Additional file 2

γ -MYN: a new algorithm for estimating Ka and Ks with consideration of variable substitution rates

Da-Peng Wang^{*,1,2}, Hao-Lei Wan^{*,1,2}, Song Zhang^{*,1,2,3}, and Jun Yu^{§,1,3}

 ¹CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100029, China
 ²Graduate University of Chinese Academy of Sciences, Beijing 100039, China
 ³Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100080, China

^{*}These authors contributed equally to this work. [§]Corresponding author

1. Tamura-Nei Model

original nucleotide	mutant nucleotide			
	Т	С	А	G
Т	_	$\alpha_2 g_C$	βg_A	βg_G
С	$\alpha_2 g_T$	_	βg_A	βg_G
А	βg_T	βg_{C}	_	$\alpha_1 g_G$
G	βg_T	βg_{C}	$\alpha_1 g_A$	_

Table S1 Nucleotide Substitution Models

Note: α_1 , transitional rate between purines; α_2 , transitional rate between pyrimidines; β , transversional rate; g_N , frequencies of nucleotide N, where $N \in \{T, C, A, G\}$.

Under the assumption that the rate of nucleotide substitution λ is the same for all sites considered, Tamura and Nei used g_T, g_C, g_A and g_G to represent nucleotide

frequencies for T,C,A and G, respectively. They defined α_1 , α_2 and β as transitional rates between purines and between pyrimidines, and transversional rate, respectively. They derived the formulas (S1-S3) for the proportions of transitional differences between purines(P_1) and between pyrimidines(P_2) and of transversional differences(Q) over divergence time t [1, 2]:

$$P_{1} = \frac{2g_{A}g_{G}}{g_{R}} \left\{ g_{R} + g_{Y} \exp(-2\beta t) - \exp[-2(g_{R}\alpha_{1} + g_{Y}\beta)t] \right\}$$
(S1)

$$P_{2} = \frac{2g_{T}g_{C}}{g_{Y}} \{g_{Y} + g_{R} \exp(-2\beta t) - \exp[-2(g_{Y}\alpha_{2} + g_{R}\beta)t]\}$$
(S2)

$$Q = 2g_R g_Y [1 - \exp(-2\beta t)]$$
(S3)

where $g_R = g_A + g_G$ and $g_Y = g_T + g_C$.

2. Derivation of κ_R and κ_Y

Under the assumption that the rate of nucleotide substitution λ approximately follows the gamma distribution, we derive the equations for estimating κ_R and κ_Y . We consider Tamura-Nei Model, where the average substitution rate is given by

[1] $\lambda = 2g_A g_G \alpha_1 + 2g_T g_C \alpha_2 + 2g_R g_Y \beta$, where $g_R = g_A + g_G$ and $g_Y = g_T + g_C$. We assume that λ varies with nucleotide site according to the following gamma distribution [3, 4]:

$$f(\lambda) = \frac{b^{\alpha}}{\tau(\alpha)} e^{-b\lambda} \lambda^{\alpha-1}$$
(S4)

Where $\alpha = \overline{\lambda}^2 / V(\lambda)$ and $b = \alpha / \overline{\lambda}$, $\overline{\lambda}$ and $V(\lambda)$ being, respectively, the mean and variance of λ . $\tau(\alpha)$ is the gamma function. Here note that α is the square of the inverse of the coefficient of variation. To avoid using too many parameters, we set $b = \alpha$ so that the mean of the distribution is 1, with variance $1/\alpha$. The shape parameter α is then inversely related to the extent of rate variation at sites.

Therefore, if λ or α_1, α_2 and β follow the gamma distribution, the means of P_1, P_2 and Q are given by [1, 3, 4]

$$\overline{P_{1}} = \int_{0}^{\infty} P_{1}f(\lambda)d\lambda = \frac{2g_{A}g_{G}}{g_{R}} \left\{ g_{R} - \left[\frac{\alpha}{\alpha + 2(g_{R}\overline{\alpha_{1}} + g_{Y}\overline{\beta})t} \right]^{\alpha} + g_{Y} \left(\frac{\alpha}{\alpha + 2\overline{\beta}t} \right)^{\alpha} \right\}, (S5)$$

$$\overline{P_{2}} = \int_{0}^{\infty} P_{2}f(\lambda)d\lambda = \frac{2g_{T}g_{C}}{g_{Y}} \left\{ g_{Y} - \left[\frac{\alpha}{\alpha + 2(g_{Y}\overline{\alpha_{2}} + g_{R}\overline{\beta})t} \right]^{\alpha} + g_{R} \left(\frac{\alpha}{\alpha + 2\overline{\beta}t} \right)^{\alpha} \right\}, (S6)$$

$$\overline{Q} = \int_0^\infty Qf(\lambda)d\lambda = 2g_R g_Y \left[1 - \left(\frac{\alpha}{\alpha + 2\overline{\beta}t}\right)^\alpha \right]$$
(S7)

Where $\overline{\alpha_1}$, $\overline{\alpha_2}$ and $\overline{\beta}$ are the means of α_1 , α_2 and β , respectively. From (S5), (S6) and (S7) we can get the transformation:

$$2\overline{\alpha_{1}}t = \frac{\alpha}{g_{R}} \left[\left(1 - \frac{1}{2g_{R}}\overline{Q} - \frac{g_{R}}{2g_{A}g_{G}}\overline{P_{1}}\right)^{-1/\alpha} - g_{Y}\left(1 - \frac{1}{2g_{R}g_{Y}}\overline{Q}\right)^{-1/\alpha} - g_{R} \right],$$
(S8)

$$2\overline{\alpha_{2}}t = \frac{\alpha}{g_{Y}} \left[\left(1 - \frac{1}{2g_{Y}}\overline{Q} - \frac{g_{Y}}{2g_{T}g_{C}}\overline{P_{2}}\right)^{-1/\alpha} - g_{R}\left(1 - \frac{1}{2g_{R}g_{Y}}\overline{Q}\right)^{-1/\alpha} - g_{Y} \right],$$
(S9)

$$2\overline{\beta}t = \alpha [(1 - \frac{1}{2g_R g_Y}\overline{Q})^{-1/\alpha} - 1]$$
(S10)

In order to conveniently remember the meanings of $\overline{P_1}$, $\overline{P_2}$ and \overline{Q} , in our main manuscript we rename them as T_R , T_Y , V, respectively. Hence, the formulas for estimating κ_R , κ_Y and d are as follows.

$$\kappa_{R} = \overline{\alpha_{1}} / \overline{\beta} = \frac{h - g_{Y} \times j - g_{R}}{g_{R} \times j - g_{R}}, \qquad (S11)$$

$$\kappa_{Y} = \overline{\alpha_{2}} / \overline{\beta} = \frac{i - g_{R} \times j - g_{Y}}{g_{Y} \times j - g_{Y}}$$
(S12)

$$d = 4g_A g_G \overline{\alpha_1 t} + 4g_T g_C \overline{\alpha_2 t} + 4g_R g_Y \overline{\beta t}$$

= $2\alpha \left[\frac{g_A g_G}{g_R} h + \frac{g_T g_C}{g_Y} i + \left(g_R g_Y - \frac{g_A g_G g_Y}{g_R} - \frac{g_T g_C g_R}{g_Y} \right) j - g_A g_G - g_T g_C - g_R g_Y \right]$
(s13)

Where

$$h = \left(1 - \frac{1}{2g_R}V - \frac{g_R}{2g_A g_G}T_R\right)^{-1/\alpha},$$
 (S14)

$$i = \left(1 - \frac{1}{2g_Y}V - \frac{g_Y}{2g_Tg_C}T_Y\right)^{-1/\alpha},$$
(S15)

$$j = \left(1 - \frac{1}{2g_R g_Y} V\right)^{-1/\alpha}$$
(S16)

Reference

- Tamura K, Nei M: Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. *Mol Biol Evol* 1993, 10:512-526.
- 2. Zhang Z, Li J, Yu J: Computing Ka and Ks with a consideration of unequal transitional substitutions. *BMC Evol Biol* 2006, 6:44.
- Jin L, Nei M: Limitations of the evolutionary parsimony method of phylogenetic analysis. Mol Biol Evol 1990, 7:82-102.
- 4. Nei M, Gojobori T: Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. *Mol Biol Evol* 1986, **3:**418-426.