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(July 2008)

1 Equations of motion

The constant-pressure, constant-temperature scheme of Equations
(36) to (43) from Ref. [1] can be extended so that the scaling of the
coordinates preserves the symmetry elements of a particular crystal
system (or “Bravais lattice”).

1.1 Nonpolarizable force field

For a collection of N atoms with masses {mi}, positions {ri}, ve-
locities {vi}, and forces {Fi} (i = 1, . . . , N), the isothermal-isobaric
equations of motion for isotropic volume fluctuations are the follow-
ing:

ṙi = vi + ε̇ri, (1)
miv̇i = Fi −mi (η̇ + aε̇)vi, (2)

Qη̈ =
∑
j

mjv
2
j −NfkBT, (3)

Wε̈ = a
∑
j

mjv
2
j +

∑
j

Fj · rj − 3PV. (4)

Variables η̇ and ε̇ are associated to the constant-temperature and
constant-pressure, respectively. Q and W are inertia parameters.
Nf is the number of degrees of freedom, which corresponds to 3N
minus the number of holonomic constraints, minus the number of
translational invariances (3 if the atomic forces are conservative, 0
otherwise). Coefficient a = 1 + 3/Nfp, where Nfp is the number of
degrees of freedom contributing to the pressure. For a nonpolarizable
force field simulation, all degrees of freedom are contributing to the

pressure equally, and Nfp = Nf . Finally, T and P are the temperature
and pressure of the reservoir, and kB is Boltzmann’s constant.

These equations can be readily generalized by replacing the scalar
variable ε̇ by a 3× 3 tensor Ė [2, 3].

ṙi = vi + Ėr, (5)

miv̇i = Fi −mi

(
η̇ + ÂĖ

)
vi, (6)

Qη̈ =
∑
j

mjv
2
j −NfkBT, (7)

W Ë = Â
∑
j

mjvjvj +
∑
j

Fjrj − IPV. (8)

Scalar coefficient a has been replaced by the tensorial operator Â =
I(1+tr /Nfp), with I the identity matrix and tr the trace operator. Â
is applied to tensor Ė in Eq. (6) and to dyadic tensor vjvj in Eq. (8).
We recover the equations of motion (1) to (4) if E = εI. In particular,
Eq. (4) corresponds to the trace of Eq. (8).

Using the following definition of instantaneous pressure (corrected
for the number of degrees of freedom contributing to it)

P̃V = Â
∑
j

mjvjvj +
∑
j

Fjrj , (9)

we can write Eq. (8) as

W Ë = (P̃− IP )V. (10)

Pressure tensor P̃ is obtained from the instantaneous atomic veloci-
ties and forces, and is generally asymmetric. Used as such, it drives
tensor Ė to become asymmetric, which results in coordinates transfor-
mations that do not preserve the original shape of the simulation cell.
To avoid transformations that would break the original symmetry of
the simulation cell, we replace P̃ with P̃s, which is a symmetrized
form of the tensor calculated according to the crystal system:

Cubic :
(a=b=c, α=β=γ=90◦)

P̃s =

 t3 0 0
0 t3 0
0 0 t3

 , (11)
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Tetragonal :
(a=b, α=β=γ=90◦)

P̃s =

 txy 0 0
0 txy 0
0 0 P̃zz

 , (12)

Hexagonal :
(a=b, α=β=90◦, γ=120◦)

P̃s =

 txy 0 0
0 txy 0
0 0 P̃zz

 , (13)

Rhombohedral :
(a=b=c, α=β=γ)

P̃s =

 t3 s3 s3

s3 t3 s3

s3 s3 t3

 , (14)

Orthorhombic :
(α=β=γ=90◦)

P̃s =

 P̃xx 0 0
0 P̃yy 0
0 0 P̃zz

 , (15)

Monoclinic :
(α=γ=90◦)

P̃s =

 P̃xx 0 szx

0 P̃yy 0
szx 0 P̃zz

 , (16)

Triclinic : P̃s = 1
2(P̃ + P̃T), (17)

with the following shorthand definitions: t3 = 1
3(P̃xx + P̃yy + P̃zz),

txy = 1
2(P̃xx + P̃yy), szx = 1

2(P̃xz + P̃zx), and s3 = 1
3(sxy + syz + szx).

Those symmetrized tensors preserve the crystal symmetry and have
the same trace as the original pressure tensor.

For each crystal system, we indicate in parentheses the symme-
try constraints imposed on the lattice parameters (a, b, c, α, β, γ).
The symmetrized tensor has a number of independent components
equal to the number of lattice parameters allowed to fluctuate inde-
pendently: only one for cubic systems, and at most 6 (for triclinic
systems).

Constraints on bonds lengths are enforced with the SHAKE/Roll
and RATTLE/Roll procedures of Martyna et al. [2], as explained in
Ref. [1]. Those procedures iteratively calculate the Lagrange multi-
pliers that keep the bond lengths constant and their time derivatives
zero. The constraint forces contribute to the pressure through a virial
term that we symmetrize according to Eqs. (11) to (17).

1.2 Drude polarizable force field

For a collection of N atoms individually coupled to N Drude parti-
cles with masses mD, positions {rD,i}, velocities {vD,i}, and forces
{FD,i}, the equations of motion can be cast in term of {Ri}, the
positions of the centers of mass of each pair, and of {di}, the dis-
placements of the Drude particules relative to their associated atom:

Ṙi = vR,i + ĖRi, (18)

miv̇R,i = FR,i −mi

(
η̇ + ÂĖ

)
vR,i, (19)

ḋi = vd,i + Ėdi, (20)

miv̇d,i = Fd,i −m′
i

(
η̇? + ÂĖ

)
vd,i, (21)

Qη̈ =
∑
j

mjv
2
R,j −NfkBT, (22)

Q?η̈? =
∑
j

m′
jv

2
d,j −Nf?kBT, (23)

W Ë = Â
∑
j

(mjvR,jvR,j + m‘jvd,jvd,j)

+
∑
j

(FR,jRj + Fd,jdj)− IPV. (24)

The “center-of-mass” variables R and vR, representing the atomic
motions, are coupled to a thermostat “η” at room temperature T ,
while the “displacement” variables d and vd, representing dipole fluc-
tuations, are coupled to a separate thermostat “η?” at a temperature
T? � T . mi is the mass of atom-Drude pair i, and m′

i is its reduced
mass. Since the total pressure is primarily due to the Nf atomic de-
grees of freedom at room temperature, tensor Â is calculated using
Nfp = Nf .

As for the nonpolarizable system, the tensor

P̃V = Â
∑
j

(mjvR,jvR,j + m‘jvd,jvd,j)

+
∑
j

(FR,jRj + Fd,jdj) (25)

is replaced by its appropriate symmetrized version.
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2 Implementation in the
TPCONTROL/DYNA VV2 modules

By default, volume fluctuations in the TPCONTROL/DYNA VV2 modules
are isotropic, which means that the pressure is regulated by expand-
ing or contracting the simulation cell uniformly in all directions. To
access the “Parrinello-Rahman” generalization explained above, two
additional keywords are available in the TPCONTROL module: FULL,
which requests volume fluctuations consistent with the symmetry of
the simulation cell, and ZONLy, which requests volume fluctuations
along the z-axis only. ZONLy uses a truncated version of Eq. (24) in
which only the zz component of Ë is nonzero.
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