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Principal formalism of PROTEIN ELECTROSTATICS

J. Kirkwood, Ch. Tanford – DIELECTRIC CAVITY
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Distance-dependent dielectric “constant”
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Linear and non-linear Poisson-Boltzmann Equation

ΔG = - 2.3 RT lgK;   pK = - lgK; 

 



 
 
 

Local and Global EI property:
ELECTROSTATIC POTENTIAL (EP)

Site EP Protein EP
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pH-Dependent ELECTROSTATIC POTENTIALS at Ser-70
TEM-1 β  - LACTAMASE intermediates (1-6)
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pH-Dependent ELECTROSTATIC POTENTIALS at Ser-130
 β  - LACTAMASE  reaction intermediates (1-6)
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Electrostatic Potential (EP) Derived Electric Moments ( Haskell – numerical linear algebra Lapack library interface) 

Whatever method for computation of electrostatic potential grid is chosen all procedures share common basis and inherit analogous problems in the 
subsequent electric moment calculation. In any case numerical difficulties emerge that might make it impossible to perform the fitting unequivocally – i.e. 
resultant electric moment scalar value and vector orientations turn out to be ambiguous.  Singular value decomposition (SVD) comes at a rescue: A = U S V*   
where U and V are unitary (orthonormal) matrices, V* is the conjugate transpose  of V and S is diagonal whose elements are the singular values of the original 
matrix. The separable form turns to be useful for certain class of problems: A = ∑j H j = ∑j ζ jU j × V j, ζ j  being ordered singular values. It can be proved that 
no rank-deficiency problems are encountered if the least-squares fit is performed using pseudoinverses calculated by singular value decomposition. The 
pseudo inverse Ω + of the matrix Ω  with singular value decomposition:  Ω = U Σ V*, as a special case – in eigenvalue decomposition form:  

Ω *Ω = V Σ* U* U Σ V*= V (Σ* Σ) V* or Ω Ω* = U Σ V* V Σ* U*= U (Σ Σ*) U *  

is represented by the following   matrix expression: 

  Ω + = V Σ+ U*,  

where Σ+ is the transpose of Σ with every nonzero entry replaced by its reciprocal. The pseudo inverse is at the heart of state of the art algorithms to 
solve linear least squares problems. 

 

1. Example SVD Haskell code in interfacing LAPACK routine dgelss  pseudoinverse of a  matrix 

pinv :: Field t => Matrix t -> Matrix t 
pinv m = linearSolveSVD m (ident (rows m))

The intermediate SVD step is a two stage procedure. At first a Householder reflections is performed to reduce matrix to bidiagonal form. Then a variant 
of  orthogonal decomposition - the QR algorithm is applied: 

 



2. Example SVD Haskell code in interfacing LAPACK routine dgeqr2  - QR factorization matrix - q is unitary and r is upper 
triangular.

qr          :: Matrix t -> (Matrix t, Matrix t)
 
 
3. Example SVD Haskell code in interfacing LAPACK routines that diagonalize a matrix and find singular values. 
 
full :: Element t  
     => (Matrix t -> (Matrix t, Vector Double, Matrix t)) -> Matrix t -> (Matrix t, 

Matrix Double, Matrix t)
full svd' m = (u, d ,v) where
    (u,s,v) = svd' m
    d = diagRect s r c
    r = rows m
    
 

c = cols m

4. Example SVD Haskell code in interfacing LAPACK routines that return singular values as well as orthogonal matrices  
 
nonzero :: Element t  
        => (Matrix t -> (Matrix t, Vector Double, Matrix t)) -> Matrix t -> (Matrix t, 

Vector Double, Matrix t)
economy svd' m = (u', subVector 0 d s, v') where
    (u,s,v) = svd' m
    sl@(g:_) = toList s
    s' = fromList . filter (>tol) $ sl
    t = 1
    tol = (fromIntegral (max r c) * g * t * eps)
    r = rows m
    c = cols m
    d = dim s'
    u' = takeColumns d u
    v' = takeColumns d v



 

 

Motivation behind HASKELL-LAPACK  interface approach 

Numerical operations on vectors and matrices have very fast implementations in linear algebra libraries such as ATLAS (BL
LAPACK. Major improvements in efficiency have origin in advanced use of cache and application of specialized processor 

s matrix multiplication using 

AS) 
and 
instru these libraries may execute orders of magnitude faster 
than in C/C++ or FORTRAN programming languages(1,2,3). Hence our motivation to use 
sche anced computational linear algebra libraries –   C/C++  or FORTRAN) and expressivity – 
Hask s errors are found at run-time or statically at the level of tensor rank/element type (3). 
For s TO underlying computational engine, implementing  procedures with heavy numerical code,  a method that 
allow ination of ranks is needed and the compromise is achieved via Haskell – LAPACK  interface.  

ctions. Haskell call of an operation such a
plementation a straightforward low-level im

mes of combined efficiency (adv
ploys matrix algorithmell. Whenever one em

oftware, like PHEM
static determs 
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