SUPPLEMENTARY INFORMATION

Clustering of IP₃ receptors by IP₃ retunes their regulation by IP₃ and Ca²⁺

Taufiq-Ur-Rahman¹, Alexander Skupin², Martin Falcke^{2,3} & Colin W. Taylor¹

¹Department of Pharmacology, Tennis Court Road, Cambridge, CB2 1PD, UK. ²Mathematical Cell Physiology, Max Delbrück Centre for Molecular Medicine, Robert Rössle Str. 10, 13092 Berlin, Germany. ³Helmoholtz Centre Berlin for Materials and Energy, Glienicker Str. 100, 14109 Berlin, Germany.

Abbreviations

- Single channel conductance. γ
- Single channel current. i
- Total number of IP₃R within a patch (N), number of IP₃R under consideration N, n (n); $N \ge n$.
- Experimentally determined collective activity of all IP₃R within a patch (see NP_{0} equation 2).
- Single channel open probability, whether measured directly from a single $P_{\rm o}$ channel patch (where $P_0 = P_{lone}$) or calculated from NP_0 for a multi-channel patch assuming that each channel behaves independently $(P_0 = NP_0/N)$.
- P_0 determined from a patch containing a single IP₃R. Plone
- Apparent mean open (closed) time of a single IP_3R . $\tau_{\rm o}, (\tau_{\rm c})$
- Apparent mean duration of openings in which all *N* IP₃R are simultaneously $\tau_{0,N}$ open.
- Mean duration of events when all channels are closed in a patch containing N $\tau_{\rm ib}$ IP₃R (i.e. inter-burst interval).

Materials and Methods

Culture of DT40 cells expressing rat IP₃R3 or IP₃R1

DT40 cells lacking genes for all three IP₃R subtypes (DT40-KO cells)²⁷ and the same cells stably transfected with rat IP₃R3 (DT40-IP₃R3 cells) or rat IP₃R1 (DT40-IP₃R1 cells)¹⁰ were maintained in RPMI 1640 medium supplemented with 10% foetal bovine serum, 1% heat-inactivated chicken serum, 2 mM L-glutamine and 10 mM 2mercaptoethanol at 37°C in a humidified atmosphere containing 5% CO₂. Cells were passaged (at ~ 2 x 10^6 cells/ml) every 2-3 days. Expression of IP₃R3 was quantified by immunoblotting with an antiserum specific for IP₃R3 (Transduction Laboratories)¹⁰.

IP₃-evoked Ca²⁺ release from intracellular stores

Ca²⁺ uptake and release from the intracellular stores of populations of saponinpermeabilized DT40-IP₃R3 cells was measured using a low-affinity Ca²⁺ indicator (Magfluo-4) trapped within the ER^{28} .

Single channel recording from nuclear patches Nuclei were isolated by lysis of DT40 cells²⁵ and allowed to adhere in bathing solution (BS, 1 ml) to a petri dish coated with poly-D-ornithine (Sigma). BS had the following composition: 140 mM KCl, 10 mM Hepes, 100 μ M BAPTA, 51 μ M CaCl₂ (free [Ca²⁺] = 211 ± 9 nM), pH 7.1. Free Ca²⁺ concentrations were computed using WinMaxC (http://www.stanford.edu/~cpatton/maxc.html) and confirmed using fluorescent Ca²⁺ indicators¹⁰ and Ca²⁺-sensitive electrodes. The measured values are shown in the table below. Pipettes were pulled from thick-walled borosilicate glass capillaries (GC150F, Harvard Instruments) and fire-polished. The pipette tip resistance was 10-15 MΩ when filled with pipette solution (PS: 140 mM KCl, 10 mM Hepes, 500 μ M BAPTA, 258 μ M CaCl₂ (free [Ca²⁺] = 229 ± 24 nM), 5 mM Na₂ATP, pH 7.1). Variations in the composition of PS including addition of IP₃ (American Radiolabeled Chemicals) are described in the text. Recordings were at 22°C with patches excised from the on-nucleus configuration. To prevent formation of vesicles, excised patches were sometimes exposed to air for 1-5 s. Seals with resistances >5 GΩ were routinely obtained. Currents were amplified using an Axopatch 200B amplifier, filtered at 1 kHz (-3dB) and digitized at 10 kHz with a Digidata 1322A interface and pClamp 9.2 software (Axon Instruments). Unless otherwise stated, all recordings were at +40 mV. Open channel noise precluded use of lesser filtering to improve the temporal resolution of our recordings.

	Nominal free [Ca ²⁺], nM	Measured free [Ca ²⁺], nM
BS	200	$211 \pm 9 (n=4)^{a}$
PS	200	$229 \pm 24 (n = 4)^{a}$
PS	1000	$1498 \pm 93 (n = 4)^{a}$
PS	1000	$1450 \pm 210 (n = 4)^{b}$

^aDetermined with fluo 3; ^bdetermined with a Ca²⁺-selective electrode.

Flash photolysis of caged IP₃

For flash photolysis experiments, pipettes were prepared from thin-walled, nonfilamented borosilicate glass capillaries (Harvard Instruments). Pipettes had resistances of 15-20 MΩ when filled with PS. PS contained 100 μ M D-myo-inositol 1,4,5-trisphosphate, (4,5)-1-(2-nitrophenyl) ethyl ester ("caged IP₃", Calbiochem). After recording for 30-60 s, IP₃ was released into PS by photolysis of caged IP₃ using a single high-intensity flash (1 ms) from a Xe-flash lamp (XF-10, Hi-Tech Scientific; 240 J with the capacitor charged to 385 V) passed through a filter (300-350 nM)^{29,30}.

Analysis of patch-clamp records

Currents were idealized using the segmental k-means (SKM) hidden-Markov algorithm of the QuB suite (www.qub.buffalo.edu) at full bandwidth (1 kHz) initially using a simple two state scheme ($C \leftrightarrows O$)³¹.

simple two state scheme $(C \leftrightarrows O)^{31}$. For both single and multi-IP₃R patches, the probability $(P_{o,n})$ of channels simultaneously opening to the nth current level, was calculated from the ratio of the area of the nth current level $(A_{o,n})$ to the total area (A_{total}) of the amplitude histogram³²:

$$P_{o,n} = \frac{A_{o,n}}{A_{total}} = \frac{A_{o,n}}{A_{closed} + \sum_{n=1}^{n=N} A_{o,n}}$$
(1)

 NP_0 was calculated from^{33,34}:

$$NP_{\rm o} = \frac{\sum_{n=1}^{N} (n.t_n)}{T}$$
(2)

where: t_n is the total time for which n IP₃R are simultaneously open, and T is the duration of the recording.

For single channel records, dwell time analysis used the MIL module of QuB with retrospective imposition of a dead time of 200 μ s for approximate correction of missed events³¹. Dwell time distributions were analysed according to^{35,36}. Mean dwell times are presented as 'apparent' values because of our inability to resolve events briefer than the dead time of the system.

The best gating scheme (based on the log-likelihood ratio) comprised two closed (C) states connected linearly to an open (O) state, with either of the following topologies: $C_1 \leftrightarrow O \leftrightarrow C_2$ or $C_2 \leftrightarrow C_1 \leftrightarrow O$. Both topologies are equally compatible with the observed bursting behaviour of IP₃R stimulated with a maximal concentration of IP₃: each returns almost identical values for the dwell-time constants and their amplitudes (Rahman and Taylor, unpublished observation)³⁷. Our present analyses and simulations focus on IP₃R stimulated with saturating concentrations of IP₃ and on changes in P_0 and τ_0 (which are the same for both topologies). For simplicity we therefore use the $C_2 \leftrightarrow C_1 \leftrightarrow O$ scheme (Fig. 1d). This scheme predicts accurately the behaviour of both lone and clustered IP₃R (Supplementary Fig. 6, Supplementary Table 4).

For determination of τ_0 from flash photolysis experiments, single channel open events within each 0.5 s time bin were separately idealized and the open times from all recordings were pooled, exported to ClampFit and fitted empirically using the method of maximum likelihood³⁸.

Reliable counting of IP₃R within nuclear patches

The number of active IP₃R (*N*) within a nuclear patch can be confidently (p < 0.01) equated to the maximum number of multiples of the unitary current level observed throughout a recording lasting longer than 5(σ_{N+1}) (Ref. 12), where:

$$\sigma_{N} = \left[\frac{\tau_{o}}{N(P_{o})^{N}}\right] \exp\left(\frac{N \times t_{D}}{\tau_{o}}\right)$$
(3)

where, σ_N = the mean interval between successive simultaneous openings of all *N* IP₃R, t_D = minimum duration of an open event detectable after filtering (= 200 µs). Under typical recording conditions with 200 nM cytosolic free [Ca²⁺] and 10 µM IP₃, IP₃R within a cluster have $P_0 = 0.25$, and $\tau_0 = 5.6$ ms. A recording of >2.06 s is therefore sufficient confidently to identify 3 IP₃R within such a patch. The largest number of IP₃R/patch reported herein (8, after pre-treatment of nuclei with IP₃, Fig. 3a) requires a recording of >1125 s. All recordings lasted >30 s, those addressing the effects of pre-treatment with IP₃ (Fig. 3) lasted >10 min, and those assessing the effects of lower concentrations of IP₃ typically lasted 5-15 min.

Predicting *P*₀ assuming independent IP₃R in multi-IP₃R patches

If a patch contains N identical and independent IP₃R, each with a probability P_0 of being open, the probability of n channels being simultaneously open is given by the binomial distribution³⁹:

$$P_{o,n} = \frac{N!}{n!(N-n)!} P_o^n (1-P_o)^{N-n}$$
(4)

The predicted P_0 of a single IP₃R in a patch containing several (N) IP₃R was calculated from the probability of all N channels being simultaneously open ($P_{0,N}$):

$$P_{\rm o} = \sqrt[N]{P_{\rm o, N}} \qquad (5)$$

For convenience, the equivalent analysis of P_0 for multi-IP₃R patches exposed to high-Ca²⁺ (Fig. 4) used NP_0/N to calculate P_0 and so to assess whether IP₃R opened independently. This is justified because with 1 μ M Ca²⁺, NP_0 of multi-IP₃R patches matches that expected from the sum of the behaviour of lone IP₃R (Fig. 4c).

Comparisons of the kinetic behaviour of single- and multi-IP₃R patches

For multi-IP₃R patches containing N IP₃R, τ_0 and $\tau_c 2$ were estimated as described^{40,41}:

$$\tau_{o} = N.\tau_{o,N}$$
 (6)
 $\tau_{c}2 = N.\tau_{ib}$ (7)

For a patch with N IP₃R, $\tau_c 2$ obtained from equation 7 is the average duration of gaps between the opening bursts of each individual IP₃R.

Comparison of the number of transitions between IP₃R states for lone and paired IP₃R exposed to $1 \mu M \text{ Ca}^{2+}$

For IP₃R stimulated with 10 μ M IP₃ and 1 μ M Ca²⁺, observed numbers of transitions to each of the 3 states in patches with 2 IP₃R (C, O1 and O2) were compared with the predicted numbers assuming that each IP₃R behaved independently²⁶. Briefly, all transitions (18076 ± 3808 transitions/recording, n = 6) during a 2-min recording were counted. P₀ derived from patches containing only a single IP₃R stimulated under identical conditions was used to predict the expected number of transitions to each state. The results are shown in Fig. 4g and Supplementary Fig 9.

Data analysis

Prism 4 (GraphPad Software Inc) was used for statistical analyses, with p < 0.05 denoting significance. Student's t-test and one-way ANOVA were used as appropriate to determine significance, and χ^2 test for comparing observed and predicted distributions. Concentration-response relationships were fitted by a Hill equation using a non-linear iterative, least-squares fitting (unweighted) procedure (GraphPad Prism 4):

$$P_{\rm o} = P_{\rm o(max)} / (1 + EC_{50} / [IP_3]^{\rm n})$$
 (8)

where,

EC₅₀, half-maximally effective concentration of IP₃. n, Hill coefficient.

Supplementary Discussion

Spacing of IP₃R before and after clustering

Our experimental analysis shows that the decreased P_0 of clustered IP₃R cannot result from Ca^{2+} passing through IP₃R regulating the activities of neighbouring IP₃R. With identical free [Ca²⁺] in BS and PS (200 nM), any Ca²⁺ flux at the holding potential of +40 mV used for most analyses would be small, away from the cytosolic surface of the IP_3R . and rapidly buffered by BAPTA. Furthermore, in two experiments with patches containing 3 IP₃R and performed at a holding potential of -40 mV, when any Ca^{2+} flux would be in the opposite direction (i.e. towards the cytosolic surface of the IP_3R), the effects of clustering were indistinguishable from those observed at positive holding potentials. Under these conditions, the three IP₃R were independently gated, but with a P_0 (0.22) that was only 48% that of P_0 for a lone IP₃R (0.44) recorded under the same conditions (not shown). We conclude that the communication between IP₃R that allows clustering to reduce P_0 must be mediated by physical contact between IP₃R, from which we can estimate the likely separations of lone and clustered IP₃R.

Our recordings from excised nuclear patches (estimated patch-pipette diameter ~1 μ m) include a membrane area of at least 0.79 μ m² (it may be larger if membrane is drawn into the pipette). The pores of neighbouring IP₃R (1.34 ± 0.13 IP₃R/patch; 1 IP₃R/0.59 μ m²) are therefore separated by an average distance of ~0.9 μ m (i.e. the diameter of a patch with an area of $0.59 \,\mu\text{m}^2$). After clustering, we suggest that neighbouring IP₃R must be in contact: their pores must therefore be ~ 18 nm apart (the diameter of an $(IP_3R)^{42}$. With an average of 4.25 ± 0.38 IP_3R /cluster (Figs 3c, g), and assuming that clusters (like lone IP₃R) are randomly distributed, each cluster must be accommodated in an area of membrane equal to 4.25-times that occupied by a single IP₃R (i.e. 2.51 μ m²). diameter = 1.8 μ m). Hence the average separation of IP₃R clusters must be ~1.8 μ m.

Time course of IP₃R3 diffusion and clustering

Our analysis of IP₃R clustering suggests that it proceeds with a half-time of about 1.5-2 s $(k = -0.4 \text{ s}^{-1})$ (Fig. 3i) and without need of the cytoskeleton (Supplementary Fig. 4). Two studies of IP₃R3 diffusion within ER membranes using fluorescence recovery after photobleaching (FRAP) suggest that most IP₃R3 are mobile²² with a diffusion coefficient (D) of $0.03-0.04 \,\mu m^2/s$ (Ref. 22) or $0.45 \,\mu m^2/s$ (Ref. 21). We use an intermediate value, $D = 0.1 \ \mu m^2/s$, for our calculation of IP₃R3 mobility. The reaction rate (k) of proteins diffusing in a membrane patch can be estimated by Eq. 47 in Ref. 43:

$$k = N2\pi D / \text{Alog}(r^{P}/r^{C})$$
 (9)

where,

N, number of channels per patch (2 in this example to give the lowest estimate of k). *D*, diffusion coefficient $(0.1 \ \mu m^2/s)$, see above). A, area of patch $(0.79 \ \mu m^2)$, see *Spacing of IP*₃*R before and after clustering*).

 r^{C} , radius of IP₃R (9 nm, Ref. 42). r^{P} , radius of patch (~0.5 μ m).

from which,
$$k = 0.91 \text{ s}^{-1}$$
.

These approximations suggest that diffusion alone $(k = 0.91 \text{ s}^{-1})$ is sufficient to allow IP₃R3 to encounter each other with sufficient frequency to account for the estimated time course of IP₃R clustering (k ~ 0.4 s^{-1} , Fig. 3i, Supplementary Fig. 8).

Effects of IP₃R clustering on intracellular Ca²⁺ spiking

Our single channel analyses are best explained by the following gating scheme (Fig. 1d, Supplementary Fig. 6, Supplementary Table 1, and see *Analysis of patch-clamp records*):

$$C_2 \stackrel{k_{21}}{\underset{k_{12}}{\overset{k_{21}}{\underset{k_{01}}{\overset{k_{10}}{\underset{k_{01}}{\overset{k_{10}}{\underset{k_{01}}{\overset{k_{10}}{\underset{k_{01}}{\overset{k_{21}}{\underset{k_{01}}{\underset{k_{01}}{\underset{k_{01}}{\overset{k_{01}}{\underset{k_{01}}}{\underset{k_{01}}$$

Channels move rapidly between C₁ and O (to give bursts of openings) and more slowly between C_2 and C_1 (to give long inter-burst intervals). Clustering of IP₃R has no effect on k_{10} (because the short-closed time, $\tau_c 1$, which is largely determined by k_{10} , is unaffected by clustering) or on k_{21} (because the long-closed time, $\tau_c 2$, is unaffected by clustering) (Supplementary Fig. 5, Supplementary Table 3). Clustering increases k_{01} (τ_0 is shorter for clustered IP₃R, Fig. 3f) and this is alone sufficient to account for the observed decrease in P_0 (Supplementary Fig. 6, Supplementary Table 4). The increase in k_{01} (from 84 s⁻¹ to 185 s⁻¹) means that transitions from O to C_1 occur twice as frequently for clustered IP₃R. With no change in k_{10} or k_{12} , the more frequent visits to C_1 mean that the 'decision' on whether to move to C_2 (and so terminate a burst) or back to O (to give another short opening) is unchanged for clustered IP₃R but made twice as often as for lone IP₃R. The average number of openings in each burst is therefore the same for lone and clustered IP_3R , but the duration of the bursts is reduced for clustered IP_3R (Supplementary Table 4). The key point for our simulations is that shortening of τ_0 (Fig. 3f) causes equivalent shortening of the bursts and entirely accounts for the changed behaviour of clustered IP₃R.

We simulate the cytosolic $[Ca^{2+}]$ in a spherical cell (see Parameters Table 1) and examine the effect of IP₃R clustering on Ca²⁺ spikes. We give particular attention to the effects of changes in τ_0 on the frequency of these Ca²⁺ spikes because Ca²⁺ signals in many cells are frequency-coded as intracellular Ca²⁺ spikes because Ca²⁺ signals in ca²⁺ release from the ER is via IP₃R that open and close randomly according to the channel state dynamics described below. Ca²⁺ diffuses in the cytosol, where it is both bound to buffers and actively pumped back into the ER by SR/ER Ca²⁺-ATPases (SERCA). The nonlinear parts of the concentration dynamics in the bulk (Ca²⁺ binding to buffers and transport by SERCA) are linearized, which is an excellent approximation for a wide range of parameters^{47,48}, and the concentration dynamics are solved by threecomponent Green's functions (Skupin and Falcke, unpublished). The channel state dynamics use the DeYoung-Keizer model (DK model)⁴⁹, which has been extensively used to simulate IP₃-mediated Ca²⁺ signalling²⁴. The model assumes that each IP₃R has four identical subunits, each with a binding site for IP₃ and two Ca²⁺-binding sites. A subunit is active if it has IP₃ bound, Ca²⁺ bound to the stimulatory Ca²⁺-binding site, and no Ca²⁺ bound to the inhibitory Ca²⁺-binding site. In the DK model, a channel is open when at least three of its four subunits are in the active state; otherwise it is closed. The open state of the IP₃R in the DK model corresponds to a burst in our single channel records. For the DK model, the current averaged over a burst (*I*_{burst}) is given by:

$$I_{\text{burst}} = I_{\text{s}}\tau_{\text{o}}/(\tau_{\text{o}}+\tau_{\text{c}}1)$$

where, I_s is the single channel current (estimated to be 0.12 pA)⁴⁷.

To allow burst length to be changed in accord with the experimental observations (ie decreased by ~50% for clustered IP₃R) within the framework of the DK model, the Ca²⁺ dissociation (k_{Cadiss}) rate was adjusted. It depends on τ_0 :

$$k_{\text{Cadiss}} = b_5 \tau_c 1 (\tau_0 + \tau_c 1)^{-1}$$
 (see Parameter Table 2).

If we instead adjust the dissociation rate of IP₃ to be τ_0 -dependent, the τ_0 -dependent effects shown in Supplementary Fig. 7 are even more pronounced (not shown). We consider two arrangements of 32 IP₃R, each with the same overall channel density, but corresponding to the situations before and after IP₃-evoked clustering. Lone IP₃R (red in Supplementary Fig. 7a) separated by 1.5 µm (see *Spacing of IP₃R before and after clustering*)^{24,50}, and tight clusters of four IP₃R (blue) separated by 2.48 µm. We initially used regular configurations (rather than the random distributions observed experimentally, Fig. 1f) to avoid artifacts arising from specific configurations that might arise randomly (Supplementary Fig. 7b-d). Similar results were obtained when we used random configurations of clusters with the same average cluster density (Supplementary Fig. 7e).

R	10 µm	Cell radius
a	8 nm	Channel radius
D_{Ca}	$220 \ \mu m^2 s^{-1}$	Diffusion coefficient of cytosolic Ca ²⁺
$D_{ m E}$	$70 \ \mu m^2 s^{-1}$	Diffusion coefficient of lumenal Ca ²⁺
$D_{ m B}$	95 μ m ² s ⁻¹	Diffusion coefficient of mobile buffer
$[Ca^{2+}]_0$	48 nM	Basal cytosolic Ca ²⁺ concentration
$[IP_3]$	0.4 µM	IP ₃ concentration
$[B]_{\mathrm{T}}$	45 - 65 μΜ	Total mobile buffer concentration
$k_{ m B}{}^+$	600 (µMs) ⁻¹	On rate of the mobile buffer
$k_{\rm B}$	100 s^{-1}	Dissociation rate of the mobile buffer
$[B_i]_T$	30 µM	Total immobile buffer concentration
$k_{ m Bi}{}^+$	600 (µMs) ⁻¹	On rate of the immobile buffer
$k_{ m Bi}$	100 s^{-1}	Dissociation rate of the immobile buffer
$P_{\rm p}$	100 s ⁻¹	Pump rate
$\sigma_{ m p}$	$4.3 \times 10^6 \text{ s}^{-1}$	Channel flux constant
$\sigma_{\rm l}$	$\sim 0.01 \text{ s}^{-1}$	Leak flux constant implicit given by P_p and $[Ca^{2+}]_0$

Paramatar '	Tabla 1	1	Doromotor	voluos	for	tha	concont	rotior	• d•	vnomios
	I avic I	·	I al allicici	values	101	uic	concent	1 auvi	IU	ynannes

a_1	$20 (\mu Ms)^{-1}$	IP ₃ binding with no inhibiting Ca^{2+} bound
b_1	20 s ⁻¹	IP ₃ dissociation with no inhibiting Ca ²⁺ bound
a_2	0.001 (µMs) ⁻¹	Ca^{2+} binding to Ca^{2+} -inhibitory site with IP ₃ bound
b_2	0.03 s^{-1}	Ca ²⁺ dissociation from Ca ²⁺ -inhibitory site with IP ₃ bound
a ₃	$2.6 (\mu Ms)^{-1}$	IP ₃ binding with Ca^{2+} bound to Ca^{2+} -inhibitory site
b ₃	20 s ⁻¹	IP ₃ dissociation with Ca^{2+} bound to Ca^{2+} -inhibitory site
a_4	0.025 (µMs) ⁻¹	Ca^{2+} binding to Ca^{2+} -inhibitory site with no IP ₃ bound
b_4	0.1 s^{-1}	Ca ²⁺ dissociation from Ca ²⁺ -inhibitory site without IP ₃
a_5	10 (μMs) ⁻¹	Ca^{2+} binding to Ca^{2+} -activating site
b_5	1.225 s ⁻¹	Ca ²⁺ dissociation from Ca ²⁺ -activating site

Parameter Table 2 | Parameter values for the DK model

Supplementary References

- Sugawara, H., Kurosaki, M., Takata, M., & Kurosaki, T. Genetic evidence for involvement of type 1, type 2 and type 3 inositol 1,4,5-trisphosphate receptors in signal transduction through the B-cell antigen receptor. *EMBO J.* 16, 3078-3088 (1997).
- 28. Tovey, S. C., Sun, Y., & Taylor, C. W. Rapid functional assays of intracellular Ca²⁺ channels. *Nature Protocols* **1**, 258-262 (2006).
- 29. Rapp, G. & Guth, K. A low cost, high intensity flash device for photolysis experiments. *Pflüg. Archiv.* **411**, 200-203 (1988).
- Walker, J. W., Somlyo, A. V., Goldman, Y. E., Somlyo, A. P., & Trentham, D. R. Kinetics of smooth and skeletal muscle activation by laser pulse photolysis of caged inositol 1,4,5-trisphosphate. *Nature* **327**, 249-252 (1987).
- 31. Qin, F. Restoration of single-channel currents using the segmental k-means method based on hidden Markov modeling. *Biophys. J.* **86**, 1488-1501 (2004).
- 32. Ding, S. & Sachs, F. Evidence for non-independent gating of P2X₂ receptors expressed in *Xenopus* oocytes. *BMC Neurosci.* **3**, 17-28 (2002).
- 33. Ching, L. L., Williams, A. J., & Sitsapesan, R. AMP is a partial agonist at the sheep cardiac ryanodine receptor. *Br. J. Pharmacol.* **127**, 161-171 (1999).
- Mogami, H., Kanzaki, M., Nobusawa, R., Zhang, Y. Q., Furukawa, M., & Kojima, I. Modulation of adenosine triphosphate-sensitive potassium channel and voltagedependent calcium channel by activin A in HIT-T15 cells. *Endocrinol.* 136, 2960-2966 (1995).
- 35. McManus, O. B., Blatz, A. L., & Magleby, K. L. Sampling, log binning, fitting, and plotting durations of open and shut intervals from single channels and the effects of noise. *Pflüg. Archiv.* **410**, 530-553 (1987).
- 36. Sigworth, F. J. & Sine, S. M. Data transformations for improved display and fitting of single-channel dwell time histograms. *Biophys. J.* **52**, 1047-1054 (1987).
- 37. Sunderman, E. R. & Zagotta, W. N. Mechanism of allosteric modulation of rod cyclic nucleotide-gated channels. *J. Gen. Physiol.* **113**, 601-620 (1999).

- Colquhoun, D. & Sigworth, F. J., in *Single-Channel Recording*, edited by B. Sakmann & E. Neher, Plenum Press, New York, pp. 483-587 (1995).
- 39. Colquhoun, D. & Hawkes, A. G., in *Single-Channel Recording*, edited by B. Sakmann & E. Neher, Plenum Press, New York, pp. 397-482 (1995).
- 40. Anantharam, A., Tian, Y., & Palmer, L. G. Open probability of the epithelial sodium channel is regulated by intracellular sodium. *J. Physiol.* **574**, 333-347 (2006).
- 41. Palmer, L. G. & Frindt, G. Amiloride-sensitive Na channels from the apical membrane of the rat cortical collecting tubule. *Proc. Natl. Acad. Sci. USA* **83**, 2767-2770 (1986).
- 42. da Fonseca, P. C. A., Morris, S. A., Nerou, E. P., Taylor, C. W., & Morris, E. P. Domain organisation of the type 1 inositol 1,4,5-trisphosphate receptor as revealed by single-particle analysis. *Proc. Natl. Acad. Sci. USA* **100**, 3936-3941 (2003).
- 43. Straube, R. & Falcke, M. Reversible clustering under the influence of a periodically modulated binding rate. *Phys. Rev. E* **76**, 010402-1-010402-4 (2007).
- 44. Falcke, M. On the role of stochastic channel behavior in intracellular Ca²⁺ dynamics. *Biophys. J.* **84**, 42-56 (2003).
- 45. Li, W.-H., Llopis, J., Whitney, M., Zlokarnik, G., & Tsien, R. Y. Cell-permeant caged InsP₃ ester shows that Ca²⁺ spike frequency can optimize gene expression. *Nature* **392**, 936-941 (1998).
- Dolmetsch, R. E., Lewis, R. S., Goodnow, C. C., & Healy, J. I. Differential activation of transcription factors induced by Ca²⁺ response amplitude and duration. *Nature* 386, 855-858 (1997).
- 47. Bentele, K. & Falcke, M. Quasi-steady approximation for ion channel currents. *Biophys. J.* **93**, 2597-2608 (2007).
- 48. Smith, G. D., Dai, L., Miura, R. M., & Sherman, A. Asymptotic analysis of buffered calcium diffusion near a point source. *SIAM J. Appl. Math.* **16**, 1816-1838 (2001).
- De Young, G. W. & Keizer, J. A single-pool inositol 1,4,5-trisphosphate-receptorbased model for agonist-stimulated oscillations in Ca²⁺ concentration *Proc. Natl. Acad. Sci. USA* 89, 9895-9899 (1992).
- Dargan, S. L., Schwaller, B., & Parker, I. Spatiotemporal patterning of IP₃-mediated Ca²⁺ signals in Xenopus oocytes by Ca²⁺-binding proteins. *J. Physiol.* 556, 447-461 (2004).
- 51. Kenyon, J. L. & Bauer, R. J. Amplitude histograms can identify positively but not negatively coupled channels. *J. Neurosci. Methods* **96**, 105-111 (2000).

	IP ₃ R/pa	tch
	Mean ± SEM (n)	Variance
Naive	1.06 ± 0.15 (63)	1.39
IP ₃ pre-treatment	1.03 ± 0.21 (88)	3.84
IP ₃ treatment followed by washout	1.02 ± 0.18 (40)	1.26

Supplementary Table 1 | Distributions of IP_3R3 before and after IP_3 pre-treatment

Numbers of IP₃R/patch are shown for naive nuclei, after pre-treatment with 10 µM IP₃ for ~ 2 min and the latter followed by washout of IP₃ (see Figs 3a-d). For naive nuclei and those allowed to recover, the mean and variance are similar, consistent with a Poisson distribution. These comparisons include only results collected in parallel for the three conditions, the sample size (63 vs 109) and mean (1.06 vs 1.34) for naive nuclei are therefore slightly different from those cited in the text, which include results from all naive nuclei. Although the distribution of IP_3R between patches changed dramatically after IP₃ pre-treatment (Fig. 3a, c, and reflected in the increased variance above), the number of IP₃R/patch averaged over all patches was unaffected by IP₃, confirming that IP₃ affected neither the area of the patch nor our ability to resolve IP₃R activity.

Supplementary Table 2	Properties of IP ₃ R3	within single and r	nulti-IP ₃ R3 patches

Number of IP ₃ R	EC ₅₀	maximal P _o
1	$1.38\pm0.03~\mu M$	0.44 ± 0.05
2	$2.02\pm0.20~\mu M$	0.25 ± 0.03
3	$2.47 \pm 0.25 \ \mu M$	0.26 ± 0.02
4	ND	0.24 ± 0.02
5	ND	0.26 ± 0.03

From excised nuclear patches fortuitously containing the indicated numbers of IP_3R , the maximal open probability for each IP₃R (P_0) and the concentration-dependent effect of NP_{0} (EC₅₀) were computed (n = 3-7; 2 for the 5-IP₃R patch). For each concentrationeffect relationship, curves were fitted to a Hill equation using non-linear unweighted least-squares regression, with error bars for EC_{50} values calculated from the sample variance of the residuals (GraphPad Prism). ND, not determined because too few recordings included 4 or 5 IP₃R to allow analysis of concentration-effect relationships.

Number of IP ₃ R	Intra-burst closed time		Inter-burst closed time		
	$\tau_{c}1 (ms)$	contribution	$\tau_c 2 \text{ (ms)}$	contribution	
1	1.4 ± 0.09	$86 \pm 6\%$	120 ± 9	$14 \pm 1\%$	
2	1.05 ± 0.05	$82 \pm 6\%$	108 ± 11	$16 \pm 5\%$	
3	1.05 ± 0.11	$82 \pm 2\%$	121 ± 17	$16 \pm 2\%$	

Supplementary Table 3 | Effects of IP₃R clustering on closed times distributions

Closed time distributions were fitted using the method of maximum likelihood⁴⁴ to recordings from patches containing 2 or 3 IP₃R after idealization with SKM in QuB (Supplementary Fig. 5). Because clustered IP₃R gate independently (Fig. 2f, Supplementary Figs 1, 2c), the long inter-burst intervals measured in multi-IP₃R patches (τ_{ib}) can be used to infer the underlying inter-burst intervals for individual IP₃R ($\tau_c 2$): $\tau_c 2 = N.\tau_{ib}$. These calculated values of $\tau_c 2$ are shown in the table. The short intra-burst closed events ($\tau_c 1$) are unlikely to be significantly affected by the presence of other IP₃R, and are shown as directly determined from recordings of patches with lone or multiple IP₃R. The results demonstrate that neither $\tau_c 1$ nor $\tau_c 2$ is affected by clustering of IP₃R.

	lo	one	clustered		
	observed	simulated	observed	simulated	
Po	0.44 ± 0.05	0.44 ± 0.02	0.24 ± 0.01	0.23 ± 0.01	
$\tau_{o}(ms)$	11.9 ± 1.6	12.6 ± 0.2	5.40 ± 0.5	5.5 ± 0.11	
$\tau_{b}(ms)$	143 ± 18	131 ± 6	ND	55 ± 1.7	
n _b	14.5 ± 3	9.2 ± 0.5	ND	9.1 ± 0.6	

Supplementary Table 4 | Burst analysis of lone and clustered IP₃R3

Using the gating scheme shown in Fig. 1d, the activity of lone and clustered IP₃R (differing only in k_{01}) were simulated (for 20 s, n = 5) using QuB⁶⁰ (Supplementary Fig. 6). The table shows the properties (means ± SEM) of individual IP₃R either alone or within a cluster derived from burst analysis using ClampFit with a critical time of 10 ms. In addition to P_0 and τ_0 , the burst duration (τ_b) and number of openings per burst (n_b) are shown. The results demonstrate that the gating scheme faithfully replicates the observed gating parameters for both lone and clustered IP₃R.

Supplementary Figure 1 | IP₃R3 open independently in patches containing multiple IP₃R3. **a**, **b**, For nuclear patches containing 2 (a) or 4 (b) IP₃R3, the binomial distribution was used to calculate probabilities for the indicated numbers of simultaneous openings for IP₃R stimulated with 10 μ M IP₃ in 200 nM free Ca²⁺. The histogram shows the observed probability divided by the predicted probability. These results, together with those in Fig. 2f, demonstrate that IP₃R open independently in patches with several IP₃R.

Supplementary Figure 2 | IP₃-evoked clustering also inhibits IP₃R1. a, Typical recordings from nuclei isolated from DT40-IP₃R1 cells at a holding potential of +40 mV and with 10 μ M IP₃, 0.5 mM ATP and 200 nM free Ca²⁺ in PS. The recordings are from patches that included (top to bottom) 1, 2 or 3 IP₃R. C denotes the closed state. b, Observed and predicted *NP*₀ for patches containing 1, 2 or 3 IP₃R (n \ge 3; n = 2 for the patch with 3 IP₃R). Predicted *NP*₀ was calculated by assuming that *P*₀ for each IP₃R within a multi-IP₃R patch has the same *P*₀ as a lone IP₃R (ie *P*_{lone}). c, For patches containing 2 IP₃R, observed and predicted from the binomial distribution (Supplementary equation 4). Observed/predicted values are shown (mean ± SEM, n = 5). These results establish that within patches containing more than one IP₃R1, each IP₃R opens independently, but to a lower *P*₀ than for lone IP₃R1.

Supplementary Figure 3 | Sustained activity of IP₃R3 during sustained stimulation with IP₃. **a**, Typical 10-min recording from an excised patch containing 2 IP₃R stimulated with 1 μ M IP₃ in PS containing 200 nM free Ca²⁺. C and O denote closed and open states. **b**, From similar recordings, P_0 was measured during the first and last minute of recordings that lasted 10-15 min from patches that contained 2 IP₃R. In all recordings, the estimated number of IP₃R was the same during each recording interval. P_0/P_{lone} was calculated from the binomial distribution (as in Fig. 3e); n = 4. **c**, Stability plot of the record shown in a. The results demonstrate that IP₃ causes IP₃R to attain their maximally inhibited state within the time taken to establish a recording (typically 30-45 s) and the activity remains stable thereafter for many min. We conclude that IP₃R clustering (reflected in P_0/P_{lone}) is complete within seconds of maximal stimulation with IP₃.

Supplementary Figure 4 | IP₃-evoked clustering does not require the cytoskeleton. a, b, Nuclei of DT40-IP₃R3 cells were pretreated with cytochalasin D (a, Cyt D, 20 μ M, Calbiochem) to promote depolymerization of actin, or with colchicine (b, 100 μ M, Sigma) to disrupt microtubules for 30 min before patch-clamp recording. Typical records from patches with three IP₃R are shown. C and O1-O3 denote the closed and open states. c, *NP*₀/*N* is shown for nuclear patches with 2-5 IP₃R (black) or for patches with a single IP₃R (red). Results are means ± SEM, n ≥ 3. The results demonstrate that disruption of the cytoskeleton does not affect IP₃-evoked clustering of IP₃R.

Supplementary Figure 5 | Clustering has no effect on closed states of the IP₃R. a, b. Typical recordings from patches with 2 (a) or 3 (b) IP₃R3, and their respective closed-time histograms. Empirical fitting of the closed time histograms identified two populations of closed states: $\tau_c 1$ representing closures within a burst and τ_{ib} representing closures between bursts. Because IP₃R open independently under these conditions (Fig. 2f, Supplementary Figs 1b, 2c), the inter-burst closed time for individual IP₃R within a cluster ($\tau_c 2$) can be calculated from: $\tau_c 2 = N\tau_{ib}$ (Supplementary Table 3).

Supplementary Figure 6 | Comparison of observed and simulated activities of lone and clustered IP₃R. a, b, Typical observed (black) and simulated (red) IP₃R3 activities for lone IP₃R (a) or individual IP₃R within a cluster (b), each stimulated with 10 μ M IP₃ and 200 nM free Ca²⁺. The gating scheme is the same for each, but with k_{o1} doubled for clustered IP₃R. c, Behaviour of a cluster of 2 IP₃R. The noise (r.m.s noise) of real records was imposed during simulations and the records filtered at 1 kHz for display. C and O show closed and open current levels. Further details in Supplementary Table 4. The results show that the gating scheme faithfully captures the behaviour of lone and clustered IP₃R (Supplementary Table 4).

Supplementary Figure 7 | Clustering of IP₃R is required for Ca²⁺ spiking, and the decrease in τ_0 caused by clustering profoundly affects the frequency of spiking. a, Simulations use either a regular array of 32 lone IP_3R (red) or a regular array of 8 clusters, each with 4 IP₃R (blue). The simulations compare the effects of decreasing τ_0 from 10 ms to 5 ms, as described in Supplementary Discussion. **b**, **c**, Results of representative simulations show time courses for the numbers of open IP₃R (b) and global cytosolic free $[Ca^{2+}]$ (c). Comparison of the corresponding panels in b and c shows that the near simultaneous opening of several clusters is required to generate a Ca^{2+} spike. The behaviour of lone IP₃R is not sufficiently coordinated to generate a Ca²⁺ spike. **d**, Summary results from 10 independent simulations (means \pm SEM) showing the mean interval between Ca^{2+} spikes, with each spike defined as an increase in free $[Ca^{2+}]$ of \geq $0.25 \,\mu\text{M}$. e, Similar analysis to d, but with randomly distributed clusters (n = 5 simulations). The mobile buffer concentration, $[B]_T$, was the same in all parallel comparisons of IP₃R behaviour. [B]_T was 65 μ M in b and c, 45-65 μ M in d, and 60 μ M in e. All other parameter values are given in Parameter Tables 1 and 2. The results demonstrate that for clustered IP₃R, a 2-fold decrease in τ_0 causes the inter-spike interval (ISI) to increase by ~4-fold. The results confirm the importance of IP_3R clustering and the physiological significance of the decrease in τ_0 associated with clustering.

Supplementary Figure 8 | Kinetics of IP₃R3 clustering resolved by photolysis of

caged IP₃. From experiments similar to that shown in Fig. 3h, τ_0 was measured during each 0.5 s interval (1.5 s for the first interval) after photo-release of IP₃ within the patch-pipette. Results (means ± SEM for 4 patches with lone IP₃R, and 7 patches with 2-4 IP₃R) show that τ_0 remains constant at 11.4 ± 0.5 ms for lone IP₃R, but rapidly falls to 5.8 ± 0.3 ms for IP₃R within multi-IP₃R patches. The histograms show the steady-state measurements of τ_0 measured 5-120 s after flash-photolysis of caged IP₃ (black) and determined from experiments with IP₃ included in PS (red, as for Figs 1, 2). These results establish that after photo-release of IP₃, τ_0 rapidly reaches a steady-state value identical to that determined by including IP₃ in the patch-pipette.

Supplementary Figure 9 | Coupled gating of clustered IP₃R stimulated with IP₃ and high Ca²⁺. a, Typical recording from a patch with 2 IP₃R3 stimulated with 10 µM IP₃ and 1 µM Ca²⁺. Closed (C) and the 2 open states (O1 and O2) are shown. b, Amplitude histogram of the recording shown in a, fitted (red line) to Gaussian distributions, from which the probabilities (P_c , $P_{o,1}$ and $P_{o,2}$) for each state (C, O1 and O2) were calculated. These values were used to calculate the "coupling factor", $r = -[(P_{o,1})^2/4] - P_c.P_{o,2}$; r > 0 denotes positively coupled gating of channels⁵¹. c, d, Show an equivalent trace and amplitude histogram for a patch with 2 IP₃R stimulated with 10 µM IP₃ and 200 nM Ca²⁺. Values of r from 6 (1 µM Ca²⁺) and 12 (200 nM Ca²⁺) independent recordings are summarized below the appropriate panels. The results indicate that r is invariably > 0 for IP₃R stimulated at high Ca²⁺ (0.072 ± 0.009; consistent with positively cooperative gating), but generally ≤ 0 for IP₃R stimulated in 200 nM Ca²⁺ (-0.002 ± 0.001; consistent with a lack of positive co-operativity). This analysis further supports our conclusion (Fig. 4) that clustered IP₃R show coupled gating when Ca²⁺ is increased.