

Protein pH-dependent Electric Moments TOols

Institute of Organic Chemistry, Bulgarian Academy of Sciences, Biophysical Chemistry of Proteins Group

If you have need for electrostatic calculations on your protein - use Internet address: http://phemto.orgchm.bas.bg/

The only what you have to have are the atomic coordinates of your protein in PDB format. Than wide variety of pH-dependent properties you can predict :

PHEMTO functionality

- µ(pH) electric or dipole moments visualized vectors with preselected length
- μ(pH) electric or dipole moments visualized scalars in wide pH region (2-12)
- Mut(pH) predefined set of electrostatic mutants (D,E,H,C,Y,K,R → any)
- Difference analysis subtract any basic pH-function from their derivatives
- •F (pH) electric forces (field gradients) scalars and vectors /in development/
- Any function of molecular domain/subunit within all others parts /in development/

PHEPS functionality (automatic link)

- Z(pH) proton bonding (potentiometric titration) curve; s,(pH) degree of ionization of each *i*-th ionisable site;
- $\Delta G_{el}(pH)$, $\Delta G_{tot}(pH)$ electrostatic and total free energy (stability), $E_{el,i}(pH)$ Coulomb energy of each ionic group
- with whole charge multipole, Φ_j Electrostatic potential at you selected pH on every j-th atom in your protein;
- $\phi_i(pH)$ Electrostatic potential at each *i*-th point within or close to molecule; $\langle SA \rangle_i$ Averaged relative Static Atomic accessibility to the solvent; $\langle SR \rangle_j$ Averaged relative Static Residue accessibility to the solvent;

and many others

See the NEXT \rightarrow

SUPPLEMENT - 1

Α

С

D

В

ghC1q (trimer) and hCRP(pentamer) -

the natural partners of immune recognition

"ghC1q is tilted when docked into the CPR cleft" (Christine Gaboriaud) "Following direction of electric moment if Ca²⁺ is removed" (we add)

Β

Calculated at Dipole Moment Server http://bioinformatics.weizmann.ac.il/cgi-bin/dipol/ µ = 866 D

Dipole moment vector is approximate parallel to CuA-CuD direction

ghC1q ELECTRIC MOMENTS

and the recognition process

C Scalars

pH DEPENDENT ELECTRIC MOMENTS (scalars) of CYTOCHROME REDUCTASE

Global EI property: DIPOLE and ELECTRIC MOMENTS

TEM1 ß-lactamase reaction cycle intermediates (RI)

	CYCLE	Electric moments (μ _e) at pH			Dipole moments (μ _d) at pl (in Debye) (e.Å)		
No	RI	4.0 (e.Å)	6.5 (e.Å)	9.0 (e.Å)	pl/∆G_{el} (kcal/mol)	Distance (Å)	Dipole moment (e.Å)
1.	FE	531	254	388	5.25 / -17.46	3.35	49
2.	МС	413	379	556	5.25 / -19.5	2.76	105
3.	T1	486	344	514	5.25 / -17.9	3.13	59
4.	AE	614	184	342	5.75 / -19.8	3.44	45
5.	Т2	614	185	357	5.75 / -19.8	3.52	46
6.	PE	514	298	457	5.25 / -22.7	3.00	30

3D-Electrostatic Potential Mapping Class A β -lactamase from <u>E.coli</u> TEM-1 10 12 13 3D EPMaps of free enzyme at pH 6.5, is 0.1, d = 3 Å and EP step 0.6 kcal/mol.e

FORCES

Fig. S1-10 B

3D-ELECTROSTATIC POTENTIAL GRADIENS (FORCES)

"Computer Mutagenesis" **Electrostatic Interaction Analysis** ghC1q B-APO MUTANTS Semi-automatic fast screening pH-Dependent electrostatic free energy of $\delta \Delta Gel = \Delta Gel, mut - \Delta Gel, intact$ isolated chains: intact and MUTANTS Manual plots -1,5 ΓΕΜ-1 β-LΑСΤΑΜΑΣΕ - "Ε like that S - E 2 8 dG1pB0 - intact D 3 5 E 37 dGH117 - H117Q **Zeroed negative** 🗕 🕂 🕂 🕂 6 dGR114 - R114Q -Y46 -2,0 E 4 8 dGR129 - R129Q 🔶 D 5 0 dGR163 - R163Q 🔶 E 5 8 Е 8.9 * E 6 3 $\widehat{}$ 🗕 E 6 4 - D 8 5 Difference plots by: ∆G_{el}(kcal/mol).-``` Zeroed positive - F 8 9 D163 → Y 9 7 37 a I/m * D 1 0 3 F104 105 ΔS_i E110 2 D 115 E121 ΔΖ_i ΔpK_{a,i} ΔE_{el} υ D 1 3 1 × × E147 D157 D 1 6 3 -166 0 168 Ū -3,5 F D 176 ∢ δΔG_{el,i} D 179 5.6 Ø E 1 9 1 - D 2 0 9 - 2 E 24 × E 2 1 2 <mark>Δφ_{el.i}</mark> * D 2 1 4 - D 2 3 3 -4,0 INTACT-- 3 -E240 10 12 - D 2 5 4 0 2 6 8 6 8 10 - Y 2 6 4 Δ - D 2 7 3 Н р pН ---- E 2 7 4 mutB-dg.org ---- E 2 8 1

Β

С

FINE