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Abstract – The development of molecular genotypingtechniques makes it possible to analyze
quantitative traits on the basis of individual loci. With marker information, the classical theory of
estimating the genetic covariance between relatives can be reformulated to improve the accuracy
of estimation. In this study, an algorithm was derived for computing the conditional covariance
between relatives given genetic markers. Procedures for calculating the conditional relationship
coefficients for additive, dominance, additive by additive, additive by dominance, dominance
by additive and dominance by dominance effects were developed. The relationship coefficients
were computed based on conditional QTL allelic transmission probabilities, which were inferred
from the marker allelic transmission probabilities. An example data set with pedigree and linked
markers was used to demonstrate the methodsdeveloped. Although this study dealt with two
QTLs coupled with linked markers, the same principle can be readily extended to the situation
of multiple QTL. The treatment of missing marker information and unknown linkage phase
between markers for calculating the covariance between relatives was discussed.

covariance between relatives / molecular marker / QTL / transmission probability / rela-
tionship matrix

1. INTRODUCTION

Quantifying the resemblance between relatives is a fundamental issue in
quantitative genetics. It is needed for estimating genetic parameters, predicting
breeding values, planning mating schemes, QTL mapping and marker assisted
genetic evaluation. The study of the correlation between relatives can be
traced back to the beginning of the last century [29,36]. Kempthorne [22]
summarized the work on this topic up to Malecot’s study [27]. Fisher [12]
first studied the two-locus epistatic deviations and their effects on the cov-
ariance between relatives such as parents and descendants, fullsibs, uncles
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and cousins. Cockerham [6,7] partitioned the two-locus epistatic variance
into additive by additive, additiveby dominance and dominance by domin-
ance. Kempthorne [21,22] applied the analysis of factorial experiments to
partition the genetic variance and studied the covariance between relatives in
random mating populations [21,23], inbred populations [24] and a simple
autotetraploid population [25]. Plum [31] formulated a recursive method
for calculating the relationship and inbreeding coefficients. Cockerham [8]
and Weir et al. [37] analyzed the influence of linkage on the covariance
between relatives. The theory and computational algorithms for the correlation
between relatives were well established in the early development of quantitative
genetics.

The resemblance between relatives is attributed to gene transmission from
the parents to the descendants so that the relatives share identical genes by
descent with certain probabilities. Since the gene transmission between gener-
ations is not observable, the transmission probability of an allele is generally
taken to be 0.5. Actually, the transmission of an allele from a parent to offspring
follows an all-or-none pattern. With information from molecular markers, it
becomes possible to track the transmission of a linked gene more precisely than
by using pedigree data alone.

There have been several studies on the conditional covariance between
relatives. Fernando and Grossman [11] developed a method for calculating
the gametic covariance conditional on a single linked marker, assuming com-
pletely informative markers. Van Arendonket al. [3] designed a computing
procedure for the gametic relationship matrix given a single linked marker,
which is valid when the parental origin of the offspring’s alleles is known.
Goddard [16] derived the conditional gametic covariance due to allelic effects
in terms of genetic effects without using the concept of identity probabilities,
where parental origins of marker alleles and linkage phases among markers are
assumed to be known. However, the parental origin of the offspring’s alleles
is often unknown in real data analysis. Wanget al. [35] extended Fernando
and Grossman’s [11] method to accommodate situations where the parental
origin of marker alleles can not be determined unequivocably. However, the
method used to account for this biological uncertainty has been developed only
for a single marker linked to a QTL. In QTL mapping for human populations,
Fulker and Cardon [13,14] used a regression approach to approximate the IBD
of QTL from the IBD of flanking markers. Their development is based on the
method of Haseman and Elston [18] which considers the expected IBD of a
locus as a linear function of the IBD of another linked locus. Kruglyak and
Lander [26] developed a hidden Markov model to estimate the IBD states of
a putative QTL using the probability distribution of the marker IBDs. This
approach is more accurate than Fulker and Cardon’s approximation [13,14],
but is more complicated to compute. Xu and Gessler [38] made a compromise
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between the two methods and proposed an approximate hidden Markov model
to improve the computing speed at the expense of estimation accuracy. Almasy
and Blangero [2] improved Fulker and Cardon’s method [13,14] in regard
to the sib-pair approach of QTL mapping and developed a general frame-
work of multipoint identity by descent. Pong-Wonget al. [32] combined
the method of Haseman and Elston [18] for estimating identity by descent
between sibs often used in human genetics and the method of Wanget al.
[35] for general pedigree to derive a simple method for calculating the gametic
identity-by-descent matrix of QTLs. Meuwissen and Goddard [28] developed
a method of predicting gametic identity probability from marker haplotypes
by a simplified coalescence process, assuming that the number of generations
since the base population and effective population size are known. These
studies on conditional identity measures of relatives have generally focused
on the identity by descent due to allelic effects. The theory of conditional
covariance due to non-additive effects has been little studied. Aside from the
covariance due to allelic effects, the quantification of the conditional covariance
components due to additive and non-additive effects is also frequently required
to refine the statistical model for marker assisted analysis of quantitative
traits.

This study aimed to develop a general theory for constructing the condi-
tional covariance between relatives in the presence of additive, dominance
and epistatic effects and to update the classical theory when both pedigree
and marker data are available. The development relaxed the assumptions of
previous studies and applied both single and flanking marker inferences with
known or unknown parental origins of offspring’s haplotypes.

2. THEORY

2.1. Notations

The notations used in this study basically follow those of Wanget al. [35].
Considering an individuali in the population, itslth QTL locusQl

i is bracketed
by marker lociMl

i andNl
i . The recombination rate betweenMl

i andQl
i is θl

1 and
betweenQl

i andNl
i is θl

2. The recombination rate between the two markersMl
i

andNl
i is θl. The homologous QTL alleles at locusl of individual i are denoted

by Ql1
i andQl2

i . The marker alleles are expressed asMl1
i andMl2

i at the flanking
locusMl

i , andNl1
i andNl2

i at the flanking locusNl
i . The superscriptl will be

dropped for simplicity whenever a single QTL is considered. These symbols
are random variables. For example, when an individuali has the genotypeA1A2

at marker locusm, thenMm1
i = A1 andMm2

i = A2. The symbol “≡” stands for
the identity between alleles and the symbol “⇐” for the allelic transmission
from a parent to a descendant.
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Figure 1. The marker and QTL genotypes for individualsi andj, and their respective
parentss, d, ands′, d′.

2.2. Genetic covariance components

If there areq loci controlling a quantitative trait, the classical formula
for computing the covariance between genotypic values (g) of individualsi
andj [21,22] is:

Cov(gi, gj) =
q∑

t=1

t∑
s=0

(rij)
t−s(uij)

sσ2
At−sDs (1)

under the assumption of no inbreeding and linkage equilibrium among loci.
When there is only one locus (q = 1), formula (1) reduces toCov(gi, gj) =
rijσ

2
A + uijσ

2
D. In this notation,σ2

A2D1 stands forσ2
AAD while σ2

A1D2 stands for
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σ2
ADD. Traditionally, the coefficientsrij anduij are assumed to be identical for

theq loci because the allelic transmission at each individual locus can not be
traced. Considering only two loci, saym andn, the genetic covariance due to
these two QTL loci can be written as:

Cov(gi, gj) = rij(σ
2
Am

+ σ2
An

) + uij(σ
2
Dm

+ σ2
Dn

) + rijrijσ
2
AmAn

+ rijuij(σ
2
AmDn

+ σ2
DmAn

) + uijuijσ
2
DmDn

(2)

whereσ2
Am

andσ2
An

are the additive variances of locim andn, andσ2
Dm

andσ2
Dn

are dominance variances at the two loci. The epistatic variances for additive
by additive, additive by dominance, dominance by additive and dominance by
dominance between locim andn areσ2

AmAn
,σ2

AmDn
,σ2

DmAn
andσ2

DmDn
, respectively.

Information on the markers linked to QTL affecting a trait can be used to
refine the covariance among relatives. Conditional on the marker information
M, the coefficientsrij anduij at different loci may vary from locus to locus.
Therefore, formula (2) needs to be rewritten as:

Cov(gi, gj|M) = rm
ij σ

2
Am

+ rn
ijσ

2
An

+ um
ij σ

2
Dm

+ un
ijσ

2
Dn

+ rm
ij r

n
ijσ

2
AmAn

+ rm
ij u

n
ijσ

2
AmDn

+ um
ij r

n
ijσ

2
DmAn

+ um
ij u

n
ijσ

2
DmDn

(3)

whererm
ij , rn

ij, um
ij andun

ij are the additive and dominance relationship coefficients
between individualsi andj at loci m andn, andrm

ij r
n
ij, rm

ij u
n
ij, um

ij r
n
ij andum

ij u
n
ij are

the relationship coefficients of epistatic interactions between locim and n.
The relationship coefficientsrl

ij andul
ij (l = m, n) depend on the conditional

probability of QTL allelic identities between individualsi andj:

rl
ij = 1

2
[Pr(Ql1

i ≡ Ql1
j |M) + Pr(Ql1

i ≡ Ql2
j |M)

+ Pr(Ql2
i ≡ Ql1

j |M) + Pr(Ql2
i ≡ Ql2

j |M)] (4)

ul
ij = Pr(Ql1

i ≡ Ql1
j |M)Pr(Ql2

i ≡ Ql2
j |M)

+ Pr(Ql1
i ≡ Ql2

j |M)Pr(Ql2
i ≡ Ql1

j |M). (5)

This development refines the estimation of genetic covariance and its additive
and non-additive components by using marker information that provides locus
specific knowledge of QTL allelic transmissions. Therefore, tracing allelic
transmission and assessing the conditional probability of QTL allelic identity
between relatives are two fundamental issues in this study.

2.3. Conditional probability of QTL allelic identity by descent

For every pair of individualsi andj in a population, there are four possible
QTL allelic identities: (Q1

i ≡ Q1
j ), (Q1

i ≡ Q2
j ), (Q2

i ≡ Q1
j ) and (Q2

i ≡ Q2
j ).
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The probabilities of these identities can be inferred conditional on the marker
information. Let matrixPij contain the probabilities of the four QTL allelic
identities between individualsi andj:

Pij =
(

Pr(Q1
i ≡ Q1

j |M) Pr(Q1
i ≡ Q2

j |M)

Pr(Q2
i ≡ Q1

j |M) Pr(Q2
i ≡ Q2

j |M)

)
·

The additive and dominance relationship coefficients between individualsi and
j can be obtained from the four elements (p11, p12 p21 andp22) of Pij according
to formulae (4) and (5):

rij = 1

2
(p11 + p12 + p21 + p22)

uij = p11 p22 + p12 p21.

Similarly, the QTL allelic identity matrices betweeni’s parentss andd andj’s
parentss′ andd′ in the parental generation (Fig. 1) can be defined asPs s′ , Ps d′ ,
Pd s′ andPd d′ . For a descendanti, there are eight possible ways to inherit the
QTL alleles of the parentss andd. The conditional probabilities of QTL allelic
transmission from parents to descendanti can be summarized in matrixTi:

Ti =
(

t1 t2

t3 t4

)
=




Pr(Q1
i ⇐ Q1

s |M) Pr(Q2
i ⇐ Q1

s |M)

Pr(Q1
i ⇐ Q2

s |M) Pr(Q2
i ⇐ Q2

s |M)

Pr(Q1
i ⇐ Q1

d|M) Pr(Q2
i ⇐ Q1

d|M)

Pr(Q1
i ⇐ Q2

d|M) Pr(Q2
i ⇐ Q2

d|M)




where thet’s are all (2×1) column vectors. Similarly, QTL allelic transmission
probabilities from parentss′ andd′ to descendantj can be defined in matrixTj.

The QTL allelic identity probabilities between individualsi and j, i.e. Pij,
can be calculated as:

Pi j = Ti
′
(

Ps j

Pd j

)
(6)

where

Ps j = (Pj s)
′ =

(
Tj

′
[

Ps′ s

Pd′ s

])′
= [

Ps s′ Ps d′
]

Tj

and similarly
Pd j = [

Pd s′ Pd d′
]

Tj.

Substitution ofPsj andPdj into formula (6) leads to

Pij = Ti
′
(

Ps s′ Ps d′
Pd s′ Pd d′

)
Tj. (7)
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Formula (7) corresponds to Falconer’s [10] “basic rule”for calculating coances-
try whereas formula (6) relates to the “supplementary rule”. Computationally,
formula (6) is more efficient than formula (7). Both (6) and (7) indicate that the
QTL allelic identity probabilities in a population can be tabulated recursively
from ancestors to descendants.

The same principle applies to the derivation of QTL allelic identity probab-
ilities of individual i with itself. Lettingj = i, s′ = s andd′ = d in formula (7),
and replacing the marginal probabilities with conditional probabilities inTj of
formula (7) because the allelic transmission from parent to the first allele of
offspringi is not independent of that to the second allele, the QTL allelic identity
probabilities of individuali with itself (Pii) can be derived from formula (7)
and take the following form:

Pii =
(

Pr(Q1
i ≡ Q1

i |M) Pr(Q1
i ≡ Q2

i |M)

Pr(Q2
i ≡ Q1

i |M) Pr(Q2
i ≡ Q2

i |M)

)

=

 1

t1
′Psdt4

1′t1
+ t3

′Pdst2

1′t3
t4

′Pdst1

1′t1
+ t2

′Psdt3

1′t3
1


 (8)

wherePsd andt’s are as defined above and1′ = (1 1). Matrix Pii is always
symmetric. When the parental origins of the two QTL alleles are known (e.g.
Q1

i is from the father andQ2
i from mother), formula (8) simplifies to

Pii =
(

1 t1
′Psdt4

t4
′Pdst1 1

)
· (9)

In this situation, there is no dependence between the two events of allelic
transmission. Therefore, formulae (6) and (7) can be directly applied to assess
the QTL identity probabilities of an individuali with itself when parental
origins of offspring’s alleles are known. This explains why formula (8) of Van
Arendonket al. [3] works in the same way as the method of Wanget al. [35]
when parental origins are known.

2.4. QTL allelic transmission probabilities

The parental origin of QTL alleles is usually unknown because the QTL
allelic transmission is not directly observable. Therefore, the eight transmission
probabilities of QTL alleles from parentss andd to descendanti (Ti) have
to be assessed based on marker alleles transmitted from parentss and d to
the offspringi and genetic distances between QTL and markers. When two
flanking markers are available, the transmission probability from QTL allele
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kp (kp = 1, 2) of parentp (p = s, d) to alleleki (ki = 1, 2) of descendanti can
be formulated as:

Pr(Qki
i ⇐ Q

kp
p |M) =

2∑
k′
p=1

2∑
k′′p=1

Pr(Qki
i ⇐ Q

kp
p |Mki

i Nki
i ⇐ M

k′
p

p N
k′′

p
p )

Pr(Mki
i Nki

i ⇐ M
k′
p

p N
k′′

p
p |M)

wherePr(Qki
i ⇐ Q

kp
p |Mki

i Nki
i ⇐ M

k′
p

p N
k′′

p
p ) is the conditional probability given

in the 5th column of Table I whenkp = 1 and in the 6th column whenkp = 2.
Matrix Ti can now be expressed in terms of marker allelic transmission

probabilities, Si, and recombination rates between QTL and markers and
between flanking markers:

Ti = Θ Si (10)

where

Θ =


(1−θ1)(1−θ2)

1−θ

(1−θ1)θ2
θ

θ1(1−θ2)

θ

θ1θ2
1−θ

0 0 0 0

θ1θ2
1−θ

θ1(1−θ2)

θ

(1−θ1)θ2
θ

(1−θ1)(1−θ2)

1−θ
0 0 0 0

0 0 0 0 (1−θ1)(1−θ2)

1−θ

(1−θ1)θ2
θ

θ1(1−θ2)

θ

θ1θ2
1−θ

0 0 0 0 θ1θ2
1−θ

θ1(1−θ2)

θ

(1−θ1)θ2
θ

(1−θ1)(1−θ2)

1−θ




and

Si =




Pr(M1
i N1

i ⇐ M1
s N1

s |M) Pr(M2
i N2

i ⇐ M1
s N1

s |M)

Pr(M1
i N1

i ⇐ M1
s N2

s |M) Pr(M2
i N2

i ⇐ M1
s N2

s |M)

Pr(M1
i N1

i ⇐ M2
s N1

s |M) Pr(M2
i N2

i ⇐ M2
s N1

s |M)

Pr(M1
i N1

i ⇐ M2
s N2

s |M) Pr(M2
i N2

i ⇐ M2
s N2

s |M)

Pr(M1
i N1

i ⇐ M1
dN1

d |M) Pr(M2
i N2

i ⇐ M1
dN1

d |M)

Pr(M1
i N1

i ⇐ M1
dN2

d |M) Pr(M2
i N2

i ⇐ M1
dN2

d |M)

Pr(M1
i N1

i ⇐ M2
dN1

d |M) Pr(M2
i N2

i ⇐ M2
dN1

d |M)

Pr(M1
i N1

i ⇐ M2
dN2

d |M) Pr(M2
i N2

i ⇐ M2
dN2

d |M)




·

Note thatM1
i andN1

i always stem from the same parent, so doM2
i andN2

i .
When only a single linked marker is available, the situation simplifies to the

case of Wanget al. [35]. Formula (10) is identical to formula (5) of Wang
et al. [35] if their B matrix is transposed.
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2.5. Marker haplotype transmission probability

Although marker genotypes can be observed through genotyping techniques,
the parental origin of a descendant’s haplotype is often uncertain. For example,
if a descendant and its parents all have genotypeA1A2 at a single marker, there
is no way to ascertain which parent the descendant’s haplotypes come from.
Furthermore, when a parent is homozygous, it is impossible to determine which
parental gamete a descendant’s haplotype comes from. In this development,
we trace all possible paths from parental gametes to a descendant’s marker
haplotype. Because the inference is always conditional on marker information,
the notation for conditioning on marker information (|M) will be dropped
hereafter for ease of presentation.

The assessment of the marker haplotype transmission involves three steps.
First, the transmission probabilities of each path from parental gametes to a
descendant’s haplotype needs to be quantified. For this, we need to infer
which parent a descendant’s haplotype comes from (parental origin), and which
parental gamete type the descendant’s haplotype originates from given the
parental origin (gametic frequency). The probability of each transmission path
is a probabilistic product of the parental origin and the gametic frequency given
parental origin, following the Law of Compound Probability [5]. There are four
mutually exclusive paths for each descendant’s haplotype in a single marker
case and eight in a flanking marker case. Second, we need to determine the
probabilities of each descendant’s haplotype given the transmission path from a
parental gamete to the descendant’s haplotype. This can be done by comparing
the descendant’s haplotype with the parental gametic type. Third, our purpose is
to determine the probabilities of each transmission path from parental gametes
to a descendant’s haplotype given that the descendant’s haplotype is observed.
This requires calculating the reverse probability of each path given the observed
haplotype of the descendant using the Bayes Theorem [5].

Consider the single marker case first. A marker haplotypeMki
i of descendant

i may come from the first or second paternal allele (Mki
i ⇐ M1

s ) or (Mki
i ⇐ M2

s ),
or the first or second maternal allele (Mki

i ⇐ M1
d) or (Mki

i ⇐ M2
d). They are

four mutually exclusive events. The transmission probability of each path
above is a product of the probability of the parental origin of marker haplotype,
Pr(Mki

i ⇐ p) (for p = s, d), and the gametic frequency of parents given the
parental origin:

Pr(Mki
i ⇐ M

kp
p ) = Pr(M

kp
p |Mki

i ⇐ p)Pr(Mki
i ⇐ p).

There are two possible parental origins forMki
i . It may be paternal,i.e.

Pr(Mki
i ⇐ s) = 1 andPr(Mki

i ⇐ d) = 0, or maternal,i.e. Pr(Mki
i ⇐ s) = 0

andPr(Mki
i ⇐ d) = 1. When the parental origin can not be inferred, both

Pr(Mki
i ⇐ s) andPr(Mki

i ⇐ d) are assumed to be 0.5. The two probabilities
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sum to one as expected. In the single marker case, the frequencies of parental
gametes given parental origins are all 0.5.

For each realization ofMki
i , sayMki

i = A1, we determine the probability of

Mki
i = A1 given thatMki

i is transmitted fromM
kp
p , i.e. Pr(Mki

i = A1|Mki
i ⇐

M
kp
p ) for p = s, d andkp = 1, 2. Now we can update the four transmission

probabilities ofMki
i ⇐ M

kp
p givenMki

i = A1 using Bayes theorem:

Pr(Mki
i ⇐ M

kp
p |Mki

i = A1) = Pr(Mki
i ⇐ M

kp
p ) Pr(Mki

i = A1|Mki
i ⇐ M

kp
p )

d∑
p=s

2∑
kp=1

Pr(Mki
i ⇐ M

kp
p ) Pr(Mki

i = A1|Mki
i ⇐ M

kp
p )

for ki = 1, 2. SincePr(Mki
i = A1|Mki

i ⇐ M
kp
p ) is unity whenMki

i andM
kp
p are

identical, and is zero when they are not, this formula can be rewritten as:

Pr(Mki
i ⇐ M

kp
p |Mki

i = A1) = Pr(Mki
i ⇐ M

kp
p ) I(Mki

i ≡ M
kp
p )

d∑
p=s

2∑
kp=1

Pr(Mki
i ⇐ M

kp
p ) I(Mki

i ≡ M
kp
p )

(11)

whereI(Mki
i ≡ M

kp
p ) is an indicator function,which is equal to one ifMki

i ≡ M
kp
p ,

and zero otherwise.

In the case of flanking markers, there are eight mutually exclusive marker
transmission paths for each haplotypeMki

i Nki
i (ki = 1, 2) of descendanti:

Mki
i Nki

i ⇐ M1
s N1

s , Mki
i Nki

i ⇐ M1
s N2

s , Mki
i Nki

i ⇐ M2
s N1

s , Mki
i Nki

i ⇐ M2
s N2

s ,
Mki

i Nki
i ⇐ M1

dN1
d , Mki

i Nki
i ⇐ M1

dN2
d , Mki

i Nki
i ⇐ M2

dN1
d andMki

i Nki
i ⇐ M2

dN2
d .

Here,Mki
i andNki

i always stem from the same parent. The probability of each
transmission path from a parental gamete to a descendant’s haplotype is:

Pr(Mki
i Nki

i ⇐ M
kp
p N

k′
p

p ) = Pr(M
kp
p N

k′
p

p |Mki
i Nki

i ⇐ p)Pr(Mki
i Nki

i ⇐ p)

wherekp = 1, 2 andk′
p = 1, 2 index thepth parental alleles at marker locus

M andN, respectively. The paternal and maternal gametic frequencies given
parental origins are(1 − θ)/2, θ/2, θ/2, and(1 − θ)/2. In a similar way, the
probabilities of parental origins ofMki

i Nki
i can be expressed asPr(Mki

i Nki
i ⇐

s) = 1 andPr(Mki
i Nki

i ⇐ d) = 0 for the paternal origin, andPr(Mki
i Nki

i ⇐ s) =
0 andPr(Mki

i Nki
i ⇐ d) = 1 for the maternal origin. If the parental origin can

not be inferred, it is assumed that bothPr(Mki
i Nki

i ⇐ s) andPr(Mki
i Nki

i ⇐ d)

are 0.5. The updated probability of each path given thatMki
i Nki

i = A1B1 are
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observed can be expressed as:

Pr(Mki
i Nki

i ⇐ M
kp
p N

k′
p

p |Mki
i Nki

i = A1B1)

= Pr(Mki
i Nki

i ⇐ M
kp
p N

k′
p

p ) I(Mki
i Nki

i ≡ M
kp
p N

k′
p

p )

d∑
p=s

2∑
kp=1

2∑
k′
p=1

Pr(Mki
i Nki

i ⇐ M
kp
p N

k′
p

p ) I(Mki
i Nki

i ≡ M
kp
p N

k′
p

p )

(12)

whereI(Mki
i Nki

i ≡ M
kp
p N

k′
p

p ) is an indicator function.
To clarify the description above, the stepwise calculation of the transmission

probabilities of each marker haplotype is given for an example pedigree in
which descendantA1B2

A2B2
results from the fatherA1B1

A2B2
and the motherA1B2

A1B2
. The

elements of matrixSi, i.e. the probabilities for each marker allelic transmission
path from parental gametes to the descendant’s haplotypes given the descend-
ant’s haplotypes are observed (M1

i N1
i = A1B2 andM2

i N2
i = A2B2), are listed

in Table II, together with the intermediate results, such as the probabilities of
parental origins, probabilities of parental gametic frequencies and the probab-
ilities of Mki

i Nki
i = A1B2 andMki

i Nki
i = A2B2 given the marker transmission

paths.
When the linkage phase can not be ascertained in the flanking marker situ-

ation, the marker transmission probability can be estimated by its expectation.
For example, if only one individual’s phase in the related individuals (including
sires, damd and descendanti) is unknown, the expectation ofSi of descendanti,

E(Si) = Sc
i pc + Sr

i pr,

can be used to calculate the QTL transmission probabilities (matrixTi), where
Sc

i andSr
i are estimated from coupling and repulsion phases, respectively. The

probabilities of the coupling phase (pc) and repulsion phase (pr) will be inferred
based on the pedigree and marker information of parents, mates and offspring.
In general, the expectation ofSi can be estimated as:

E(Si) =
r∑

fs=c

r∑
fd=c

r∑
fi=c

Sfs fd fi
i p fs

s p fd
d p fi

i

since the unknown linkage phase can occur with the sire, dam and descendant,
separately or simultaneously.Sfs fd fi

i is calculated from the linkage phase
combination of the sire, dam and descendant (fs, fd, fi = c or r).

3. COMPUTATIONAL PROCEDURE

Computationally, it is convenient to arrange the conditional QTL allelic
identity probabilities between relatives in a gametic relationship matrix,G. If
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Table II. The stepwise calculation of the marker haplotype transmission probabilities
for the example pedigreeA1B1

A2B2
× A1B2

A1B2
⇒ A1B2

A2B2
.

For descendant’s haplotypeM1
i N1

i = A1B2:

GameteM
kp
p N

kp
p A1B1 A1B2 A2B1 A2B2 A1B2 A1B2 A1B2 A1B2

Elements ofSi s11 s21 s31 s41 s51 s61 s71 s81

Prob. of parental origin Pr(M1
i N1

i ⇐ s) = 0 Pr(M1
i N1

i ⇐ d) = 1

Gametic frequency
1 − θ

2

θ

2

θ

2

1 − θ

2

1 − θ

2

θ

2

θ

2

1 − θ

2
I(M1

i N1
i ≡ M

kp
p N

kp
p ) 0 1 0 0 1 1 1 1

Pr(M1
i N1

i ⇐ M
kp
p N

kp
p |A1B2) 0 0 0 0

1 − θ

2

θ

2

θ

2

1 − θ

2

For descendant’s haplotypeM2
i N2

i = A2B2:

GameteM
kp
p N

kp
p A1B1 A1B2 A2B1 A2B2 A1B2 A1B2 A1B2 A1B2

Elements ofSi s12 s22 s32 s42 s52 s62 s72 s82

Prob. of parental origin Pr(M2
i N2

i ⇐ s) = 1 Pr(M2
i N2

i ⇐ d) = 0

Gametic frequency
1 − θ

2

θ

2

θ

2

1 − θ

2

1 − θ

2

θ

2

θ

2

1 − θ

2
I(M2

i N2
i ≡ M

kp
p N

kp
p ) 0 0 0 1 0 0 0 0

Pr(M2
i N2

i ⇐ M
kp
p N

kp
p |A2B2) 0 0 0 1 0 0 0 0

∗ θ stands for the recombination rate between markers.

n individuals in a population are coded successively,G will consist of 2× 2
submatrices as follows:

G =




P11 P12 ... P1n

P21 P22 ... P2n

... ... ... ...

Pn1 Pn2 ... Pnn




where the (2× 2) Pij submatrix can be calculated as

Pij = Si
′ Θ′

(
Ps j

Pd j

)
or

Pij = Si
′ Θ′

(
Ps s′ Ps d′
Pd s′ Pd d′

)
Θ Sj.

The submatrixPij between individualsi andj can be used in turn to compute the
P submatrix of their descendants. Thus, the gametic relationship matrixG can



670 Y. Liu et al.

be calculated recursively, beginning with the uppermost left submatrix ofG for
founders of the population. The recursive calculation proceeds by processing
individuals in the order of increasing birthdate. Once matrixG is calculated,
the additive and dominance relationship coefficientsrij anduij can be calculated
from the (2× 2) submatrix ofG since matrixPij is identical to the submatrix
of matrixG:

Pij =
(

g2(i−1)+1,2(j−1)+1 g2(i−1)+1,2(j−1)+2

g2(i−1)+2,2(j−1)+1 g2(i−1)+2,2(j−1)+2

)
·

Letting R = {rij} be the additive relationship matrix andU = {uij} be the
dominance relationship matrix at a given QTL locus, then the additive by
additive relationship matrix isRm # Rn, the additive by dominance relationship
matrix Rm # Un, the dominance by additive relationship matrixUm # Rn, and
the dominance by dominance relationship matrixUm # Un, where the symbol
# is the Hadamard product between two matrices of the same size.

4. NUMERICAL EXAMPLE

A pedigree data set is given (Tab. III) to demonstrate the method described.
We assumed that marker locus 1 is linked to QTL 1 with a recombination
rate of 0.1. In another linkage group, marker loci 2 and 3 bracket QTL 2.
The recombination rate between marker locus 2 and QTL 2 is taken as 0.1
and between QTL 2 and marker locus 3 as 0.2. The parents of individuals 1
and 2 are unknown. These two individuals were assumed to be unrelated
and non-inbred. Therefore, the uppermost-left 4× 4 submatrix of matrixG
for these two individuals is an identity matrix for both loci. The matrices
of the conditional marker transmission probabilities from parents to offspring
are listed in Table IV for both single marker and flanking marker cases. For
individual 5, the linkage phase between markers 2 and 3 was uncertain. Given
the genotype of individual 5, the probabilities of two possible linkage phases

Table III. Example pedigree and marker data.

Marker Genotypes

Indiv. Father Mother Marker 1 Marker 2 Marker 3

1 – – 12 11 13

2 – – 34 22 24

3 1 2 13 12 34

4 1 2 23 12 14

5 3 4 33 12 34

6 5 4 32 22 34
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Table IV. Conditional transmission probabilities of marker haplotypes (Si).

Marker 1 Markers 2 and 3

Ind. M1
s M2

s M1
d M2

d M1
s N1

s M1
s N2

s M2
s N1

s M2
s N2

s M1
dN1

d M1
dN2

d M2
dN1

d M2
dN2

d

S′
3 1 0 0 0 0 0.26 0 0.74 0 0 0 0

0 0 1 0 0 0 0 0 0 0.26 0 0.74

S′
4 0 1 0 0 0.74 0 0.26 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0.26 0 0.74

S′
5 0 1 0 0 0.954 0 0 0 0 0.046 0 0

0 0 0 1 0 0 0.046 0 0 0 0 0.954

S′
6 0.5 0.5 0 0 0 0 0.954 0.046 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 1

Table V. Conditional transmission probabilities of QTL alleles (Ti).

QTL locus 1 QTL locus 2

Individual Q11
s Q12

s Q11
d Q12

d Q21
s Q22

s Q21
d Q22

d

T′
3 0.9 0.1 0 0 0.2 0.8 0 0

0 0 0.9 0.1 0 0 0.2 0.8

T′
4 0.1 0.9 0 0 0.8 0.2 0 0

0 0.9 0.1 0 0 0.2 0.8

T′
5 0.1 0.9 0 0 0.928 0.026 0.032 0.014

0 0 0.1 0.9 0.014 0.032 0.026 0.928

T′
6 0.5 0.5 0 0 0.295 0.705 0 0

0 0 0.9 0.1 0 0 0.027 0.973

13
24 and 14

23 are 0.954 and 0.046, respectively. BothS5 and S6, therefore,
were replaced by their expected values. Formula (10) was used to obtain
the conditional QTL transmission probabilities for individuals 3, 4, 5 and 6
(Tab. V).

Once the conditional QTL allelic transmission probabilities and QTL allelic
identity probabilities of founders were computed, the construction ofG pro-
ceeded by computing the submatricesPij andPii. The pedigree data were sorted
in ascending order by birth dates and the animal ID was coded sequentially. We
calculated the submatrixPij for each possible pair of individuals and submatrix
Pii for each individual. The pedigree data, submatricesPij andPii, and elements
of G are all indexed by the successive identification number of the individuals,
such thatG can be constructed step by step, recursively. The resulting matrixG
is listed in Table VI.
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Table VI. Conditional gametic relationship matrix (G) for QTL 1 (upper diagonal)
and QTL 2 (lower diagonal).

Q1
1 Q2

1 Q1
2 Q2

2 Q1
3 Q2

3 Q1
4 Q2

4 Q1
5 Q2

5 Q1
6 Q2

6

Q1
1 1 0 0 0 0.9 0 0.1 0 0.09 0.01 0.05 0.09

Q2
1 0 1 0 0 0.1 0 0.9 0 0.01 0.09 0.05 0.81

Q1
2 0 0 1 0 0 0.9 0 0.9 0.81 0.81 0.81 0.09

Q2
2 0 0 0 1 0 0.1 0 0.1 0.09 0.09 0.09 0.01

Q1
3 0.2 0.8 0 0 1 0 0.18 0 0.1 0.018 0.059 0.162

Q2
3 0 0 0.2 0.8 0 1 0 0.82 0.9 0.738 0.819 0.082

Q1
4 0.8 0.2 0 0 0.32 0 1 0 0.018 0.1 0.059 0.9

Q2
4 0 0 0.2 0.8 0 0.68 0 1 0.738 0.9 0.819 0.1

Q1
5 0.211 0.749 0.008 0.032 0.938 0.0350.329 0.317 1 0.666 0.833 0.09

Q2
5 0.024 0.017 0.192 0.768 0.022 0.6630.030 0.95 0.035 1 0.833 0.18

Q1
6 0.079 0.232 0.138 0.551 0.292 0.4780.118 0.679 0.319 0.716 1 0.135

Q2
6 0.022 0.005 0.195 0.778 0.009 0.6620.027 0.973 0.04 0.925 0.664 1

Table VII. The identity measures of additive genetic effects for QTL 1 (upper off-
diagonal) and QTL 2 (lower off-diagonal).

Diagonal Off-diagonal
QTL 1 QTL 2 a1 a2 a3 a4 a5 a6

a1 1 1 0 0.5 0.5 0.1 0.5

a2 1 1 0 0.5 0.5 0.9 0.5
a3 1 1 0.5 0.5 0.5 0.878 0.561

a4 1 1 0.5 0.5 0.5 0.878 0.939
a5 1.666 1.035 0.5 0.5 0.83 0.670 0.968

a6 1.135 1.664 0.169 0.831 0.720 0.899 0.999

The conditional additive relationship matrix (Tab. VII) and dominance rela-
tionship matrix (Tab. VIII) are calculated fromG. Subsequently, the epistatic
relationship matricesR1#R2, R1#U2, R2#U1 andU1#U2 can be computed.

The G matrix can also be calculated recursively by extending it by two
rows and two columns for each new individual using matrixTi, in a manner
similar to the construction of numerator relationship matrix [1,19,35]. The
principle and computing formulae of this study apply to this method. The only
difference is that matrixTi needs to be filled by place-holding zeros to adjust
the positions of the non-zero elements to match the positions of parental QTL
identity probabilities in the preceding upper left submatrix of matrixG. Taking
the first QTL of individual 5 as an example, matrixT5 needs to be filled with
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Table VIII. The identity measures of dominance effects for QTL 1 (upper off-
diagonal) and QTL 2 (lower off-diagonal).

Diagonal Off-diagonal
QTL 1 QTL 2 d1 d2 d3 d4 d5 d6

d1 1 1 0 0 0 0.008 0.045
d2 1 1 0 0 0 0.146 0.016
d3 1 1 0 0 0.148 0.09 0.138
d4 1 1 0 0 0.218 0.09 0.743
d5 1.444 1.001 0.021 0.012 0.623 0.313 0.225
d6 1.018 1.441 0.006 0.215 0.198 0.134 0.324

zeros as:

T∗
5 =

(
0 0 0 0 0.1 0.9 0 0
0 0 0 0 0 0 0.1 0.9

)′
·

Both 2× 2 original submatrices in the extended matrixT∗
i must correspond

to the father’s and mother’s positions in the upper left submatrix of matrixG.
Beginning with the upper-left 4× 4 submatrix, the remainder of matrixG can
be obtained by recursive extension.

5. DISCUSSION

5.1. Differences between classical and marker-based methods

Molecular genotyping techniques have a profound impact on the traditional
theories of quantitative genetics. They make it possible to analyze a quantitative
trait on the basis of individual loci. As a consequence, some theories of
quantitative genetics have to be modified to account for marker information.
In this study, the classical formulae for the covariance between relatives [7,
21,22] were reformulated to allow for locus-specific information about the
resemblance between relatives provided by genetic markers. In classical theory,
identity by descent is assumed to be equal among loci. Therefore,σ2

A andσ2
D are

summed over all loci affecting a quantitative trait and the epistatic variances are
also summed over all possible combinations of the same kind of interactions.
In the new formulation, the identities by descent are generally not equal among
loci.

The coancestry, which is half of the additive relationship coefficientrij in the
case of no inbreeding [9], needs to be modified as well to incorporate marker
information. The coancestryfij between two individuals,i andj, depends on
the relationship ofi’s parentss andd with j’s parentss′ andd′ [10]:

fij = 1

4
( fs s′ + fs d′ + fd s′ + fd d′).
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This equation assumes that the transmission probability of parental alleles to
descendants is 0.5 as in the absence of marker information. When marker
data are available to track QTL transmission, the formula is no longer optimal.
Conditional on markers, the coancestry between individualsi andj needs to be
defined as:

fij = 1

4
[ Pr(Q1

i ≡ Q1
j |M) + Pr(Q1

i ≡ Q2
j |M)

+ Pr(Q2
i ≡ Q1

j |M) + Pr(Q2
i ≡ Q2

j |M) ].
Classically, the identity by descent between relatives depends only on pedigree
and reflects the average relatedness between individuals in a population. In
this study, the identity measures depend not only on pedigree data, but also
on linked marker genotypes and genetic distances between markers and QTLs.
They would vary from trait to trait and reflect the actual genetic resemblance
between relatives. The conditional identity by descent provides a more accurate
measure of genetic resemblance regarding a specific trait, and results in a
more accurate analysis of quantitative traits, such as the estimation of genetic
parameters.

Furthermore, the classical formula for the covariance between relatives was
derived based on the assumption that no linkage exists between quantitative
trait loci. When the loci are linked, the joint probability of identical genes
among loci is not a product of marginal probabilities. Therefore, the classical
method results in a biased estimation if linkage between loci exists and epistatic
effects are not negligible [8,37]. On the contrary to the classical method, the
assumption of no linkage between QTLs is not required for the marker-based
method as long as the markers are available for tracking QTLs. Consider

an individuali with genotypeQ11
i M1

i Q21
i

Q12
i M2

i Q22
i

and an individualj with genotype
Q11

j M1
j Q21

j

Q12
j M2

j Q22
j

, where two QTLs and a marker locus are linked. If markerM is

ignored as in the classical method,P(Q21
i ≡ Q21

j |Q11
i ≡ Q11

j ) �= P(Q21
i ≡ Q21

j )

because of the linkage. On the contrary, conditional on the marker,P(Q21
i ≡

Q21
j |Q11

i ≡ Q11
j , M) = P(Q21

i ≡ Q21
j )|M) because the marker informationM

removes the influence ofQ1. That is, with marker information, the joint
probability of identical QTL alleles among loci can be expressed as the product
of marginal probabilities.

5.2. Incomplete marker information

In data analysis, incomplete marker information, such as missing marker
genotypes and unknown linkage phases, presents a tedious problem which
might increase computation considerably. A solution to this problem suggested
in the literature is to replace the gametic relationship matrixG by its expectation
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conditional on observed markersMobs [15,35]:

E(G|Mobs) =
∑
ω∈Ω

Gω Pr(ω|Mobs)

whereGω is a gametic relationship matrix conditional on a single phase-known
marker configurationω for the pedigree from a set of all possible marker
configurations (Ω), andPr(ω|Mobs) is the probability of the complete marker
configurationω conditional on observed markers. MCMC algorithms are often
used in exploring the possible configurations and their probabilities conditional
on observed data [33,34]. Georgeet al. [15] gave a detailed review in this
regard.

Calculating the expectation of matrixG for a pedigree with substantial
missing marker data usually increases computing time considerably due to the
potentially large number of configurations [15]. This computing burden is from
the repeated calculation ofGω for each complete marker configuration because
the expectation ofG is taken at the last stage of the procedure, afterGω’s are
obtained. Therefore, we previously suggested taking the expectation of marker
transmission probability (Si) for the issue of unknown linkage phase. Since the
expectation ofSi rather thanG is taken in the early stages of tracing marker
origins, the repeated calculations of matrixGω can be avoided. A similar idea
can also be used to tackle the problem of missing markers. For example, the
marker genotype of an individuali’s mother,d, is missing. Based on the marker
genotypes ofd’s parents, mates and descendants, it is possible to calculate the
probability distribution ofd’s marker genotype:P(M1

dM2
d ≡ k) = pk, where∑

pk = 1. An Sk
i for each possible genotypek can be calculated to get the

expectation ofSi,
E(Si) =

∑
k

Sk
i pk.

ThenSi can be replaced withE(Si) in calculating matrixG. Since the expect-
ation is taken at the stage of tracing markers, theG matrix is calculated only
once.

Recently, Perez-Encisoet al. [30] developed a MCMC method for identity-
by-descent probabilities of a chromosome region conditional on DNA markers.
This procedure appears promising for the situations of incomplete marker
information and could be used for computing the gametic relationship matrix
at a QTL by some minor modifications.

5.3. Possible benefits of the present study

There have been several studies on the conditional covariance between
relatives for marker assisted genetic evaluation within the framework of mixed
model equations [11,16,35]. In comparison with these studies, the present
study differs as follows:
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(1) This study presents a general framework for the conditional covariance
between relatives including additive effects, dominance effects and epistatic
interactions whereas the previous studies generally focused on the covariance
components due to allelic effects. This study extends the classical covariance
between relatives to cover the situation where both marker information and
pedigree are available.

(2) In real data analysis, a solution for unknown parental origins of the
offspring’s marker alleles is unavoidable. Among the previous studies on
gametic relationship, only Wanget al. [35] considered the problem of unknown
parental origins and quantified the transmission probabilities by tracing back
to both paternal and maternal origins for each allele of an offspring. Their
algorithm was developed only for a single marker situation. This study
developed a clear, stepwise procedure based on Bayes theorem for calculating
marker transmission probabilities, which is applicable to both single and flank-
ing marker situations with known or unknown parental origins. Probability
tree analysis [20] shows that the quantification of the marker transmission
probability requires assessing the reverse probability of a transmission path for
a marker haplotype given the descendant’s observed marker haplotype.

(3) This study provides a systematic procedure for constructing the addit-
ive and nonadditive relationship matrices conditional on marker information
besides the allelic relationship, and makes it possible to model additive and
nonadditive effects in the framework of random models. Therefore, it provides
the opportunity to improve the models for marker assisted genetic evaluation
and QTL mapping by including other QTL effects aside from QTL allelic
effects. In marker assisted selection, modeling QTL additive effects, instead
of QTL allelic effects [11], will reduce the number of equations and decrease
the problem of overparameterization. Also, including nonadditive effects will
refine marker assisted genetic evaluation by separating the nonadditive QTL
effects from additive effects, thereby improving the estimates of additive effects.
Modeling the nonadditive effects may be especially meaningful for refining
QTL mapping of livestock using random models. There have been attempts to
extend Fernando and Grossman’s [11] model to QTL mapping [4,17] which
were generally based on modeling QTL alleles. The feasibility of modeling
the additive and nonadditive effects in QTL mapping will certainly improve
the accuracy of QTL mapping. This is especially true for QTL mapping based
on full-sib designs.
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