'}_{5}$ (\nabla)	R ₅ S' ₁ (▼)	
1.00	0.000 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	
0.90	0.051±0.003	0.16 ± 0.01	0.127 ± 0.005	0.00 ± 0.00	
0.80	0.172 ± 0.008	0.30 ± 0.01	0.14 ± 0.01	0.00 ± 0.00	
0.70	0.35 ± 0.02	0.39 ± 0.01	0.11±0.01	0.00 ± 0.00	
0.60	0.529 ± 0.005	0.376 ± 0.002	0.053 ± 0.001	0.00 ± 0.00	
0.50	0.63 ± 0.06	0.35 ± 0.02	0.02 ± 0.02	0.00 ± 0.00	
0.40	0.57 ± 0.02	0.36 ± 0.01	0.00 ± 0.000	0.061 ± 0.001	
0.30	0.38 ± 0.01	0.37 ± 0.01	0.000 ± 0.000	0.136±0.007	
0.20	0.186 ± 0.003	0.302 ± 0.004	0.00 ± 0.00	0.196 ± 0.005	
0.10	0.050 ± 0.00005	0.159 ± 0.009	0.000 ± 0.000	0.201±0.009	
0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	
Mole Frac. (<i>R</i>)-6		$\frac{\mathbf{R}_{6}}{(\mathbf{\Phi})}$			
(A)-0	(♥)	(•)			
1.00	1.00 ± 0.00	0.00 ± 0.00			
0.90	0.67 ± 0.01	0.00 ± 0.00			
0.80	0.389 ± 0.0005	0.00 ± 0.00			
0.70	0.16 ± 0.02	0.00 ± 0.00			
0.60	0.042 ± 0.004	0.00 ± 0.00			
0.50	0.01 ± 0.02	0.00 ± 0.00			
0.40	0.00 ± 0.00	0.01 ± 0.01			
0.30	0.00 ± 0.00	0.12 ± 0.02			
0.20	0.00 ± 0.00	0.32 ± 0.01			
0.10	0.00 ± 0.00	0.59 ± 0.02			
0.00	0.00 ± 0.00	1.00 ± 0.00			

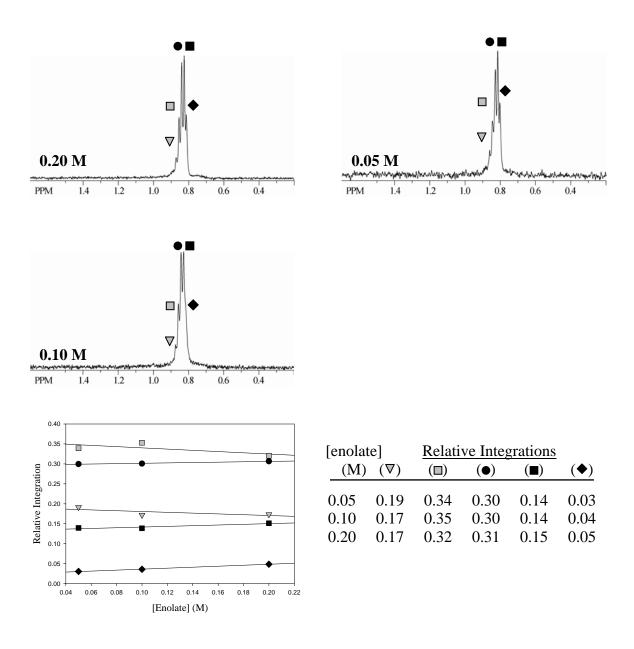
III.F. Table of the relative integrations for the spectra in **III.E**.^{*a*}

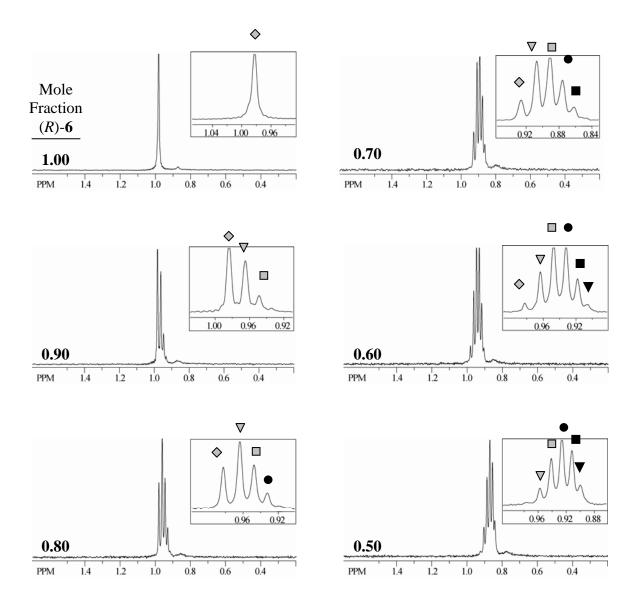

^{*a*} (\blacklozenge) **R**₆ (\blacktriangledown) **R**₅**S**'₁ (**n**) **R**₄**S**'₂+**R**₂**S**'₄ (\blacklozenge) **R**₃**S**'₃ (\triangledown) **R**₁**S**'₅ (\diamondsuit) **S**'₆ such that **S**' = [⁶Li](*R*)-**6** and **R** = [⁶Li](*S*)-**5**. ^{*b*} The relative integrations of the **R**₂**S**'₄ and **R**₄**S**'₂ aggregates are summed due poor

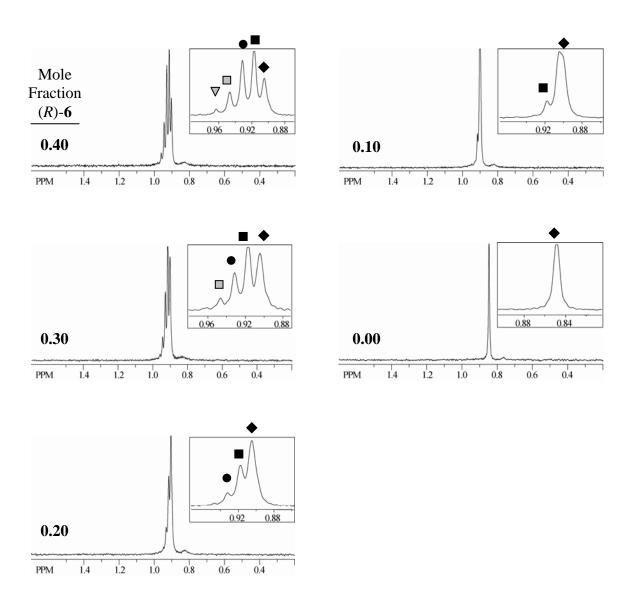
resolution of their resonances.



III.G. Job Plot of $[{}^{6}\text{Li}](R)$ -6/ $[{}^{6}\text{Li}](S)$ -5 (3.0 M THF/toluene; -30 °C) hexamers. The relative integrations are plotted as a function of the mole fraction of $[{}^{6}\text{Li}](R)$ -6. (\blacklozenge) **R**₆ (\blacktriangledown) **R**₅**S**'₁ (\blacksquare) **R**₄**S**'₂+**R**₂**S**'₄ (\blacklozenge) **R**₃**S**'₃ (\bigtriangledown) **R**₁**S**'₅ (\diamondsuit) **S**'₆ such that **S**' = $[{}^{6}\text{Li}](R)$ -6 and **R** = $[{}^{6}\text{Li}](S)$ -5. The relative integrations of the **R**₂**S**'₄ and **R**₄**S**'₂ aggregates are summed due to poor resolution of their resonances. The curves result from a parametric fit, affording ϕ_0 =1.00; ϕ_1 =0.86; ϕ_2 =3.91; ϕ_3 =14.08; ϕ_4 =4.84; ϕ_5 =0.84; ϕ_6 =1.96.

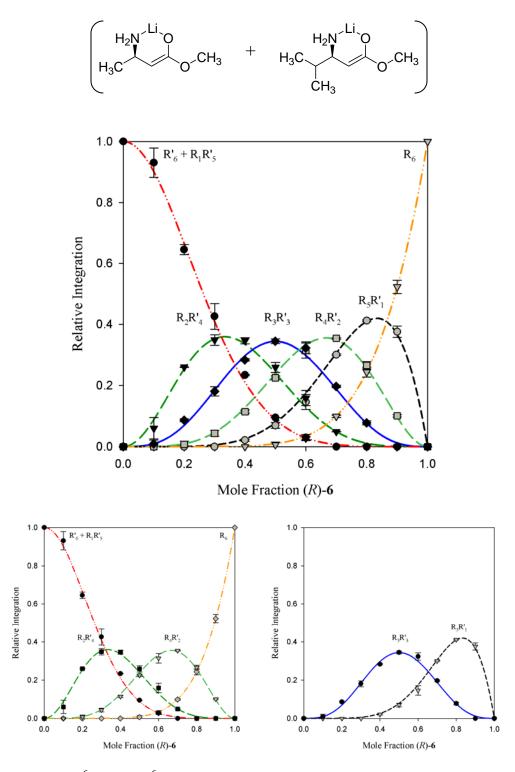

IV. (*R*)- β -Valine and (*R*)- β -Alanine


IV.A. ⁶Li NMR spectra (73.6 MHz) of mixtures of $[{}^{6}Li](R)$ - **6** and $[{}^{6}Li](R)$ -**5** at various temperatures. All samples are 0.10 M total enolate concentration and 3.0 M THF/toluene.

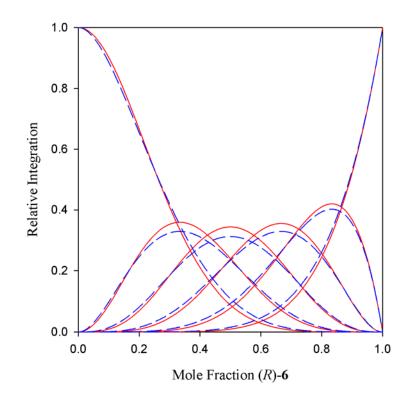

IV.B. Variation of enolate concentration for a mixture of $[{}^{6}\text{Li}](R)$ -6 and $[{}^{6}\text{Li}](R)$ -5 (mole fraction of **R'**=0.70). ⁶Li NMR spectra (73.6 MHz) of a mixture of $[{}^{6}\text{Li}](R)$ -6 and $[{}^{6}\text{Li}](R)$ -5 (mole fraction of **R'**=0.70) at various enolate concentrations. All samples are 3.0 M THF/toluene and were recorded at -30 °C. The relative integrations of the peaks are plotted versus the total enolate concentration. The lines represent a linear least squares fit. (\diamondsuit) **R**₆+**R**₅**R'**₁ (**□**) **R**₄**R'**₂ (\blacklozenge) **R**₃**R'**₃ (**□**) **R**₂**R'**₄ (\triangledown) **R**₁**R'**₅ (\diamondsuit) **R'**₆ such that **R'** = $[{}^{6}\text{Li}](R)$ -6 and **R** = $[{}^{6}\text{Li}](R)$ -5.

IV.C. Variation of enolate concentration for a mixture of $[{}^{6}\text{Li}](S)$ -6 and $[{}^{6}\text{Li}](R)$ -5 (mole fraction of **R'**=0.30). ${}^{6}\text{Li}$ NMR spectra (73.6 MHz) of a mixture of $[{}^{6}\text{Li}](R)$ -6 and $[{}^{6}\text{Li}](R)$ -5 (mole fraction of **R'**=0.30) at various enolate concentrations. All samples are 3.0 M THF/toluene and were recorded at -30 °C. The relative integrations of the peaks are plotted versus the total enolate concentration. The lines represent a linear least squares fit. (\diamondsuit) **R**_{6}+**R**_{5}**R'**_{1} (**□**) **R**_{4}**R'**_{2} (\blacklozenge) **R**_{3}**R'**_{3} (**□**) **R**_{2}**R'**_{4} (∇) **R**_{1}**R'**_{5} (\diamondsuit) **R'**_{6} such that **R'** = $[{}^{6}\text{Li}](R)$ -6 and **R** = $[{}^{6}\text{Li}](R)$ -5.

IV.D. ⁶Li NMR spectra (73.6 MHz) of mixtures of $[{}^{6}Li](R)$ -6 and $[{}^{6}Li](R)$ -5 at various mole fractions in 3.0 M THF/toluene at -30 °C. Samples are 0.10 M total enolate concentration. (\blacklozenge) \mathbf{R}_{6} + $\mathbf{R}_{5}\mathbf{R}'_{1}$ (\blacksquare) $\mathbf{R}_{4}\mathbf{R}'_{2}$ (\blacklozenge) $\mathbf{R}_{3}\mathbf{R}'_{3}$ (\blacksquare) $\mathbf{R}_{2}\mathbf{R}'_{4}$ (∇) $\mathbf{R}_{1}\mathbf{R}'_{5}$ (\diamondsuit) \mathbf{R}'_{6} such that $\mathbf{R}' = [{}^{6}Li](R)$ -6 and $\mathbf{R} = [{}^{6}Li](R)$ -5.

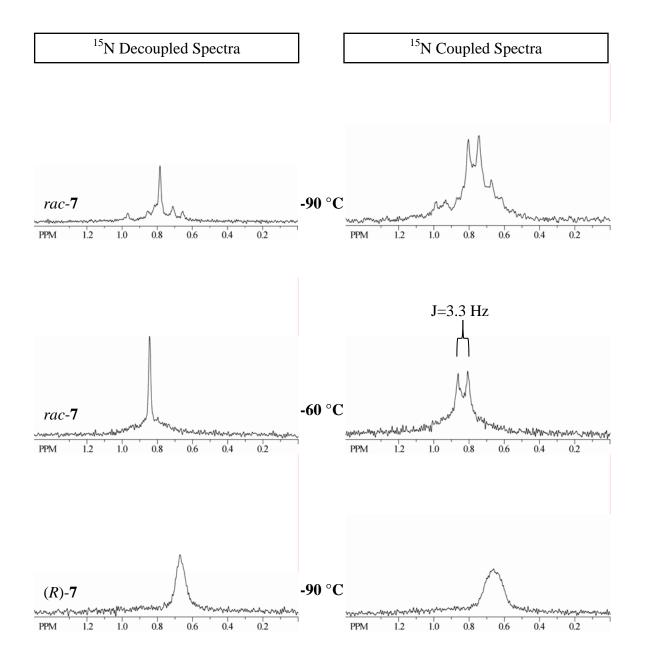

IV.D. (cont.) ⁶Li NMR spectra (73.6 MHz) of mixtures of $[{}^{6}Li](R)$ -6 and $[{}^{6}Li](R)$ -5 at various mole fractions in 3.0 M THF/toluene at -30 °C. Samples are 0.10 M total enolate concentration. (\blacklozenge) \mathbf{R}_{6} + $\mathbf{R}_{5}\mathbf{R}'_{1}$ (\blacksquare) $\mathbf{R}_{4}\mathbf{R}'_{2}$ (\blacklozenge) $\mathbf{R}_{3}\mathbf{R}'_{3}$ (\blacksquare) $\mathbf{R}_{2}\mathbf{R}'_{4}$ (∇) $\mathbf{R}_{1}\mathbf{R}'_{5}$ (\diamondsuit) \mathbf{R}'_{6} such that $\mathbf{R}' = [{}^{6}Li](R)$ -6 and $\mathbf{R} = [{}^{6}Li](R)$ -5.

		Relative I	ntegrations	
Mole Frac.	R' ₆	$\mathbf{R}_1\mathbf{R'}_5$	$\mathbf{R}_{2}\mathbf{R'}_{4}$	$\mathbf{R}_{3}\mathbf{R'}_{3}$
(<i>R</i>)-6	(�)	(♥)	(□)	(●)
1.00	1.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00±0.00
0.90	0.52 ± 0.02	0.38 ± 0.02	0.101 ± 0.004	0.00 ± 0.00
0.80	0.24 ± 0.02	0.412 ± 0.003	0.27 ± 0.01	0.078 ± 0.00
0.70	0.099 ± 0.004	0.300 ± 0.002	0.354 ± 0.002	0.197 ± 0.00
0.60	0.028 ± 0.005	0.15 ± 0.02	0.31±0.03	0.32 ± 0.02
0.50	0.006 ± 0.009	0.07 ± 0.01	0.225 ± 0.006	0.345 ± 0.00
0.40	0.00 ± 0.00	0.021 ± 0.003	0.114 ± 0.005	0.284 ± 0.00
0.30	0.00 ± 0.00	0.00 ± 0.00	0.04 ± 0.01	0.18 ± 0.02
0.20	0.00 ± 0.00	0.00 ± 0.00	0.008 ± 0.011	0.087 ± 0.00
0.10	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.01 ± 0.01
0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
Mole Frac.		$\frac{\text{Integrations}}{\mathbf{R}_5\mathbf{R'}_1+\mathbf{R'}_6}$		
	· -			
(<i>R</i>)-6	(■)	(♦)		
1.00	0.00 ± 0.00	0.00 ± 0.00		
0.90	0.00 ± 0.00	0.00 ± 0.00		
0.80	0.00 ± 0.00	0.00 ± 0.00		
0.70	0.049 ± 0.0004	0.00 ± 0.00		
0.60	0.16±0.03	0.03 ± 0.01		
0.50	0.26 ± 0.02	0.095 ± 0.001		
0.40	0.35 ± 0.01	0.234 ± 0.002		
0.30	0.35 ± 0.02	0.43 ± 0.04		
0.20	0.260 ± 0.001	0.65 ± 0.02		
0.10	0.06 ± 0.04	0.93 ± 0.05		
0.00	0.00 ± 0.00	1.00 ± 0.00		

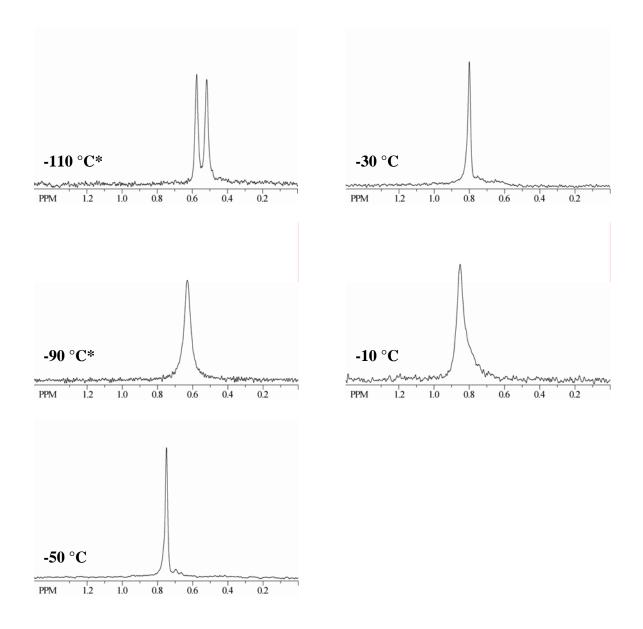

IV.E. Table of the relative integrations for the spectra in **IV.D**.^{*a*}

^{*a*} (\blacklozenge) **R**₆+**R**₅**R**^{*}₁ (**□**) **R**₄**R**^{*}₂ (\blacklozenge) **R**₃**R**^{*}₃ (**□**) **R**₂**R**^{*}₄ (∇) **R**₁**R**^{*}₅ (\diamondsuit) **R**^{*}₆ such that **R**^{*} = [⁶Li](*R*)-6 and **R** = [⁶Li](*R*)-5. ^{*b*} The relative integrations of the **R**₆ and **R**₅**S**^{*}₁ aggregates are summed due to poor

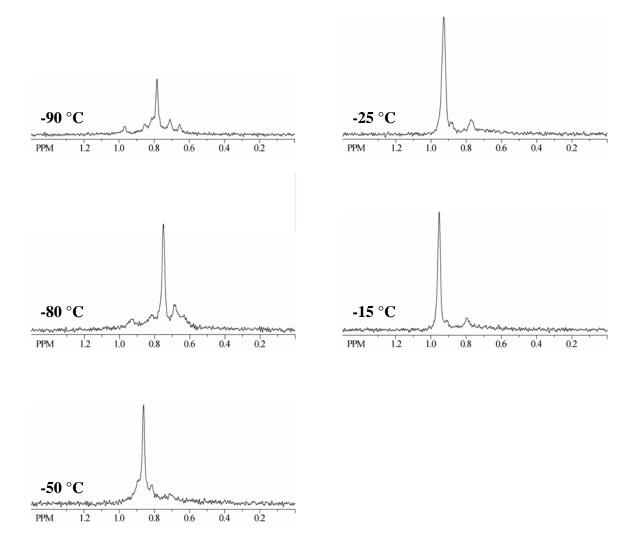
resolution of their resonances.



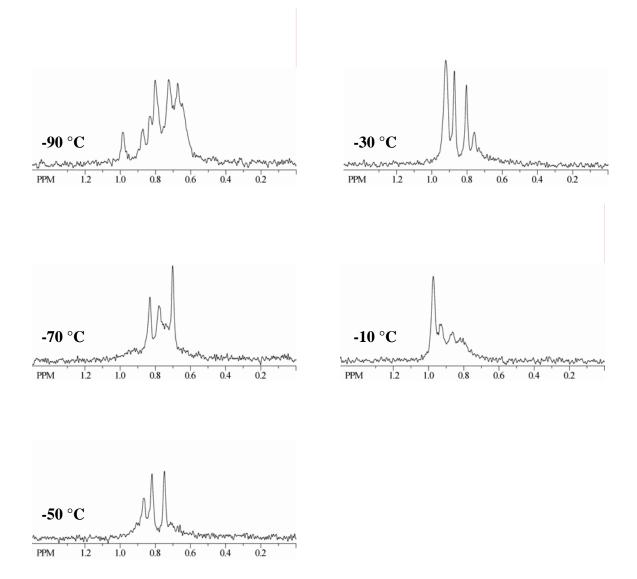
IV.F. A Plot of $[{}^{6}\text{Li}](R)$ -6/ $[{}^{6}\text{Li}](R)$ -5 (3.0 M THF/toluene; -50 °C) hexamers. The relative integrations are plotted as a function of the mole fraction of $[{}^{6}\text{Li}](R)$ -6. (\blacklozenge) \mathbf{R}_{6} + $\mathbf{R}_{5}\mathbf{R}'_{1}$ (\blacksquare) $\mathbf{R}_{4}\mathbf{R}'_{2}$ (\blacklozenge) $\mathbf{R}_{3}\mathbf{R}'_{3}$ (\blacksquare) $\mathbf{R}_{2}\mathbf{R}'_{4}$ (∇) $\mathbf{R}_{1}\mathbf{R}'_{5}$ (\diamondsuit) \mathbf{R}'_{6} such that $\mathbf{R}' = [{}^{6}\text{Li}](R)$ -6 and $\mathbf{R} = [{}^{6}\text{Li}](R)$ -5. The relative integrations of the \mathbf{R}_{6} and $\mathbf{R}_{5}\mathbf{S}'_{1}$ aggregates are summed due to poor resolution of their resonances. The curves result from a parametric fit, affording ϕ_{0} =1.00; ϕ_{1} =2.04; ϕ_{2} =2.88; ϕ_{3} =3.66; ϕ_{4} =4.03; ϕ_{5} =3.99; ϕ_{6} =3.45.


IV.G. The fit in **IV.F.** is overlaid with the expected statistical distribution of an ensemble of hexamers.

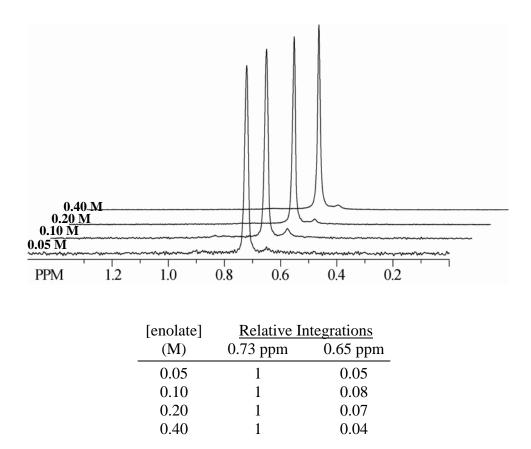
(_____) Fit to data (ϕ_0 =1.00; ϕ_1 =2.04; ϕ_2 =2.88; ϕ_3 =3.66; ϕ_4 =4.03; ϕ_5 =3.99; ϕ_6 =3.45) (_____) Statistical distribution (ϕ_0 =1.; ϕ_1 =6; ϕ_2 =15; ϕ_3 =20; ϕ_4 =15; ϕ_5 =6; ϕ_6 =1)


V. (S)- β -Phenylalanine/(R)- β -Phenylalanine

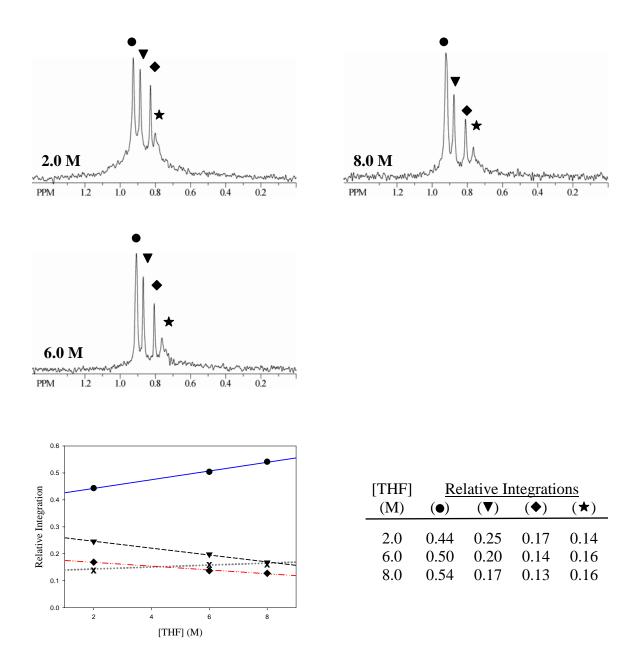
V.A. ⁶Li NMR spectra (58.8 MHz) of $[^{15}N, ^{6}Li]rac$ -7 and $[^{15}N, ^{6}Li](R)$ -7 at various temperatures. All samples are 0.10 M in total enolate concentration and 9.0 M THF/toluene.

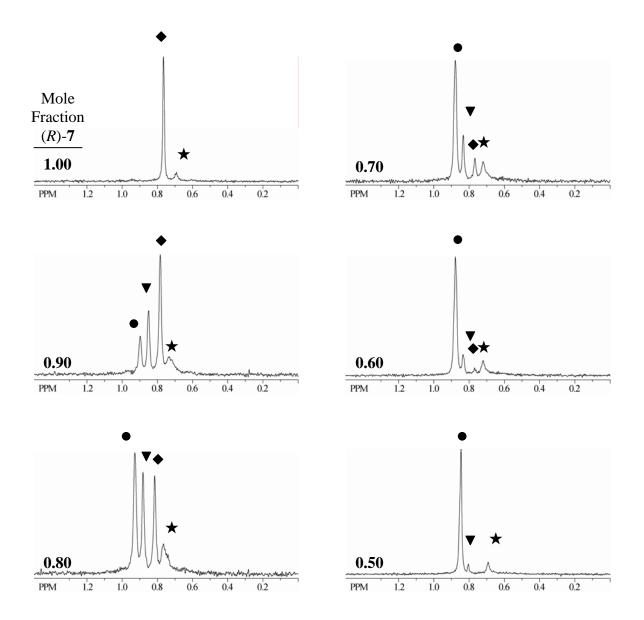


V.B. ⁶Li NMR spectra (58.8 MHz) of $[^{6}Li](R)$ -7 at various temperatures. All samples are 0.10 M total enolate concentration and 9.0 M THF/toluene.


* Spectra were recorded at 73.6 MHz.

V.C. ⁶Li NMR spectra (58.8 MHz) of [⁶Li]*rac*-**7** at various temperatures. All samples are 0.10 M total enolate concentration and 9.0 M THF/toluene.

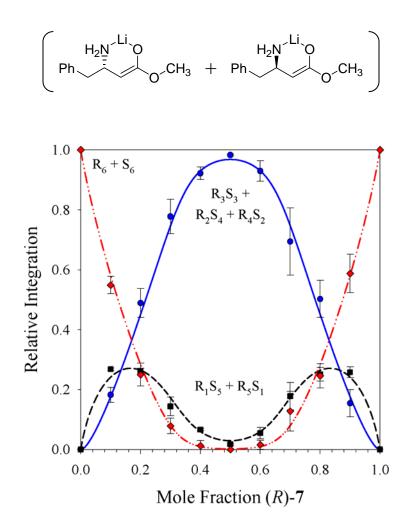

V.D. ⁶Li NMR spectra (58.8 MHz) of a mixture of $[{}^{6}Li](R)$ -7 and $[{}^{6}Li](S)$ -7 (mole fraction of **R**=0.80) at various temperatures. All samples are 0.10 M total enolate concentration and 9.0 M THF/toluene.


V.E. Variation of enolate concentration for $[{}^{6}Li](S)$ -7. ⁶Li NMR spectra (73.6 MHz) of $[{}^{6}Li](S)$ -7 at various enolate concentrations at -25 °C. All samples are 9.0 M THF/toluene. To determine if the peak at 0.65 ppm was a different aggregate (tetramer, dimmer, etc.), the absolute enolate concentration was varied. Integration of the peaks shows no significant variation in the peak ratios as a function of absolute enolate concentration.

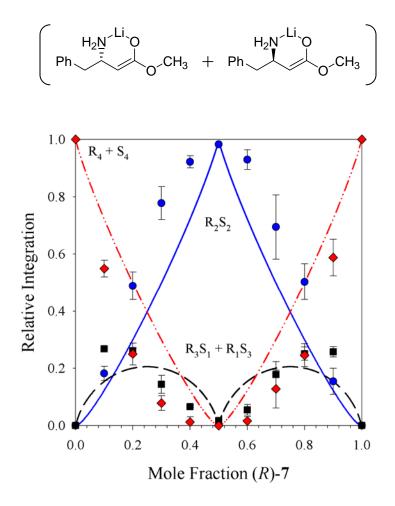
V.F. Variation of enolate concentration for a mixture of $[{}^{6}\text{Li}](R)$ -7 and $[{}^{6}\text{Li}](S)$ -7 (mole fraction of **R**=0.30). ⁶Li NMR spectra (58.8 MHz) of a mixture of $[{}^{6}\text{Li}](R)$ -7 and $[{}^{6}\text{Li}](S)$ -7 (mole fraction of **R**=0.3) at various enolate concentrations. All samples are 9.0 M THF/toluene and were recorded at -25 °C. The relative integrations of the peaks are plotted versus the total enolate concentration. The lines represent a linear least squares fit. (\blacklozenge) **R**₆+**S**₆ (\blacktriangledown) **R**₅**S**₁+**R**₁**S**₅ (\blacklozenge) **R**₃**S**₃+**R**₂**S**₄+**R**₄**S**₂ (\bigstar) impurity such that **R** = $[{}^{6}\text{Li}](R)$ -7 and **S** = $[{}^{6}\text{Li}](S)$ -7.

V.G. Variation of THF concentration for a mixture of $[{}^{6}\text{Li}](R)$ -7 and $[{}^{6}\text{Li}](S)$ -7 (mole fraction of **S**=0.30). ⁶Li NMR spectra (58.8 MHz) of a mixture of $[{}^{6}\text{Li}](R)$ -7 and $[{}^{6}\text{Li}](S)$ -7 (mole fraction of **S**=0.30) at various THF/toluene concentrations. All samples are 0.10 M total enolate and were recorded at -25 °C. The relative integrations of the peaks are plotted versus the total enolate concentration. The lines represent a linear least squares fit. (\blacklozenge) **R**₆+**S**₆ (\bigtriangledown) **R**₅**S**₁+**R**₁**S**₅ (\blacklozenge) **R**₃**S**₃+**R**₂**S**₄+**R**₄**S**₂ (\bigstar) impurity such that **R** = $[{}^{6}\text{Li}](R)$ -7 and **S** = $[{}^{6}\text{Li}](S)$ -7.

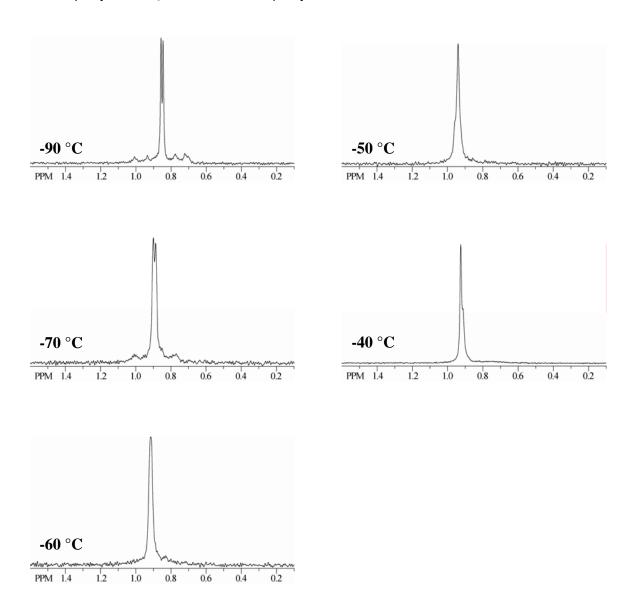
V.H. ⁶Li NMR spectra (73.6 MHz) of mixtures of [⁶Li](*R*)-7 and [⁶Li](*S*)-7 at various mole fractions in 9.0 M THF/toluene at -25 °C. Samples are 0.10 M in total enolate concentration. (\blacklozenge) **R**₆+**S**₆ (\bigtriangledown) **R**₅**S**₁+**R**₁**S**₅ (\blacklozenge) **R**₃**S**₃+**R**₂**S**₄+**R**₄**S**₂ (\bigstar) impurity such that **R** = [⁶Li](*R*)-7 and **S** = [⁶Li](*S*)-7.

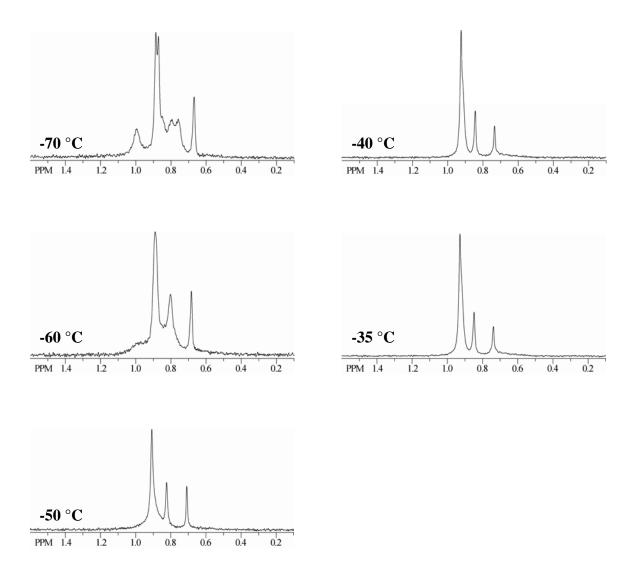


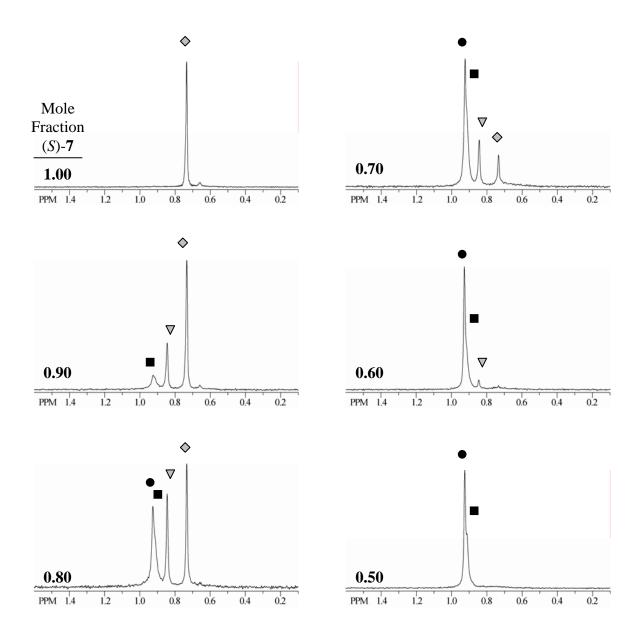
V.H. (cont.) ⁶Li NMR spectra (73.6 MHz) of mixtures of $[{}^{6}Li](R)$ -7 and $[{}^{6}Li](S)$ -7 at various mole fractions in 9.0 M THF/toluene at -25 °C. Samples are 0.10 M in total enolate concentration. (\blacklozenge) \mathbf{R}_{6} + \mathbf{S}_{6} (\triangledown) $\mathbf{R}_{5}\mathbf{S}_{1}$ + $\mathbf{R}_{1}\mathbf{S}_{5}$ (\blacklozenge) $\mathbf{R}_{3}\mathbf{S}_{3}$ + $\mathbf{R}_{2}\mathbf{S}_{4}$ + $\mathbf{R}_{4}\mathbf{S}_{2}$ (\bigstar) impurity such that $\mathbf{R} = [{}^{6}Li](R)$ -7 and $\mathbf{S} = [{}^{6}Li](S)$ -7.

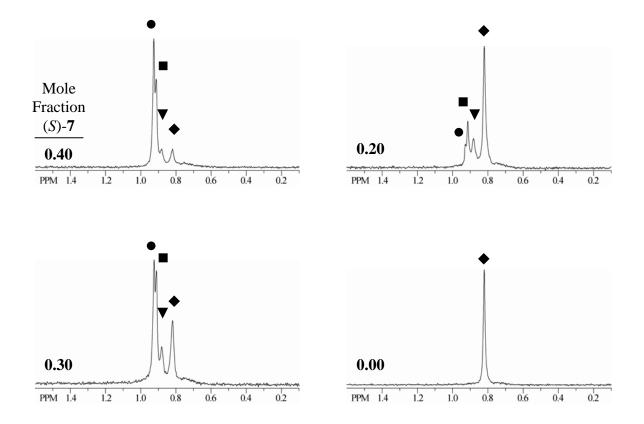

		Relative Integra	
Mole Frac.	$\mathbf{R}_6 + \mathbf{S}_6$	$\mathbf{R}_{5}\mathbf{S}_{1}+\mathbf{R}_{1}\mathbf{S}_{5}$	$R_4S_2 + R_2S_4 + R_3S_3^{b}$
(R)-7	(♦)	(▼)	(●)
1.00	1.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
0.90	0.59 ± 0.06	0.26 ± 0.02	0.15 ± 0.05
0.80	0.25 ± 0.04	0.25 ± 0.02	0.50 ± 0.06
0.70	0.13 ± 0.07	0.18 ± 0.05	0.69 ± 0.11
0.60	0.02 ± 0.02	0.05 ± 0.02	0.93 ± 0.03
0.50	0.00 ± 0.00	0.02 ± 0.003	0.98 ± 0.003
0.40	0.01 ± 0.02	0.07 ± 0.003	0.92 ± 0.02
0.30	0.08 ± 0.03	0.14 ± 0.03	0.78 ± 0.06
0.20	0.25 ± 0.04	0.26 ± 0.010	0.49 ± 0.05
0.10	0.55 ± 0.03	0.27 ± 0.004	0.18 ± 0.03
0.00	1.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00

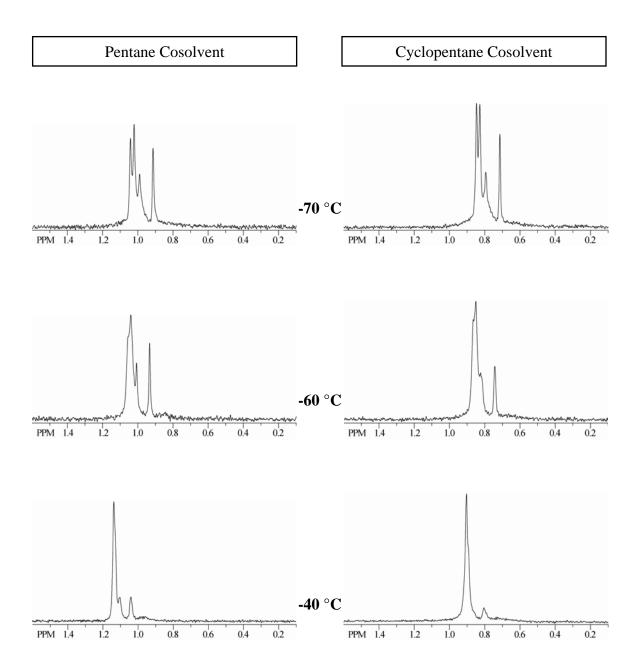
V.I. Table of the relative integrations for the spectra in $\mathbf{V.H.}^{a}$

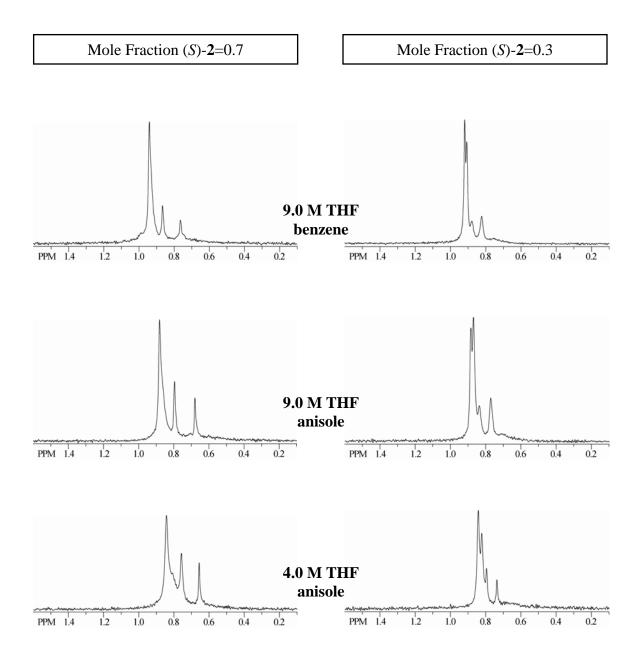

^{*a*} (\bigstar) **R**₆+**S**₆ (\blacktriangledown) **R**₅**S**₁+**R**₁**S**₅ (\spadesuit) **R**₃**S**₃+**R**₂**S**₄+**R**₄**S**₂ (\bigstar) impurity such that **R** = [⁶Li](*R*)-7 and **S** = [⁶Li](*S*)-7. ^{*b*} The **R**₃**S**₃ and **R**₂**S**₄+**R**₄**S**₂ peaks were integrated as a single peak due to poor resolution.

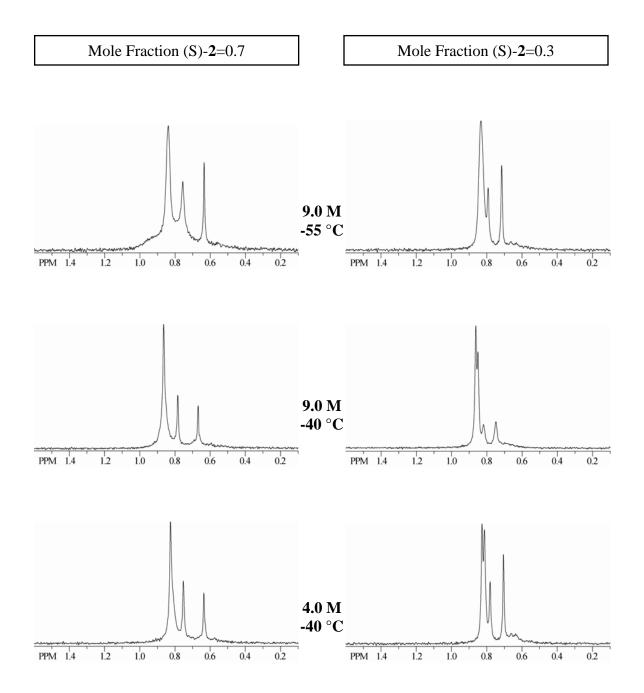

V.J. Job Plot of $[{}^{6}\text{Li}](R)$ -7/ $[{}^{6}\text{Li}](S)$ -7 (9.0 M THF/toluene; -25 °C) hexamers. The relative integrations are plotted as a function of the mole fraction of $[{}^{6}\text{Li}](R)$ -7. (\blacklozenge) **R**₆+**S**₆ (\blacktriangledown) **R**₅**S**₁+**R**₁**S**₅ (\blacklozenge) **R**₃**S**₃+**R**₂**S**₄+**R**₄**S**₂ such that **R** = $[{}^{6}\text{Li}](R)$ -7 and **S** = $[{}^{6}\text{Li}](S)$ -7. The **R**₃**S**₃, **R**₂**S**₄, and **R**₄**S**₂ aggregates are assigned as spectroscopically indistinguishable. The curves result from a parametric fit, affording ϕ_0 =1; ϕ_1 =2.17; ϕ_2 =19.3; ϕ_3 =13.6.

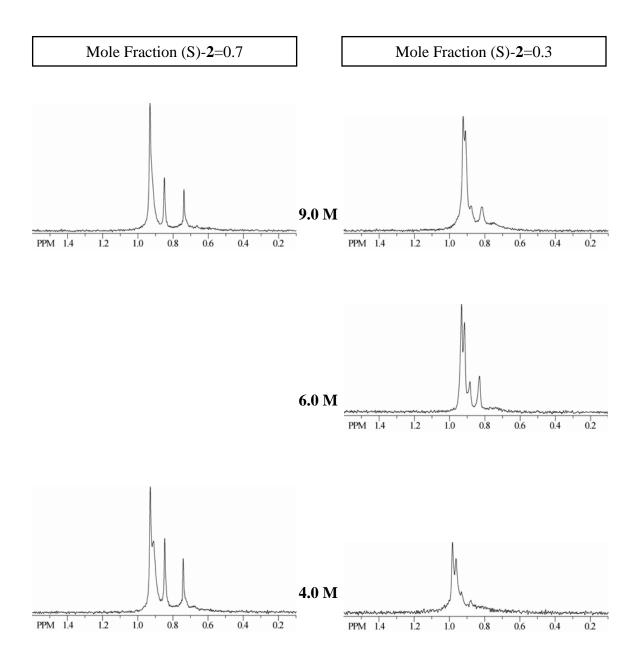

V.K. Job Plot of $[{}^{6}\text{Li}](R)$ -7/ $[{}^{6}\text{Li}](S)$ -7 (9.0 M THF/toluene; -25 °C) fit to tetramer model. (\blacklozenge) **R**₄+**S**₄ (\blacktriangledown) **R**₃**S**₁+**R**₁**S**₃ (\blacklozenge) **R**₂**S**₂ such that **R** = $[{}^{6}\text{Li}](R)$ -7 and **S** = $[{}^{6}\text{Li}](S)$ -7. The relative integrations are plotted as a function of the mole fraction of $[{}^{6}\text{Li}](R)$ -7. The curves result from a parametric fit, affording ϕ_0 =1; ϕ_1 =10.1; ϕ_2 =1041.

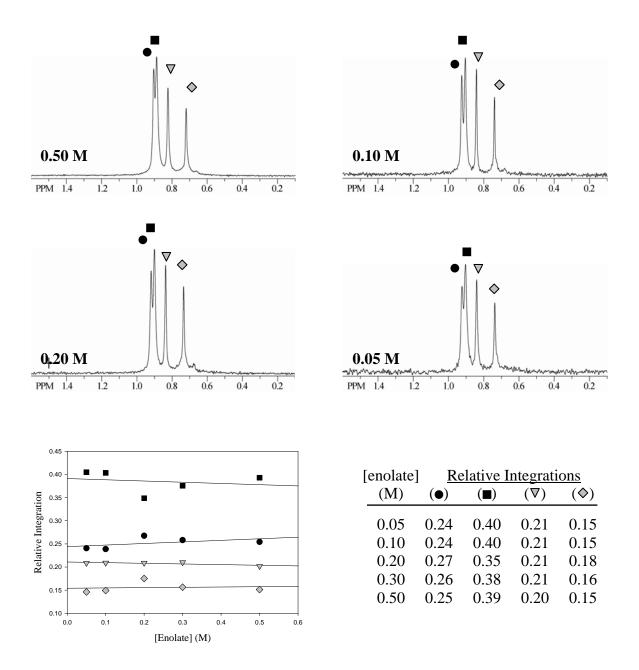

VI.A. ⁶Li NMR spectra (58.8 MHz) of a mixture of $[{}^{6}Li](S)$ -7 and $[{}^{6}Li](R)$ -5 (mole fraction of 7=0.5) at various temperatures. All samples are 0.10 M total enolate concentration and 9.0 M THF/toluene.

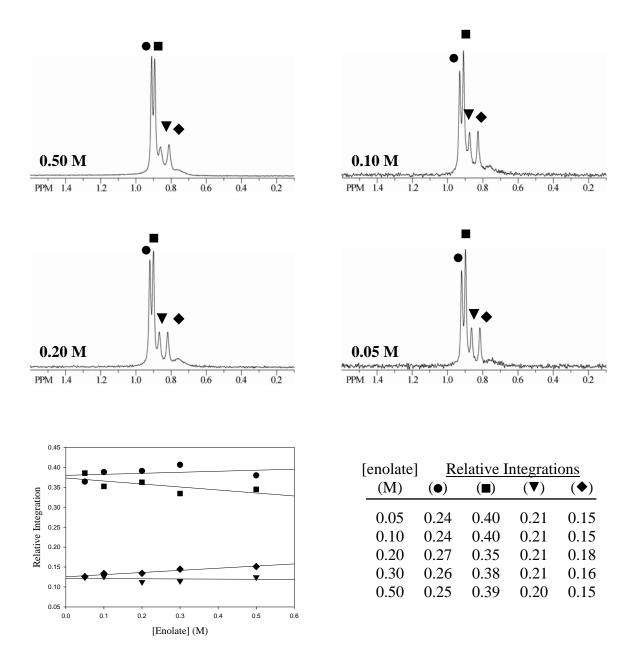

VI.B. ⁶Li NMR spectra (73.6 MHz) of a mixture of $[{}^{6}Li](S)$ -7 and $[{}^{6}Li](R)$ -5 (mole fraction of 7=0.7) at various temperatures. All samples are 0.10 M total enolate concentration and 9.0 M THF/toluene.

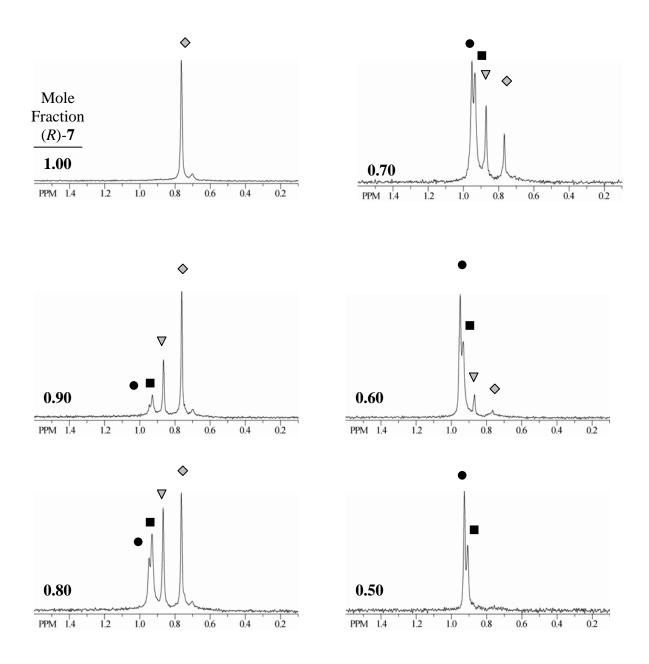

VI.C. ⁶Li NMR spectra (73.6 MHz) of mixtures of $[{}^{6}\text{Li}](S)$ -7 and $[{}^{6}\text{Li}](R)$ -5 at various mole fractions in 9.0 M THF/toluene at -40 °C. Samples are 0.10 M in total enolate concentration. (\blacklozenge) **R**₆ (\triangledown) **R**₅**S**'₁ (\blacksquare) **R**₄**S**'₂+**R**₂**S**'₄ (\blacklozenge) **R**₃**S**'₃ (\triangledown) **R**₁**S**'₅ (\diamondsuit) **S**'₆ such that **S**' = $[{}^{6}\text{Li}](S)$ -7 and **R** = $[{}^{6}\text{Li}](R)$ -5.

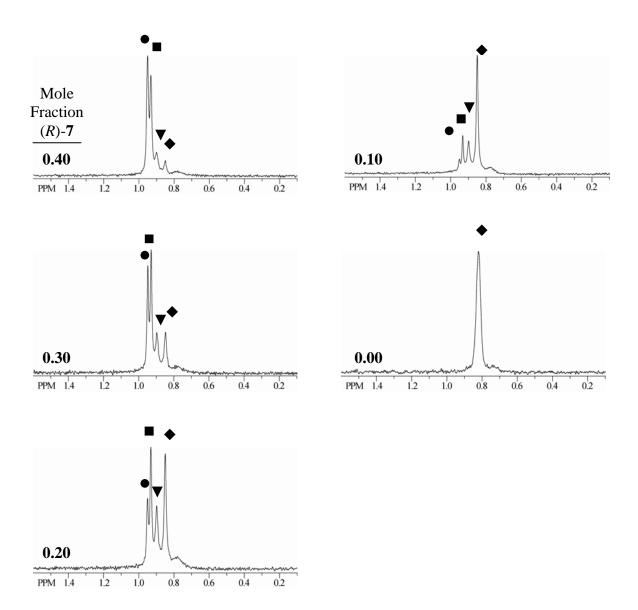

VI.C. (cont.) ⁶Li NMR spectra (73.6 MHz) of mixtures of $[{}^{6}Li](S)$ -7 and $[{}^{6}Li](R)$ -5 at various mole fractions in 9.0 M THF/toluene at -40 °C. Samples are 0.10 M in total enolate concentration. (\blacklozenge) \mathbf{R}_{6} (∇) $\mathbf{R}_{5}\mathbf{S'}_{1}$ (\blacksquare) $\mathbf{R}_{4}\mathbf{S'}_{2}$ + $\mathbf{R}_{2}\mathbf{S'}_{4}$ (\blacklozenge) $\mathbf{R}_{3}\mathbf{S'}_{3}$ (∇) $\mathbf{R}_{1}\mathbf{S'}_{5}$ (\diamondsuit) $\mathbf{S'}_{6}$ such that $\mathbf{S'} = [{}^{6}Li](S)$ -7 and $\mathbf{R} = [{}^{6}Li](R)$ -5.


VI.D. ⁶Li NMR spectra (73.6 MHz) of mixtures of $[{}^{6}Li](S)$ -7 and $[{}^{6}Li](R)$ -5 (mole fraction of 7=0.3) in non-aromatic cosolvents at various temperatures. All samples are 0.10 M total enolate concentration and 6.0 M THF.


VI.E. ⁶Li NMR spectra (73.6 MHz) of mixtures of $[{}^{6}Li](S)$ -7 and $[{}^{6}Li](R)$ -5 with benzene or anisole as a co-solvent in various THF concentrations. All samples are 0.10 M in total enolate concentration and were recorded at -40 °C.

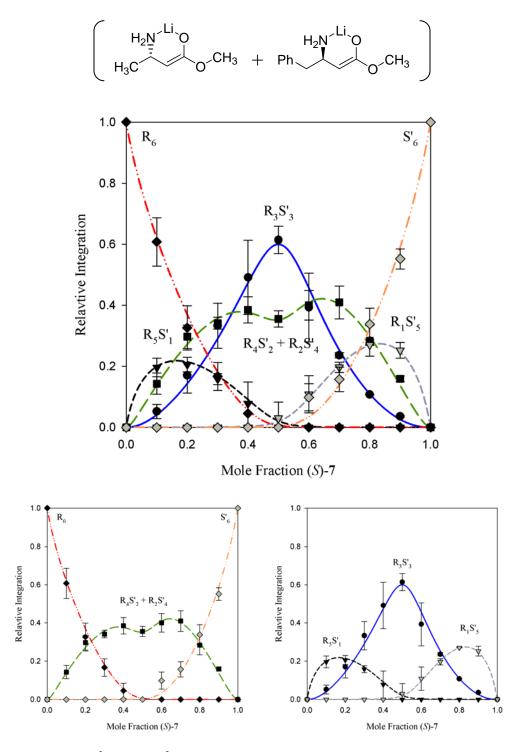

VI.F. ⁶Li NMR spectra (73.6 MHz) of mixtures of $[{}^{6}Li](S)$ -7 and $[{}^{6}Li](R)$ -5 with *tert*butylbenzene as a co-solvent at various THF concentrations. All samples are 0.10 M total enolate concentration.


VI.G. ⁶Li NMR spectra (73.6 MHz) of mixtures of $[{}^{6}Li](S)$ -7 and $[{}^{6}Li](R)$ -5 with toluene as a co-solvent at various THF concentrations. All samples are 0.10 M total enolate concentration and were recorded at -40 °C.


VI.H. Variation of enolate concentration for a mixture of $[{}^{6}\text{Li}](S)$ -7 and $[{}^{6}\text{Li}](R)$ -5 (mole fraction of 7=0.70). ⁶Li NMR spectra (73.6 MHz) of a mixture of $[{}^{6}\text{Li}](S)$ -7 and $[{}^{6}\text{Li}](R)$ -5 (mole fraction of 7=0.70) at various enolate concentrations. All samples are 4.0 M THF/toluene and were recorded at -30 °C. The relative integrations of the peaks are plotted versus the total enolate concentration. The lines represent a linear least squares fit. (\blacklozenge) **R**₆ (\triangledown) **R**₅**S**'₁ (\blacksquare) **R**₄**S**'₂+**R**₂**S**'₄ (\blacklozenge) **R**₃**S**'₃ (\triangledown) **R**₁**S**'₅ (\diamondsuit) **S**'₆ such that **S**' = $[{}^{6}\text{Li}](S)$ -7 and **R** = $[{}^{6}\text{Li}](R)$ -5.

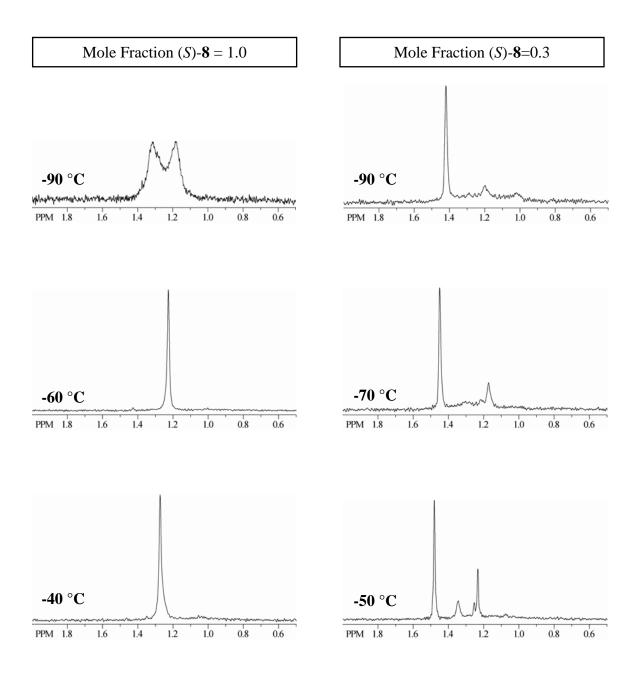
VI.I. Variation of enolate concentration for a mixture of $[{}^{6}\text{Li}](S)$ -7 and $[{}^{6}\text{Li}](R)$ -5 (mole fraction of 7=0.30). ⁶Li NMR spectra (73.6 MHz) of a mixture of $[{}^{6}\text{Li}](S)$ -7 and $[{}^{6}\text{Li}](R)$ -5 (mole fraction of 7=0.30) at various enolate concentrations. All samples are 4.0 M THF/toluene and were recorded at -30 °C. The relative integrations of the peaks are plotted versus the total enolate concentration. The lines represent a linear least squares fit. (\blacklozenge) \mathbf{R}_{6} (∇) $\mathbf{R}_{5}\mathbf{S'}_{1}$ (\blacksquare) $\mathbf{R}_{4}\mathbf{S'}_{2}+\mathbf{R}_{2}\mathbf{S'}_{4}$ (\blacklozenge) $\mathbf{R}_{3}\mathbf{S'}_{3}$ (∇) $\mathbf{R}_{1}\mathbf{S'}_{5}$ (\diamondsuit) $\mathbf{S'}_{6}$ such that $\mathbf{S'} = [{}^{6}\text{Li}](S)$ -7 and $\mathbf{R} = [{}^{6}\text{Li}](R)$ -5.

VI.J. ⁶Li NMR spectra (73.6 MHz) of mixtures of $[{}^{6}Li](S)$ -7 and $[{}^{6}Li](R)$ -5 at various mole fractions in 4.0 M THF/toluene at -30 °C. Samples are 0.10 M in total enolate concentration. (\blacklozenge) **R**₆ (\triangledown) **R**₅**S**'₁ (\blacksquare) **R**₄**S**'₂+**R**₂**S**'₄ (\blacklozenge) **R**₃**S**'₃ (\triangledown) **R**₁**S**'₅ (\diamondsuit) **S**'₆ such that **S**' = $[{}^{6}Li](R)$ -7 and **R** = $[{}^{6}Li](S)$ -5.

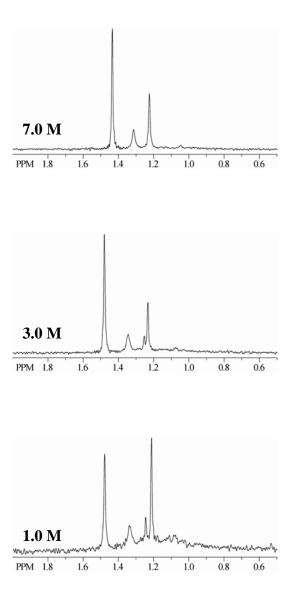


VI.J. (cont.) ⁶Li NMR spectra (73.6 MHz) of mixtures of $[{}^{6}\text{Li}](S)$ -7 and $[{}^{6}\text{Li}](R)$ -5 at various mole fractions in 4.0 M THF/toluene at -30 °C. Samples are 0.10 M in total enolate concentration. (\blacklozenge) **R**₆ (\triangledown) **R**₅**S**'₁ (\blacksquare) **R**₄**S**'₂+**R**₂**S**'₄ (\blacklozenge) **R**₃**S**'₃ (\triangledown) **R**₁**S**'₅ (\diamondsuit) **S**'₆ such that **S**' = $[{}^{6}\text{Li}](R)$ -7 and **R** = $[{}^{6}\text{Li}](S)$ -5.

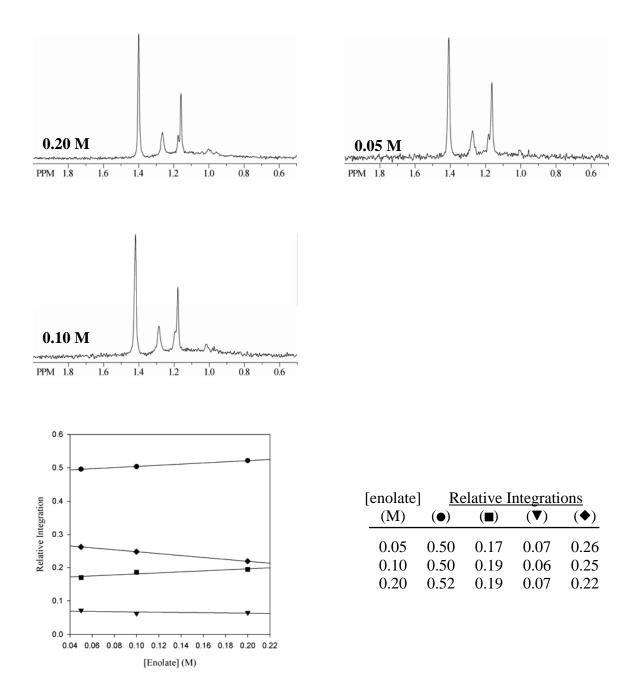
		Relative I	ntegrations	
Mole Frac	. S' ₆	$\mathbf{R}_{1}\mathbf{S'}_{5}$	$\mathbf{R}_{2}\mathbf{S'}_{4}$	$\mathbf{R}_{3}\mathbf{S'}_{3}$
(S)- 7	(�)	(♥)	(\Box)	(●)
1.00	1.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
0.90	0.55 ± 0.03	0.25 ± 0.03	0.159 ± 0.010	0.036 ± 0.002
0.80	0.34 ± 0.05	0.270 ± 0.002	0.28 ± 0.05	0.1075 ± 0.000
0.70	0.16 ± 0.04	0.20 ± 0.02	0.41 ± 0.05	0.236 ± 0.003
0.60	0.10 ± 0.04	0.11 ± 0.06	0.40 ± 0.05	0.39±0.11
0.50	0.00 ± 0.00	0.03 ± 0.05	0.36 ± 0.03	0.61 ± 0.04
0.40	0.00 ± 0.00	0.00 ± 0.00	0.39 ± 0.04	0.49±0.12
0.30	0.00 ± 0.00	0.00 ± 0.00	0.34 ± 0.02	0.33 ± 0.07
0.20	0.00 ± 0.00	0.00 ± 0.00	0.30 ± 0.04	0.17 ± 0.06
0.10	0.00 ± 0.00	0.00 ± 0.00	0.14 ± 0.04	0.05 ± 0.02
0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
		2 alativa Intagratio	nc	
Mole Frac		Relative Integratio R ₅ S' ₁	\mathbf{R}_{6}	
Mole Frac (<i>S</i>)- 7		$\frac{\text{Relative Integratio}}{\mathbf{R}_5 \mathbf{S'}_1}$ $(\mathbf{\nabla})$		
	$\mathbf{R}_{4}\mathbf{S'}_{2}$	$\mathbf{R}_{5}\mathbf{S'}_{1}$	\mathbf{R}_{6}	
(S)- 7	. R ₄ S' ₂ (■)	R ₅ S' ₁ (▼)	$\begin{array}{c} \mathbf{R}_6 \\ (\bigstar) \end{array}$	
(<i>S</i>)- 7 1.00	. R ₄ S' ₂ (■) 0.00±0.00	$\mathbf{R}_{5}\mathbf{S'}_{1}$ (♥) 0.00±0.00	$\begin{array}{c} \mathbf{R}_6 \\ (\bigstar) \end{array}$ 0.00 ± 0.00	
(<i>S</i>)- 7 1.00 0.90	$ \begin{array}{c} \overline{\mathbf{R}_{4}\mathbf{S'}_{2}} \\ (\blacksquare) \\ \hline 0.00 \pm 0.00 \\ 0.036 \pm 0.002 \\ \end{array} $	$\mathbf{R}_{5}\mathbf{S'}_{1}$ (♥) 0.00 ± 0.00 0.00 ± 0.00	$ \begin{array}{c} \mathbf{R}_{6} \\ (\bigstar) \end{array} $ 0.00±0.00 0.00±0.00	
(S)- 7 1.00 0.90 0.80	. $\mathbf{R}_4 \mathbf{S'}_2$ (■) 0.00±0.00 0.036±0.002 0.1075±0.0005		R ₆ (◆) 0.00±0.00 0.00±0.00 0.00±0.00	
(S)- 7 1.00 0.90 0.80 0.70	. $\mathbf{R}_4 \mathbf{S'}_2$ (■) 0.00±0.00 0.036±0.002 0.1075±0.0005 0.236±0.009		R ₆ (◆) 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00	
(S)- 7 1.00 0.90 0.80 0.70 0.60	$\begin{array}{c} \hline \mathbf{R}_{4}\mathbf{S'}_{2} \\ (\blacksquare) \\ \hline 0.00 \pm 0.00 \\ 0.036 \pm 0.002 \\ 0.1075 \pm 0.0005 \\ 0.236 \pm 0.009 \\ 0.39 \pm 0.11 \end{array}$	$ \mathbf{R}_{5}\mathbf{S'}_{1} \\ (♥) 0.00\pm0.00 \\ 0.00\pm0.00 \\ 0.00\pm0.00 \\ 0.00\pm0.00 \\ 0.00\pm0.00 0.00\pm0.00 0.00\pm0.00 $	$ \begin{array}{c} R_6 \\ (♦) \end{array} $ 0.00±0.00 0.00±0.00±	
(S)- 7 1.00 0.90 0.80 0.70 0.60 0.50	$. R_4S'_2 (■) 0.00\pm0.00 0.036\pm0.002 0.1075\pm0.0005 0.236\pm0.009 0.39\pm0.11 0.61\pm0.04 $	$ \mathbf{R}_{5}\mathbf{S'}_{1} \\ (♥) 0.00\pm0.00 \\ 0.00\pm0.00 \\ 0.00\pm0.00 \\ 0.00\pm0.00 \\ 0.00\pm0.00 \\ 0.00\pm0.00 \\ 0.00\pm0.00 0.00\pm0.00\pm$		
(S)- 7 1.00 0.90 0.80 0.70 0.60 0.50 0.40	$\begin{array}{c} \hline \mathbf{R}_{4}\mathbf{S'}_{2} \\ (\blacksquare) \\ \hline 0.00 \pm 0.00 \\ 0.036 \pm 0.002 \\ 0.1075 \pm 0.0005 \\ 0.236 \pm 0.009 \\ 0.39 \pm 0.11 \\ 0.61 \pm 0.04 \\ 0.49 \pm 0.12 \end{array}$	$ \mathbf{R}_{5}\mathbf{S'}_{1} \\ (♥) 0.00\pm0.00 \\ 0.08\pm0.07 $		
(S)-7 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30	$\begin{array}{c c} \hline \mathbf{R}_4 \mathbf{S'}_2 \\ (\blacksquare) \\ \hline 0.00 \pm 0.00 \\ 0.036 \pm 0.002 \\ 0.1075 \pm 0.0005 \\ 0.236 \pm 0.009 \\ 0.39 \pm 0.11 \\ 0.61 \pm 0.04 \\ 0.49 \pm 0.12 \\ 0.33 \pm 0.07 \end{array}$	$ \mathbf{R}_{5}\mathbf{S'}_{1} \\ (♥) 0.00\pm0.00 \\ 0.08\pm0.07 \\ 0.16\pm0.02 $	R_6 (♦) 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.05±0.04 0.17±0.05	

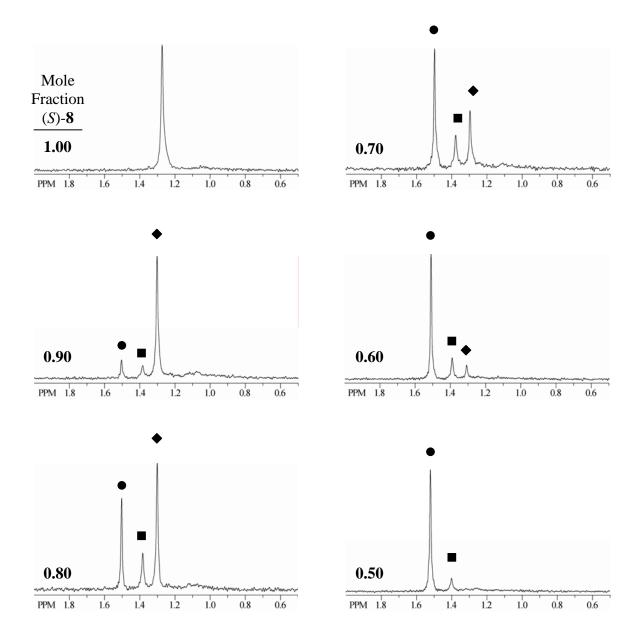

VI.K. Table of the relative integrations for the spectra in $\mathbf{VI.J}^a$

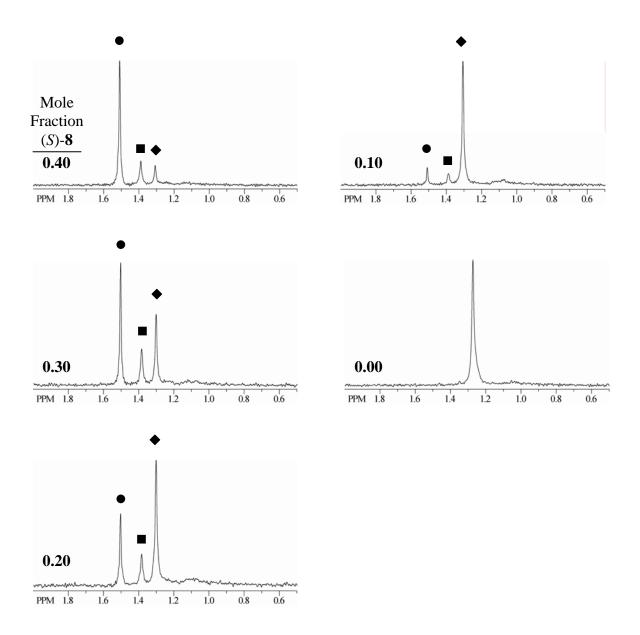
^{*a*}(\blacklozenge) **R**₆ (\triangledown) **R**₅**S**'₁ (**n**) **R**₄**S**'₂+**R**₂**S**'₄ (\blacklozenge) **R**₃**S**'₃ (\triangledown) **R**₁**S**'₅ (\diamondsuit) **S**'₆ such that **S**' = [⁶Li](*S*)-7 and **R** = [⁶Li](*R*)-5.



VI.L. Job Plot of $[{}^{6}\text{Li}](S)$ -7/ $[{}^{6}\text{Li}](R)$ -5 (4.0 M THF/toluene; -30 °C) hexamers. The relative integrations are plotted as a function of the mole fraction of $[{}^{6}\text{Li}](S)$ -7. The relative integrations of the **R**₂**S**'₄ and **R**₄**S**'₂ aggregates are summed due to poor resolution of their resoncances. (\blacklozenge) **R**₆ (\bigtriangledown) **R**₅**S**'₁ (\blacksquare) **R**₄**S**'₂+**R**₂**S**'₄ (\blacklozenge) **R**₃**S**'₃ (\bigtriangledown) **R**₁**S**'₅ (\diamondsuit) **S**'₆ such that **S**' = $[{}^{6}\text{Li}](S)$ -7 and **R** = $[{}^{6}\text{Li}](R)$ -5. The curves result from a parametric fit, affording ϕ_0 =1.2; ϕ_1 =0.85; ϕ_2 =3.0; ϕ_3 =8.8; ϕ_4 =3.9; ϕ_5 =1.11; ϕ_6 =1.0.

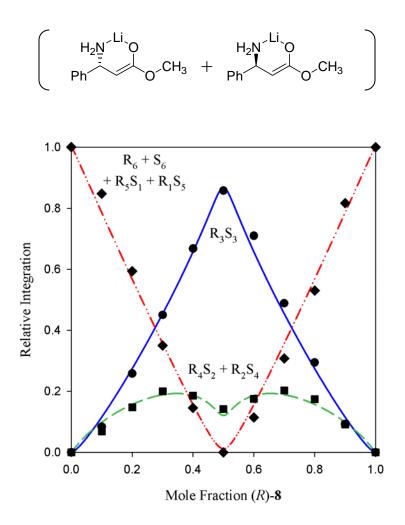

VII. (S)- β -Phenylglycine/(R)- β -Phenylglycine


VII.A. ⁶Li NMR spectra of $[{}^{6}Li](R)$ -**8** (58.8 MHz) and a mixture of $[{}^{6}Li](R)$ -**8** and $[{}^{6}Li](S)$ -**8** (mole fraction of **R**=0.70) (73.6 MHz) at various temperatures. The $[{}^{6}Li](R)$ -**8** sample is 9.0 M THF/toluene. The mixture of $[{}^{6}Li](R)$ -**8** and $[{}^{6}Li](S)$ -**8** sample is 3.0 M THF/toluene. Both samples are 0.10 M total enolate concentration.


VII.B. ⁶Li NMR spectra (73.6 MHz) of a mixture of $[{}^{6}Li](R)$ -8 and $[{}^{6}Li](S)$ -8 (mole fraction S=0.30) at various THF/toluene concentrations. All samples are 0.10 M total enolate and were recorded at -50 °C.

VII.C. Variation of enolate concentration for a mixture of $[{}^{6}Li](R)$ -8 and $[{}^{6}Li](S)$ -8 (mole fraction of **R**=0.70). ⁶Li NMR spectra (73.6 MHz) of a mixture of $[{}^{6}Li](R)$ -8 and $[{}^{6}Li](S)$ -8 (mole fraction of **R**=0.70) at various enolate concentrations. All samples are 3.0 M THF/toluene and were recorded at -50 °C. The relative integrations of the peaks are plotted versus the total enolate concentration. The lines represent a linear least squares fit. (\blacklozenge) **R**₆+**S**₆ (\blacktriangledown) **R**₅**S**₁+**R**₁**S**₅ (\blacksquare) **R**₂**S**₄+**R**₄**S**₂ (\blacklozenge) **R**₃**S**₃ such that **R** = $[{}^{6}Li](R)$ -8 and **S** = $[{}^{6}Li](S)$ -8.

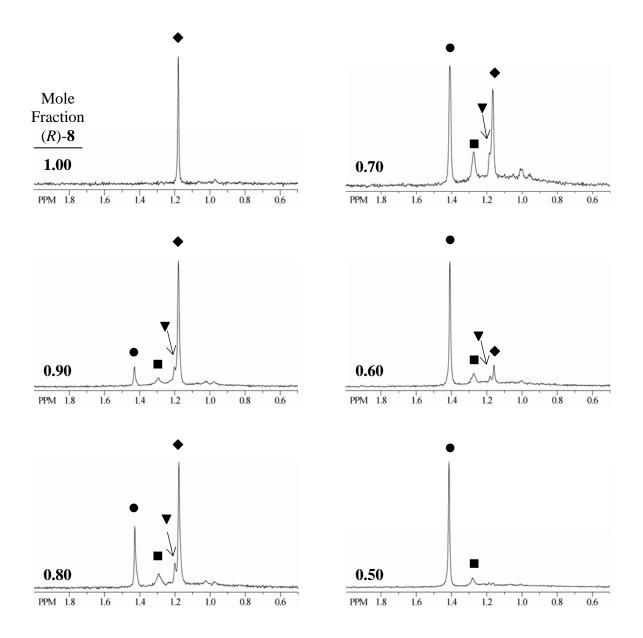
VII.D. ⁶Li NMR spectra (73.6 MHz) of mixtures of $[{}^{6}Li](R)$ -8 and $[{}^{6}Li](S)$ -8 at various mole fractions in 9.0 M THF/toluene at -40 °C. Samples are 0.10 M in total enolate concentration. (\blacklozenge) \mathbf{R}_{6} + \mathbf{S}_{6} + $\mathbf{R}_{5}\mathbf{S}_{1}$ + $\mathbf{R}_{1}\mathbf{S}_{5}$ (\blacksquare) $\mathbf{R}_{2}\mathbf{S}_{4}$ + $\mathbf{R}_{4}\mathbf{S}_{2}$ (\blacklozenge) $\mathbf{R}_{3}\mathbf{S}_{3}$ such that $\mathbf{R} = [{}^{6}Li](R)$ -8 and $\mathbf{S} = [{}^{6}Li](S)$ -8.

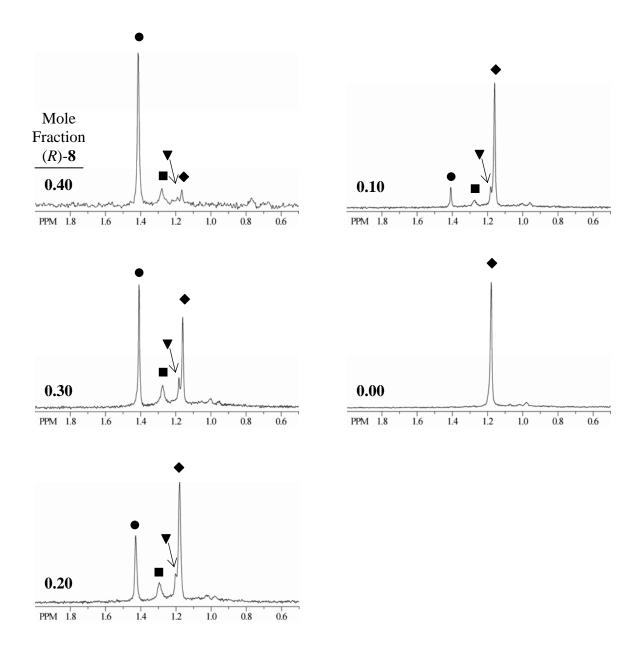


VII.D. (cont.) ⁶Li NMR spectra (73.6 MHz) of mixtures of $[{}^{6}Li](R)$ -8 and $[{}^{6}Li](S)$ -8 at various mole fractions in 9.0 M THF/toluene at -40 °C. Samples are 0.10 M in total enolate concentration. (\blacklozenge) \mathbf{R}_{6} + \mathbf{S}_{6} + $\mathbf{R}_{5}\mathbf{S}_{1}$ + $\mathbf{R}_{1}\mathbf{S}_{5}$ (\blacksquare) $\mathbf{R}_{2}\mathbf{S}_{4}$ + $\mathbf{R}_{4}\mathbf{S}_{2}$ (\blacklozenge) $\mathbf{R}_{3}\mathbf{S}_{3}$ such that $\mathbf{R} = [{}^{6}Li](R)$ -8 and $\mathbf{S} = [{}^{6}Li](S)$ -8.

_	R	Relative Integration	ons
Mole Frac. (<i>S</i>)- 8	R ₃ S ₃ (●)	$\mathbf{R}_{4}\mathbf{S}_{2}+\mathbf{R}_{2}\mathbf{S}_{4}$ (\blacksquare)	
1.00	0.00	0.00	1.00
0.90	0.09	0.09	0.82
0.80	0.29	0.17	0.53
0.70	0.49	0.20	0.31
0.60	0.71	0.18	0.11
0.50	0.86	0.14	0.00
0.40	0.67	0.19	0.15
0.30	0.45	0.20	0.35
0.20	0.26	0.15	0.59
0.10	0.08	0.07	0.85
0.00	0.00	0.00	1.00

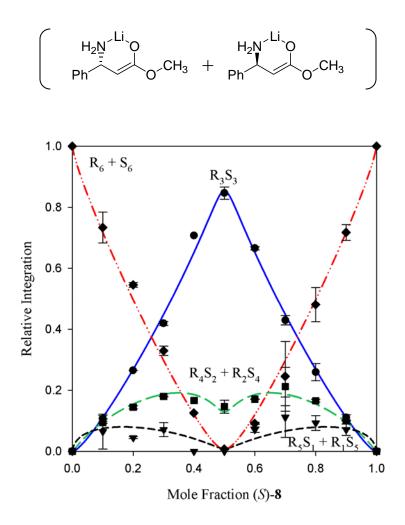
VII.E. Table of the relative integrations for the spectra in **VII.D**. a


^{*a*} (\blacklozenge) $\mathbf{R}_6 + \mathbf{S}_6 + \mathbf{R}_5 \mathbf{S}_1 + \mathbf{R}_1 \mathbf{S}_5$ (\blacksquare) $\mathbf{R}_2 \mathbf{S}_4 + \mathbf{R}_4 \mathbf{S}_2$ (\blacklozenge) $\mathbf{R}_3 \mathbf{S}_3$ such that $\mathbf{R} = [{}^6\text{Li}](R) - \mathbf{8}$ and $\mathbf{S} = [{}^6\text{Li}](S) - \mathbf{8}$. ^{*b*} The \mathbf{R}_6 , \mathbf{S}_6 , $\mathbf{R}_5 \mathbf{S}_1$, and $\mathbf{R}_1 \mathbf{S}_5$ aggregates are spectroscopically indistinguishable.

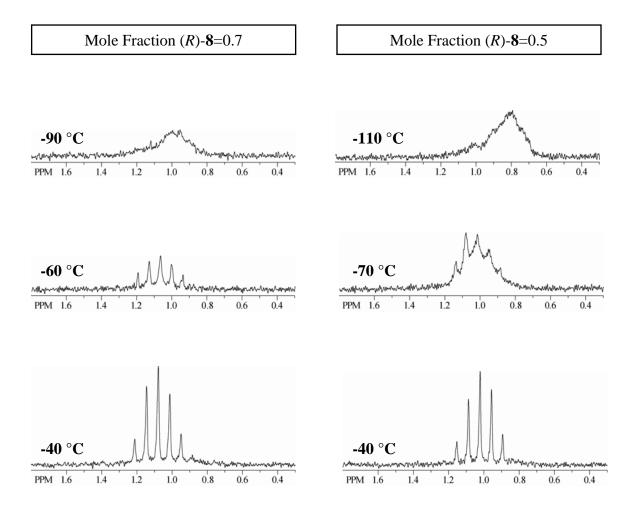

VII.F. Job Plot of $[{}^{6}\text{Li}](R)$ -8/ $[{}^{6}\text{Li}](S)$ -8 (9.0 M THF/toluene; -40 °C) hexamers. The relative integrations are plotted as a function of the mole fraction of $[{}^{6}\text{Li}](R)$ -8. The **R**₆, **S**₆, **R**₅**S**₁, and **R**₁**S**₅ aggregates are assigned as spectroscopically indistinguishable. (\blacklozenge) **R**₆+**S**₆+**R**₅**S**₁+**R**₁**S**₅ (\blacksquare) **R**₂**S**₄+**R**₄**S**₂ (\blacklozenge) **R**₃**S**₃ such that **R** = $[{}^{6}\text{Li}](R)$ -8 and **S** = $[{}^{6}\text{Li}](S)$ -8. The curves result from a parametric fit (p. Sxx), affording ϕ_0 =0.70; ϕ_1 =0.11; ϕ_2 =0.93; ϕ_2 =10

VII.G. Job Plot of $[{}^{6}\text{Li}](R)$ -8/ $[{}^{6}\text{Li}](S)$ -8 (9.0 M THF/toluene; -40 °C) fit to tetramer model. The relative integrations are plotted as a function of the mole fraction of (*R*)-8. (\blacklozenge) **R**₄+**S**₄ (**I**) **R**₃**S**₁+**R**₁**S**₃ (\blacklozenge) **R**₂**S**₂ such that **R** = $[{}^{6}\text{Li}](R)$ -8 and **S** = $[{}^{6}\text{Li}](S)$ -8. The curves result from a parametric fit, affording ϕ_0 =1; ϕ_1 =0.63; ϕ_2 =5.86.

VII.H. ⁶Li NMR spectra (73.6 MHz) of mixtures of $[{}^{6}Li](R)$ -8 and $[{}^{6}Li](R)$ -8 at various mole fractions in 3.0 M THF/toluene at -50 °C. Samples are 0.10 M in total enolate concentration. (\blacklozenge) \mathbf{R}_{6} + \mathbf{S}_{6} (∇) $\mathbf{R}_{5}\mathbf{S}_{1}$ + $\mathbf{R}_{1}\mathbf{S}_{5}$ (\blacksquare) $\mathbf{R}_{2}\mathbf{S}_{4}$ + $\mathbf{R}_{4}\mathbf{S}_{2}$ (\blacklozenge) $\mathbf{R}_{3}\mathbf{S}_{3}$ such that $\mathbf{R} = [{}^{6}Li](R)$ -8 and $\mathbf{S} = [{}^{6}Li](S)$ -8.



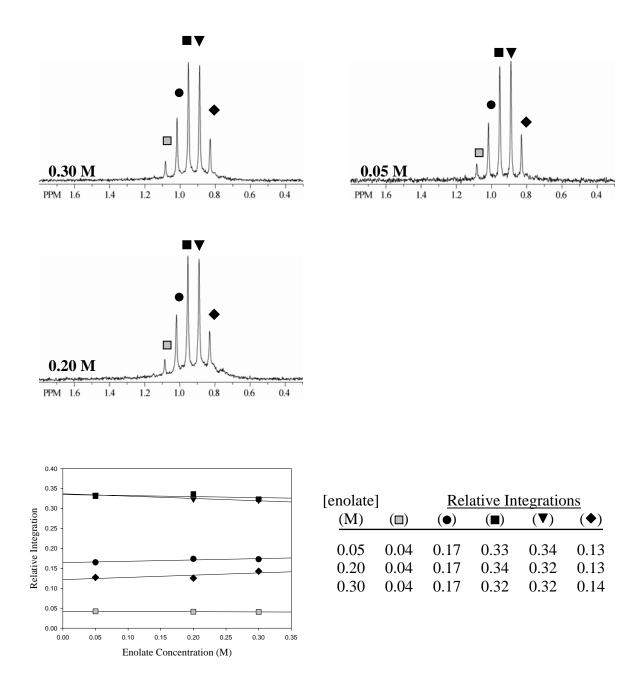
VII.H. (cont.) ⁶Li NMR spectra (73.6 MHz) of mixtures of $[{}^{6}Li](R)$ -8 and $[{}^{6}Li](R)$ -8 at various mole fractions in 3.0 M THF/toluene at -50 °C. Samples are 0.10 M in total enolate concentration. (\blacklozenge) \mathbf{R}_{6} + \mathbf{S}_{6} (∇) $\mathbf{R}_{5}\mathbf{S}_{1}$ + $\mathbf{R}_{1}\mathbf{S}_{5}$ (\blacksquare) $\mathbf{R}_{2}\mathbf{S}_{4}$ + $\mathbf{R}_{4}\mathbf{S}_{2}$ (\blacklozenge) $\mathbf{R}_{3}\mathbf{S}_{3}$ such that $\mathbf{R} = [{}^{6}Li](R)$ -8 and $\mathbf{S} = [{}^{6}Li](S)$ -8.


		Relative In	ntegrations	
Mole Frac (<i>S</i>)- 8	$\begin{array}{c} \mathbf{R}_{3}\mathbf{S}_{3}\\ (\bullet) \end{array}$	$\mathbf{R}_{4}\mathbf{S}_{2}+\mathbf{R}_{2}\mathbf{S}_{4}$ (\blacksquare)	$\mathbf{R}_{5}\mathbf{S}_{1}+\mathbf{R}_{1}\mathbf{S}_{5}$ $(\mathbf{\nabla})$	$\begin{array}{c} \mathbf{R}_6 + \mathbf{S}_6 \\ (\bigstar) \end{array}$
1.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	1.00 ± 0.00
0.90	0.11 ± 0.01	0.100 ± 0.001	0.07 ± 0.02	0.72 ± 0.03
0.80	0.26 ± 0.03	0.166 ± 0.004	0.09 ± 0.02	0.48 ± 0.06
0.70	0.43±0.01	0.21±0.06	0.11 ± 0.07	0.25±0.11
0.60	0.67 ± 0.01	0.171 ± 0.001	0.07 ± 0.01	0.092 ± 0.00
0.50	0.85 ± 0.02	0.15 ± 0.02	0.00 ± 0.00	0.007 ± 0.00
0.40	0.71±0.00	0.17 ± 0.00	0.00 ± 0.00	0.13±0.00
0.30	0.42 ± 0.01	0.180 ± 0.001	0.07 ± 0.02	0.33±0.02
0.20	0.265 ± 0.001	0.144 ± 0.005	0.045 ± 0.003	0.55 ± 0.01
0.10	0.11 ± 0.01	0.095 ± 0.003	0.06 ± 0.06	0.73 ± 0.05
0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	1.00 ± 0.00

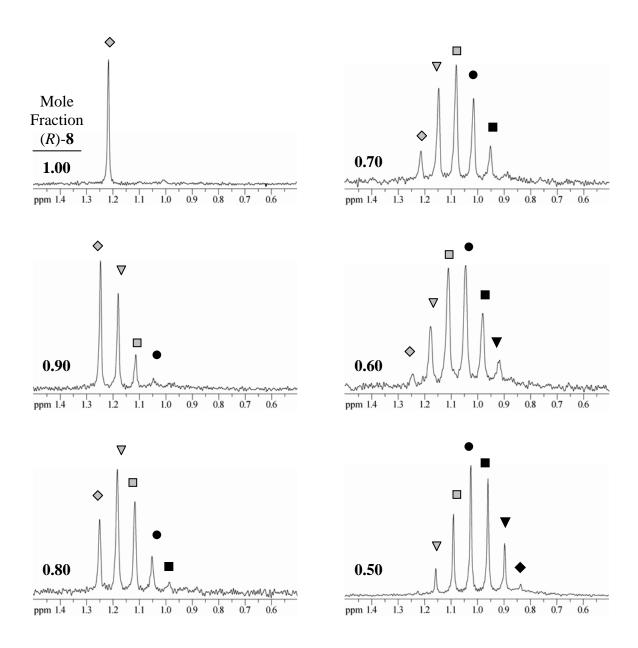
VII.I. Table of the relative integrations for the spectra in **VII.H**.^{*a*}

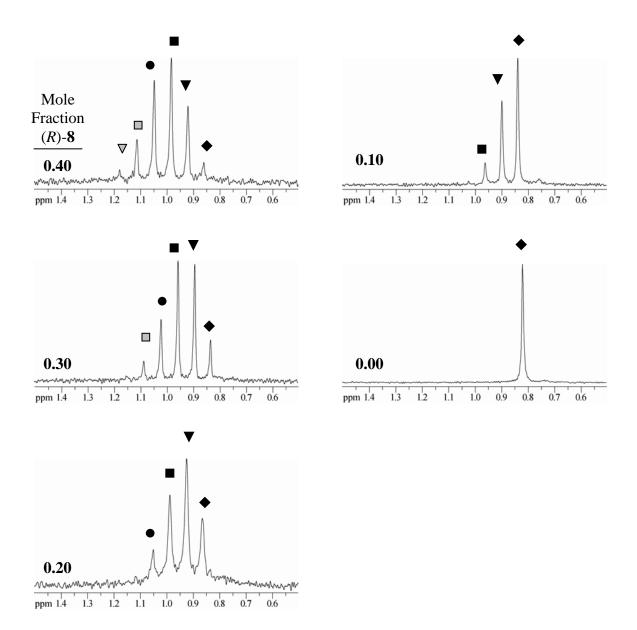
^{*a*} (♦) $\mathbf{R}_6 + \mathbf{S}_6$ (♥) $\mathbf{R}_5 \mathbf{S}_1 + \mathbf{R}_1 \mathbf{S}_5$ (■) $\mathbf{R}_2 \mathbf{S}_4 + \mathbf{R}_4 \mathbf{S}_2$ (●) $\mathbf{R}_3 \mathbf{S}_3$ such that $\mathbf{R} = [{}^6 \text{Li}](R) - \mathbf{8}$ and $\mathbf{S} = [{}^6 \text{Li}](S) - \mathbf{8}$.

VII.J. Job Plot of $[{}^{6}\text{Li}](R)$ -8/ $[{}^{6}\text{Li}](S)$ -8 (3.0 M THF/toluene; -50 °C) hexamers. The relative integrations are plotted as a function of the mole fraction of $[{}^{6}\text{Li}](R)$ -8. (\blacklozenge) \mathbf{R}_{6} + \mathbf{S}_{6} (\blacktriangledown) $\mathbf{R}_{5}\mathbf{S}_{1}$ + $\mathbf{R}_{1}\mathbf{S}_{5}$ (\blacksquare) $\mathbf{R}_{4}\mathbf{S}_{2}$ + $\mathbf{R}_{2}\mathbf{S}_{4}$ (\blacklozenge) $\mathbf{R}_{3}\mathbf{S}_{3}$ such that $\mathbf{R} = [{}^{6}\text{Li}](R)$ -8 and $\mathbf{S} = [{}^{6}\text{Li}](S)$ -8. The curves result from a parametric fit, affording ϕ_{0} =0.090; ϕ_{1} =0.018; ϕ_{2} =0.101; ϕ_{3} =1.



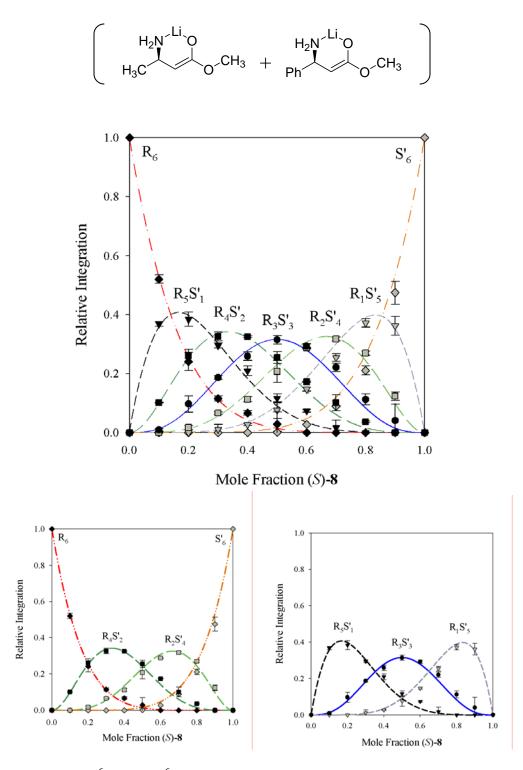
VIII. (S)- β -Phenylglycine and (*R*)- β -Alanine *Note this is R/R' mix


VIII.A. ⁶Li NMR spectra (73.6 MHz) of mixtures of $[^{6}Li](R)$ -**8** and $[^{6}Li](S)$ -**5** at various temperatures. All samples are 0.10 M total enolate concentration and 3.0 M THF/toluene.

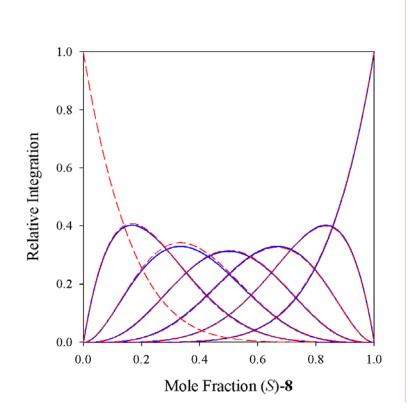

VIII.B. Variation of enolate concentration for a mixture of $[{}^{6}Li](R)$ -8 and $[{}^{6}Li](S)$ -5 (mole fraction of **R**'=0.70). ⁶Li NMR spectra (73.6 MHz) of a mixture of $[{}^{6}Li](R)$ -8 and $[{}^{6}Li](S)$ -5 (mole fraction of **R**'=0.70) at various enolate concentrations. All samples are 3.0 M THF/toluene and were recorded at -40 °C. The relative integrations of the peaks are plotted versus the total enolate concentration. The lines represent a linear least squares fit. (\blacklozenge) **R**₆ (\bigtriangledown) **R**₅**R**'₁ (**□**) **R**₄**R**'₂ (\blacklozenge) **R**₃**R**'₃ (**□**) **R**₂**R**'₄ (\bigtriangledown) **R**₁**R**'₅ (\diamondsuit) **R**'₆ such that **R**' = $[{}^{6}Li](R)$ -8 and **R** = $[{}^{6}Li](S)$ -5.

VIII.C. Variation of enolate concentration for a mixture of $[{}^{6}\text{Li}](R)$ -8 and $[{}^{6}\text{Li}](S)$ -5 (mole fraction of **R**'=0.30). ⁶Li NMR spectra (73.6 MHz) of a mixture of $[{}^{6}\text{Li}](R)$ -8 and $[{}^{6}\text{Li}](S)$ -5 (mole fraction of **R**'=0.30) at various enolate concentrations. All samples are 3.0 M THF/toluene and were recorded at -40 °C. The relative integrations of the peaks are plotted versus the total enolate concentration. The lines represent a linear least squares fit. (\blacklozenge) **R**₆ (\blacktriangledown) **R**₅**R**'₁ (**□**) **R**₄**R**'₂ (\blacklozenge) **R**₃**R**'₃ (**□**) **R**₂**R**'₄ (\triangledown) **R**₁**R**'₅ (\diamondsuit) **R**'₆ such that **R**' = $[{}^{6}\text{Li}](R)$ -8 and **R** = $[{}^{6}\text{Li}](S)$ -5.

VIII.D. ⁶Li NMR spectra (73.6 MHz) of mixtures of $[{}^{6}Li](R)$ -8 and $[{}^{6}Li](S)$ -5 at various mole fractions in 3.0 M THF/toluene at -40 °C. Samples are 0.10 M in total enolate concentration. (\blacklozenge) \mathbf{R}_{6} (∇) $\mathbf{R}_{5}\mathbf{R'}_{1}$ (\blacksquare) $\mathbf{R}_{4}\mathbf{R'}_{2}$ (\blacklozenge) $\mathbf{R}_{3}\mathbf{R'}_{3}$ (\blacksquare) $\mathbf{R}_{2}\mathbf{R'}_{4}$ (∇) $\mathbf{R}_{1}\mathbf{R'}_{5}$ (\diamondsuit) $\mathbf{R'}_{6}$ such that $\mathbf{R'} = [{}^{6}Li](R)$ -8 and $\mathbf{R} = [{}^{6}Li](S)$ -5.



VIII.D. (cont.) ⁶Li NMR spectra (73.6 MHz) of mixtures of $[{}^{6}Li](R)$ -8 and $[{}^{6}Li](S)$ -5 at various mole fractions in 3.0 M THF/toluene at -40 °C. Samples are 0.10 M in total enolate concentration. (\blacklozenge) \mathbf{R}_{6} (\triangledown) $\mathbf{R}_{5}\mathbf{R'}_{1}$ (\blacksquare) $\mathbf{R}_{4}\mathbf{R'}_{2}$ (\blacklozenge) $\mathbf{R}_{3}\mathbf{R'}_{3}$ (\square) $\mathbf{R}_{2}\mathbf{R'}_{4}$ (\triangledown) $\mathbf{R}_{1}\mathbf{R'}_{5}$ (\diamondsuit) $\mathbf{R'}_{6}$ such that $\mathbf{R'} = [{}^{6}Li](R)$ -8 and $\mathbf{R} = [{}^{6}Li](S)$ -5.


			ntegrations	
Aole Frac.	R' ₆	$\mathbf{R'}_{5}\mathbf{R}_{1}$	$\mathbf{R'}_4\mathbf{R}_2$	$\mathbf{R'}_3\mathbf{R}_3$
(S)- 8	(�)	(♥)		(●)
1.00	1.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
0.90	0.47 ± 0.04	0.36 ± 0.03	0.12 ± 0.01	0.04 ± 0.06
0.80	0.21±0.01	0.37 ± 0.01	0.27 ± 0.01	0.11 ± 0.02
0.70	0.09 ± 0.002	0.25 ± 0.01	0.32 ± 0.01	0.22±0.01
0.60	0.03 ± 0.001	0.15 ± 0.01	0.29 ± 0.001	0.29±0.01
0.50	0.002 ± 0.003	0.08 ± 0.03	0.21 ± 0.04	0.31±0.01
0.40	0.00 ± 0.00	0.03 ± 0.003	0.11 ± 0.01	0.26 ± 0.01
0.30	0.00 ± 0.00	0.01 ± 0.02	0.07 ± 0.004	0.19 ± 0.01
0.20	0.00 ± 0.00	0.00 ± 0.00	0.02 ± 0.01	0.10 ± 0.03
0.10	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.01 ± 0.01
0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
		Relative Integratio	ns	
Aole Frac.	R' ₂ R ₄	Relative Integratio R' 1 R 5	ns R 6	
Mole Frac. (S)- 8		-		
	$\mathbf{R'}_2\mathbf{R}_4$	$\mathbf{R'}_1\mathbf{R}_5$	\mathbf{R}_{6}	
(S)- 8	R' ₂ R ₄ (■)	R' ₁ R ₅ (▼)	$\frac{\mathbf{R}_{6}}{(\blacklozenge)}$	
(<i>S</i>)- 8 1.00	R' ₂ R ₄ (■) 0.00±0.00	R' 1 R 5 (♥) 0.00±0.00	$\begin{array}{c} \mathbf{R}_{6} \\ (\bigstar) \\ 0.00 \pm 0.00 \end{array}$	
(<i>S</i>)- 8 1.00 0.90	R' 2 R 4 (■) 0.00±0.00 0.00±0.00	R' 1 R 5 (♥) 0.00±0.00 0.00±0.00	$ \begin{array}{c} \mathbf{R}_{6} \\ (\blacklozenge) \hline 0.00 \pm 0.00 \\ 0.00 \pm 0.00 \end{array} $	
(<i>S</i>)- 8 1.00 0.90 0.80	R' ₂ R ₄ (■) 0.00±0.00 0.00±0.00 0.04±0.003	R' 1 R 5 (♥) 0.00±0.00 0.00±0.00 0.00±0.00	R ₆ (◆) 0.00±0.00 0.00±0.00 0.00±0.00	
(<i>S</i>)- 8 1.00 0.90 0.80 0.70	R' 2 R 4 (■) 0.00±0.00 0.00±0.00 0.04±0.003 0.10±0.03	R' 1 R 5 (♥) 0.00±0.00 0.00±0.00 0.00±0.00 0.02±0.02	R ₆ (◆) 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00	
(<i>S</i>)- 8 1.00 0.90 0.80 0.70 0.60	R' 2 R 4 (■) 0.00±0.00 0.00±0.00 0.04±0.003 0.10±0.03 0.17±0.002	R' 1 R 5 (♥) 0.00±0.00 0.00±0.00 0.00±0.00 0.02±0.02 0.07±0.005	$ \begin{array}{c} R_6 \\ (♦) \end{array} $ 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 \end{array}	
(S)- 8 1.00 0.90 0.80 0.70 0.60 0.50	R'_2R_4 (\blacksquare) 0.00±0.00 0.00±0.00 0.04±0.003 0.10±0.03 0.17±0.002 0.25±0.02	$ R'_1 R_5 (♥) 0.00±0.00 0.00±0.00 $	$ \begin{array}{c} R_6 \\ (♦) \end{array} $ 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.03±0.04 \end{array}	
(S)- 8 1.00 0.90 0.80 0.70 0.60 0.50 0.40	$\begin{tabular}{ c c c c c } \hline {\bf R'}_2 {\bf R}_4 \\ \hline (\blacksquare) \\ \hline 0.00 {\pm} 0.00 \\ 0.00 {\pm} 0.00 \\ 0.04 {\pm} 0.003 \\ 0.10 {\pm} 0.03 \\ 0.17 {\pm} 0.002 \\ 0.25 {\pm} 0.02 \\ 0.32 {\pm} 0.003 \\ \hline \end{tabular}$	R' ₁ R ₅ (♥) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.02 ± 0.02 0.07 ± 0.005 0.12 ± 0.02 0.21 ± 0.02	$ \begin{array}{c} R_6 \\ (♦) \end{array} $ 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.03±0.04 0.07±0.01 \end{array}	
(<i>S</i>)- 8 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30	$\begin{tabular}{ c c c c c c } \hline ${\bf R'_2 R_4} \\ (\blacksquare) \end{tabular} \\ \hline $0.00 \pm 0.00 \\ $0.00 \pm 0.00 \\ $0.00 \pm 0.00 \\ $0.04 \pm 0.003 \\ $0.10 \pm 0.03 \\ $0.17 \pm 0.002 \\ $0.32 \pm 0.003 \\ $0.33 \pm 0.02 \end{tabular} \end{tabular}$	R' ₁ R ₅ (♥) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.02 ± 0.02 0.07 ± 0.005 0.12 ± 0.02 0.21 ± 0.02 0.29 ± 0.01	$\begin{array}{c} \mathbf{R}_{6} \\ (\spadesuit) \\ \hline \\ 0.00 \pm 0.00 \\ 0.03 \pm 0.04 \\ 0.07 \pm 0.01 \\ 0.12 \pm 0.01 \end{array}$	

VIII.E. Table of the relative integrations for the spectra in **VIII.D**.^{*a*}

^{*a*} (\blacklozenge) **R**₆ (\triangledown) **R**₅**R**^{**i**}₁ (\blacksquare) **R**₄**R**^{**i**}₂ (\blacklozenge) **R**₃**R**^{**i**}₃ (\square) **R**₂**R**^{**i**}₄ (\triangledown) **R**₁**R**^{**i**}₅ (\diamondsuit) **R**^{**i**}₆ such that **R**^{**i**} = [⁶Li](*S*)-8 and **R** = [⁶Li](*R*)-5.

VIII.F. A Plot of $[{}^{6}\text{Li}](S)$ -8/ $[{}^{6}\text{Li}](R)$ -5 (3.0 M THF/toluene; -40 °C) hexamers. The relative integrations are plotted as a function of the mole fraction of $[{}^{6}\text{Li}](S)$ -8. (\blacklozenge) **R**₆ (\blacktriangledown) **R**₅**R**ⁱ₁ (\blacksquare) **R**₄**R**ⁱ₂ (\blacklozenge) **R**₃**R**ⁱ₃ (\blacksquare) **R**₂**R**ⁱ₄ (\triangledown) **R**₁**R**ⁱ₅ (\diamondsuit) **R**ⁱ₆ such that **R**ⁱ = $[{}^{6}\text{Li}](S)$ -8 and **R** = $[{}^{6}\text{Li}](R)$ -5. The curves result from a parametric fit, affording ϕ_0 =1.00; ϕ_1 =1.53; ϕ_2 =2.28; ϕ_3 =3.15; ϕ_4 =4.32; ϕ_5 =6.09; ϕ_6 =8.76.

VIII.G. The fit in **VIII.F.** is overlaid with the expected statistical distribution of an ensemble of hexamers.

(_____) Fit to data ($\phi_0=1.00$; $\phi_1=1.53$; $\phi_2=2.28$; $\phi_3=3.15$; $\phi_4=4.32$; $\phi_5=6.09$; $\phi_6=8.76$) (_____) Statistical distribution ($\phi_0=1$; $\phi_1=6$; $\phi_2=15$; $\phi_3=20$; $\phi_4=15$; $\phi_5=6$; $\phi_6=1$)

IX. Multi-author References

13. (a) Guertin, K. R.; Gardner, C. J.; Klein, S. I.; Zulli, A. L.; Czekaj, M.; Gong, Y.; Spada, A. P.; Cheney, D. L.; Maignan, S.; Guilloteau, J.-P.; Brown, K. D.; Colussi, D. J.; Chu, V.; Heran, C. L.; Morgan, S. R.; Bentley, R. G.; Dunwiddie, C. T.; Leadley, R. J.; Pauls, H. W. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 1671. (b) Czekaj, M.; Klein, S. I.; Guertin, K. R.; Gardner, C. J.; Zulli, A. L.; Pauls, H. W.; Spada, A. P.; Cheney, D. L.; Brown, K. D.; Colussi, D. J.; Chu, V.; Leadley, R. J.; Dunwiddie, C. T. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 1667.