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Abstract – A method was described for calculating population statistics on relationship coef-
ficients without using corresponding individual data. It relied on the structure of the inverse
of the numerator relationship matrix between individuals under investigation and ancestors.
Computation times were observed on simulated populations and were compared to those
incurred with a conventional direct approach. The indirect approach turned out to be very
efficient for multiplying the relationship matrix corresponding to planned matings (full design)
by any vector. Efficiency was generally still good or very good for calculating statistics on
these simulated populations. An extreme implementation of the method is the calculation of
inbreeding coefficients themselves. Relative performances of the indirect method were good
except when many full-sibs during many generations existed in the population.

relationship coefficient / inbreeding coefficient / pedigree

1. INTRODUCTION

Selection has been very well known to increase inbreeding and relationship
coefficients, which in turn contribute to the decrease in the ultimate rates of
genetic gain after many generations. Consequently, many research works have
been devoted to defining selection methods efficient for the long term. For
instance, procedures have been proposed for maximizing genetic gains with
inbreeding rates constrained at desired values [4,8] or alternatively, minimizing
inbreeding rates with constrained selection differentials [10]. These methods
are either analytical (e.g., constraint handling through Lagrange multipliers
or linear programming [4,11,13]) or Monte-Carlo (such as the annealing
algorithm [8]) or a combination of both [8]. Furthermore, the current genetic
situation of real populations, often with large sizes, as to inbreeding and
coancestry coefficients, has to be monitored first to evaluate the importance
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of inbreeding and second to assess the practical efficiency of appropriate new
selection methods.

These approaches to the management of breeding programmes share the
common characteristic that extensive calculations involving matrices of rela-
tionship coefficients are needed. Then, the amount of calculation might become
critical when the size of the populations involved becomes larger and larger,
although sampling might be resorted to, if reasonable accuracy and not full
exactness is only required for practical purposes [12]. Efficient methods for
calculating inbreeding coefficients do exist. Quaas [6] proposed a method
based on the Cholesky decomposition of the numerator relationship matrix
according to columns i.e., processing from ancestors to current individuals.
Alternatively, Meuwissen and Luo [3] used the Cholesky decomposition by
row i.e., processing from current individuals to ancestors. This procedure was
shown to be less computationally demanding when continuous updating was
required (a situation likely to occur when dynamic optimization procedures
are used). Reasons are that computation time increased only linearly with
the number of ancestors and that re-calculating inbreeding coefficients of
the previous generations is not necessary. Tier [9] first identifies the only
relationship coefficients to be finally calculated recursively and stored, using
linked list techniques. This method does not spare storage room but can
be run faster than Meuwissen and Luo’s method if pedigrees includes many
generations of ancestors [3].

These methods can be called direct methods because the relationship
matrices involved are calculated element by element. The purpose of the
present work was to investigate the potential of an indirect method where
groups of elements were obtained simultaneously. This method was basically
dedicated to optimizing planned matings. However, it might be employed for
providing statistics about the relationship coefficients of existing populations
and even for calculating individual inbreeding coefficients.

2. AN INDIRECT METHOD FOR CALCULATING
RELATIONSHIP STATISTICS ABOUT PLANNED MATINGS

Let us consider matings between n sires (si) and m dams (dj). Then, the
overall number of potential matings is nm. For the sake of simplicity, these
matings are sorted by sire i.e., so that the mating sequence is

s1d1, . . . , s1dm, . . . , snd1, . . . , sndm.

The relationship matrix between the corresponding dummy individuals is A,
of size nm × nm. Let x be the vector of size nm × 1 proportional or equal to
mating frequencies i.e., 1′x = constant. The expected relationship coefficient
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after considering any pair of matings is then proportional to x′Ax. The kernel
of this calculation is vector Ax. Analytical optimization for minimizing this
expectation requires the use of derivatives i.e., the calculation of Ax. Now, it
can be shown that this vector can be obtained without setting A explicitly.

Let A0 of size n0 × n0 be the matrix of relationship coefficients involving
the sires, the dams and their ancestors till the base population. Let A1 be the
matrix of relationship coefficients linking this population and the population
of planned matings. If we set

Ax = y

A1x = z

then we have (
A0 A1

A′1 A

) (
0
x

)
=

(
z
y

)
·

Let A∗ stand for matrix (
A0 A1

A′1 A

)
·

Then,

A∗−1

(
z
y

)
=

(
0
x

)
·

As already shown by Henderson [2] and Quaas [6], matrix A∗−1 is a sparse
matrix with expression

(I − T)′D−1 (I − T) .

For the sake of simplicity, the base population gathers the individuals with
both unknown parents and the single unknown parents, after corresponding
recodification. Finally, parents precede progeny and each progeny has two
known parents. Then, D is the diagonal matrix with terms equal to 1 for the
base population and terms equal to the within-family segregation variance for
the other individuals i.e., 0.50−0.25 (Fsire+Fdam). Inbreeding coefficients are
assumed to be available. I is the identity matrix of size (n0+nm)× (n0 + nm).
T is a null matrix except for two terms, equal to 0.5, for each row corresponding
to non-base individuals, linking them to their parents.

Then, the value of y can be obtained after successively solving two simple
linear systems of equations. When solving the system

(I − T)′
(

z1

y1

)
=

(
0
x

)

the information brought by vector x concerning planned matings is then merged
up to the immediate ancestors and processed recursively and collectively up to
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the base. Then, this transformed information is processed down from ancestors
to planned individuals, after solving the system

(I − T)
(

z
y

)
= D

(
z1

y1

)
·

It can be noticed that there is no way of skipping the calculation of z, i.e.,
A1x, which is not used later on. The instantaneous storing capacity needed
corresponds to only one vector of size n0+nm. In the first step, x is overwritten
by y1 and z1 is built progressively only from y1, due to the special form of the
right hand side. In the second step, vector

D
(

z1

y1

)

is overwritten downwards by z and y.
Quaas [7] and Mrode and Thompson [5] presented a recursive algorithm

showing how to compute vector L′r where L is the lower triangular matrix after
the Cholesky decomposition of A (i.e., A = LL′). The algorithm presented

here might be considered as a kindred algorithm where vector r =
(

0
x

)
and

where sparseness of A−1 is exploited as well.
The first benefit from using this algorithm is that matrix A no longer has

to be calculated and stored. Furthermore, computation time can be saved,
especially when repetitive evaluation of function Ax is required, because the
amount of calculations is only linear with the overall number of individuals
(planned matings + ancestors) and not quadratic as for the direct approach
using matrix A.

A similar approach for obtaining the variance of coefficients aij [3] would
have required to calculate TrADxADx, where Dx is the diagonal matrix obtained
from x. The trace could be obtained only after setting matrix ADx column by
column, which might be very time-consuming.

3. AN INDIRECT METHOD FOR PROVIDING RELATIONSHIP
STATISTICS IN REAL POPULATIONS

Let A be the full relationship matrix for a list of individuals under investig-
ation and their corresponding ancestors. Then, the previous approach can be
used in a simpler way, letting

Ax = y

(I − T)′ y1 = x

(I − T) y = Dy1.
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Finally, vectors Ax and quadratics x′Ax can be calculated after a number
of operations increasing only linearly with n the number of individuals +
ancestors.

3.1. Relationship coefficients within a group

Let x be a sparse vector except for a series of 1′s at the positions pertaining
to the m members of the group. A single run of function Ax allows one to
obtain the vectors of average relationship coefficients between each member
and the whole group (including self-relationships) and the average pairwise
relationship coefficients. If vector p denotes the positions filled in vector x,
then the first vector corresponds to positions p of 1

m Ax and the scalar cor-
responds to 1

m2 x′Ax. If self-relationships have to be excluded, corrections
are straightforward because these coefficients are equal to 1 + inbreeding
coefficients.

3.2. Relationship coefficients between two groups

In some circumstances, knowing the full relationship matrix between a list
of males and females is not needed. For instance, breeders might be interested
only in the average relationship coefficient between a given sire and all the
females of the population. This could be enough for describing the genetic
originality of this sire vs. the female population or for modifying selection
index to decrease inbreeding rates [1].

Let vector p1 denote the positions filled by the first group in sparse vector
x1 and let vector p2 denote the positions filled by the second group in sparse
vector x2. Then, positions p1 of vector 1

m2
Ax2 correspond to the vector of

average relationships between members of group 1 vs. the whole group 2. In
the same run, positions p2 correspond to the vector of average relationships
between members of group 2 vs. the whole group 2. Finally, after a second run
where x1 and x2 are permuted, complete statistics between and within groups
can be obtained.

4. AN INDIRECT METHOD FOR CALCULATING INDIVIDUAL
INBREEDING COEFFICIENTS

The indirect method can be used for calculating individual inbreeding coeffi-
cients, provided that inbreeding coefficients of ancestors are already known and
that parents precede progeny according to the sequential identification number.
It consists of running function Ax for each of the differents sires involved. Sires
are very often much less numerous than dams but sexes might be interchanged
if this can save calculation steps. The different x involved include a single 1 at
positions corresponding to the current sires.
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For each sire, the terms corresponding to the dams mated are extracted from
the resulting vector, divided by two, and affected to the corresponding progeny.
Understandably, the efficiency of this approach in comparison with direct
methods is likely to depend on the sparseness of the mating design. Substantial
computation time can be saved during each back exploration step because many
terms of the working vector are still null. The only terms corresponding to
the ancestors of the current sire have to be visited. These algorithms can be
implemented vectorwise, if the population is split into sections where no pair
parent-progeny occurs within sections. This can be carried out very easily if
during the extraction of pedigrees, pseudogeneration numbers ψ are calculated
(ψ for progeny = 1 +Max (ψ for parents)) and if population is finally sorted
according to these numbers. Then, the indirect method can be processed section
after section, calculating the full relationship matrix between the parents of the
section and then re-affecting the relevant selected relationship coefficients to
the individuals of the section. Finally, inbreeding coefficients are equal to half
these relationship coefficients.

5. COMPUTATION EFFICIENCY OF THE INDIRECT METHOD

The correctness of the above theory was checked numerically on various
complex populations, with overlapping generations, at any times. Direct
methods were either the Quaas’method or Meuwissen and Luo’s method.
The last one was chosen to provide efficiency bench-marks, focusing only
on computation times: storing capacity was then considered to be a factor of
decreasing influence, with the fast evolution of hardware.

5.1. Populations investigated

For simplifying presentation, discrete generations were assumed: either 10
or 30 (data not shown here and obtained on real populations followed the
general pattern shown here and commented afterwards). Each generation, 10
or 50 males and 100 or 200 females were randomly selected and mated. For
each of these four situations, family size was allowed to be 2 or 10, with two
alternatives: either one sire per dam or the maximum number of sires per dam.
Then, overall, 32 random situations were investigated. In order to see whether
comparisons might change due to selection and pedigree concentration, a BLUP
(animal model) selection was simulated on the populations with 50 sires and
200 dams, based on a trait of initial h2 equal to 0.5, observable in each sex at
any generation.

5.2. General tasks under comparison

Four tasks were investigated on these simplified populations.
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Task T1: after matings were planned between all the males and all the females
of the last generation, the task consisted of multiplying the corresponding
relationship matrix A by a vector x.

Task T2: in the same context, the task was to calculate the average relation-
ship of each male with all the females.

Task T3: the task consisted of calculating the average pairwise relationship
coefficient for all the individuals of the last generation

Task T4: the task was to calculate the inbreeding coefficients from the base
to the last generation.

5.3. Details on computation operations

5.3.1. Task 1

The direct method executed the multiplication of matrix A by a vector x.
Then, the calculation time required for setting matrix A itself was not accounted
for. The calculation time was assumed to be equal to the square of the matrix
size multiplied by a constant corresponding to the time needed for carrying out
a basic multiplication plus a basic addition. On a Unix Risc 6000 Workstation,
the computer used throughout, this constant was 6 10−8 s CPU.

The indirect method used existing inbreeding coefficients and calculation
times were those being obtained in the repetitive uses incurred with optimisa-
tion: they corresponded to the time needed for obtaining the solution of the
double linear system but did not include the overheads incurred by extracting the
relevant ancestors from the whole simulated population and by recodification.
The method was implemented in APL2 language, an uncompiled language but
endowed with powerful instructions for group operations (here the generation
groups), thus reducing the overhead. They were used as often as possible.

5.3.2. Task 2

The direct method was inspired from Meuwissen and Luo’s method [3],
which used existing inbreeding coefficients. Their central idea was implemen-
ted in APL2 language, using a tabular method for back exploration of pedigrees.
Individual tables of ancestors and contributions were stored in core only for
sire and dams, and obtained from merging those of their parents. Extensive
calculations of relationship coefficients at a given generation were carried out
from a repetitive use of the stored tables of parents. Computation time was
saved when families of full-sibs existed. If n was the number of sires to be
mated to m females, then in reality these sires might come from a lower number
n∗ of families and these dams might come from m∗ families. The relationship
coefficient between a male and a female of the same family was quite easy to
calculate and involved only three inbreeding coefficients (those of parents and
that of the family). Then, the final number of relationship coefficients really
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needed was even lower than n∗m∗. This final number (observed) was used
during the bench-mark so as to calculate the overall computation time. The
average computing time per pair under comparison was based on the observed
computation time for a sample of the population (50 sires out of the list of
males, mated to the whole list of females).

When using the indirect method, the initial overheads (see above) were
included. Computation time could not be saved when the full-sib existed
because this situation did not affect the size of the mating design considered
by the method.

5.3.3. Task 3

In the direct method, the existence of full-sibs was treated as above, reducing
the number of pairs of individuals to be compared. The average computation
time per pair was the same as for task 2 because it was implemented on animals
of the same generation.

5.3.4. Task 4

In the direct method, only one member of each full-sib family in each new
generation was investigated (a procedure used by Meuwissen and Luo, as well).
This was not carried out in the indirect method for the reason mentioned above.

6. RESULTS AND DISCUSSION

6.1. Task 1

The results are shown in Table I: the relative efficiency is the computation
time needed by the indirect method expressed as % vs. the direct method. The
absolute computation times for the indirect method are indicated in s CPU and
between brackets. Very clearly, the indirect method was far more efficient that
the direct calculation because the computation time needed was lower than 4%
and even fell down to 0.01%.

The relative efficiency improved when the size of the mating design
increased. In the top half of the table, this size was 10 000 or 40 000 while in the
bottom half, the increase of size was substantial (up to 250 000 or 1 000 000).
In this bottom half, relative computation times were very small, in the range
0.01–0.06%.

As previously mentioned, calculations involved in the indirect method
depended linearly on the number of ancestors of the population to be mated
while in the direct method, this dependence was quadratic. This basic fact
was of an overwhelming influence, despite the remaining overheads incurred
with the indirect method. The direct method was superior only for very small
mating designs, due to these overheads (data not shown).
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Table I. Relative times (%) of indirect vs. direct method for computing Ax (absolute
times in s CPU).

Nb Family Nb Hierarchical Factorial
dams size sires matings matings

generation number generation number

10 30 10 30

100 2 10 1.6 (0.1) 4.3 (0.3) 1.8 (0.1) 4.1 (0.3)

100 2 50 2.3 (0.1) 6.2 (0.4) 2.5 (0.2) 6.6 (0.4)
200 2 10 0.29 (0.3) 0.86 (0.8) 0.30 (0.3) 0.50 (0.5)

200 2 50 0.34 (0.3) 0.96 (0.9) 0.33 (0.3) 0.73 (0.7)
200S 2 50S 0.32 (0.3) 0.71 (0.7) 0.80 (0.8) 0.70 (0.7)

100 10 10 0.04 (1.6) 0.06 (2.1) 0.04 (1.6) 0.05 (1.9)

100 10 50 0.04 (1.6) 0.06 (2.2) 0.04 (1.5) 0.06 (2.1)
200 10 10 0.01 (5.4) 0.01 (7.3) 0.01 (5.1) 0.01 (7.5)

200 10 50 0.04 (1.6) 0.06 (2.2) 0.04 (1.5) 0.06 (2.1)

200S ∗ 10 50S 0.01 (5.7) 0.01 (7.4) 0.01 (5.1) 0.01 (7.8)
∗ S population under BLUP selection.

6.2. Task 2

For the sake of simplicity, the four quarters of Table II were named NW, NE,
SW, SE according to their geographical positions. Then, in the NW quarter, the
size of the mating design was moderate, family size was small and matings were
hierarchical. The NE quarter was similar to quarter NW, except that matings
were hierarchical. In the SW quarters (SE), the size of the mating design was
large, family size was large and matings were hierarchical (factorial).

Except for the SW quarter, the results obtained resembled very much those
of Table I because the range of relative computation times was only 0.02–1.4%.
The upper values were met in the NW quarter where matings were hierarchical.

The results obtained in the SW quarter differed markedly so that after 30
generations, the indirect method turned out to be less efficient. The absolute
computation times for this method were very similar to those obtained in the
SE quarter where matings were factorial and where the relative performance
of the method was good. Consequently, its disappointing performance in the
SW quarter originated from the fact that it could not take profit of the existence
of numerous full-sibs.

6.3. Task 3

In comparison with the previous task, performances of the indirect method
improved clearly so that it always was superior to the direct one (Tab. III).
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Table II. Relative times (%) of indirect vs. direct method for computing average
relationships between males and females (absolute times in s CPU).

Nb Family Nb Hierarchical Factorial
dams size sires matings matings

generation number generation number
10 30 10 30

100 2 10 1.2 (0.7) 1.5 (2.2) 0.14 (0.7) 0.13 (2.2)

100 2 50 1.4 (0.8) 1.3 (2.7) 0.12 (0.8) 0.10 (2.8)
200 2 10 0.59 (1.3) 0.75 (4.9) 0.06 (1.3) 0.07 (4.9)

200 2 50 0.65 (1.5) 0.55 (5.7) 0.05 (1.5) 0.05 (6.3)
200S 2 50S 0.68 (1.5) 0.55 (5.7) 0.05 (1.5) 0.04 (5.4)

100 10 10 34 (3.3) 146 (19.7) 0.09 (3.2) 0.20 (18.1)
100 10 50 34 (3.3) 140 (18.7) 0.03 (3.3) 0.04 (18.7)

200 10 10 25 (9.1) 107 (57) 0.07 (9.1) 0.14 (57)
200 10 50 26 (9.5) 120 (63) 0.02 (10.1) 0.03 (68)

200S ∗ 10 50S 25 (9.4) 115 (63) 0.01 (9.4) 0.02 (63)
∗ S population under BLUP selection.

Two reasons might be invoked to explain this change. First, in comparison
to Task 2, the absolute computation times decreased for the indirect method

Table III. Relative times (%) of indirect vs. direct method for computing average
relationships (absolute times in s CPU).

Nb Family Nb Hierarchical Factorial
dams size sires matings matings

generation number generation number

10 30 10 30

100 2 10 0.8 (0.9) 1.0 (3.1) 0.11 (1.2) 0.08 (2.6)
100 2 50 0.93 (1.2) 0.76 (3.2) 0.09 (1.3) 0.06 (3.1)

200 2 10 0.47 (2.1) 0.46 (5.9) 0.04 (1.6) 0.04 (5.4)
200 2 50 0.47 (2.0) 0.30 (6.2) 0.03 (1.7) 0.02 (6.3)

200S 2 50S 0.52 (2.3) 0.37 (6.8) 0.03 (1.7) 0.2 (6.0)

100 10 10 20.7 (4.0) 74 (19.8) 0.06 (3.8) 0.11 (19.6)

100 10 50 19.9 (3.8) 74 (19.6) 0.01 (3.7) 0.02 (19.9)
200 10 10 14.1 (10.2) 58 (61) 0.04 (9.6) 0.08 (60)

200 10 50 13.7 (10.0) 63 (67) 0.01 (10.1) 0.02 (68)
200S ∗ 10 50S 13.5 (10.3) 60 (67) 0.01 (10.0) 0.01 (67)
∗ S population under BLUP selection.
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due to the decrease of the size of the “mating design” because it fell from
0.25(population size)2 to only population size + 1. Second, this time, all the
possible pairs of families were involved in the direct method. In the previous
task instead, some families were represented in males but not in females and
vice-versa.

6.4. Task 4

Roughly speaking, the relative computation times of the indirect method
ranged from 20% to 80% of those of the direct method (Tab. IV). The worst
results were obtained in the SW quarter, especially for many generations,
and the better ones in the SE quarter. Once again, the bad performance of
the SW quarter could be linked to the impossibility to spare time due to the
very numerous full-sibs. This was the dominant factor when matings were
hierarchical and when the family size was high.

However, when the direct method was facing the necessity of exploring many
different individual pedigrees, possibly very long, then the indirect method
could exhibit its main advantage. It allowed one first to lower the exploration
frequency of pedigrees and second to consider only the overall population
pedigrees. It could be observed that in contrast with the other tasks, the
number of sires involved influenced the performances very much. This finding
was quite logical because calculations should be re-started for each sire.

Table IV. Relative times (%) of indirect vs. direct method for computing inbreeding
coefficients (absolute times in s CPU).

Nb Family Nb Hierarchical Factorial
dams size sires matings matings

generation number generation number

10 30 10 30

100 2 10 21 (3.1) 30 (35) 22 (3.5) 22 (34)

100 2 50 53 (9.7) 69 (165) 49 (10.8) 53 (193)
200 2 10 19 (5) 20 (51) 16 (4.8) 13 (49)

200 2 50 43 (14) 42 (255) 36 (13.8) 30 (259)
200S 2 50S 43 (13) 42 (237) 36 (13.8) 29 (252)

100 10 10 43 (6.6) 55 (62) 23 (6.5) 17 (63)

100 10 50 67 (12.4) 81 (175) 31 (13.4) 21 (205)
200 10 10 41 (11.5) 43 (106) 22 (11.5) 13 (108)

200 10 50 56 (20) 53 (281) 24 (20) 41 (292)

200S ∗ 10 50S 55 (17.5) 22 (200) 22 (19) 49 (238)
∗ S population under BLUP selection.
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A question concerning tasks 2 to 4 is whether the comparative results might
have been changed substantially after using another reference direct method,
such as Tier’s method. Direct methods are challenged by tasks 2 and 3 because
they involve the calculation of many individual relationship coefficients. For
these tasks, Tier’s method might have been faster than Meuwissen and Luo’s
method (after splitting the corresponding relationship matrices into smaller
ones to keep within the core storage available, as recommended by this author).
Meuwissen and Luo [3] found situations where Tier’s method ran twice as fast
as theirs. However, it should have run additional times as fast as this method
for finally cancelling the efficiency gap displayed by the indirect method. For
task 4, superiority of the indirect method was substantial but was not a gap.
Then, this superiority might be cancelled by more efficient direct methods.

7. CONCLUSION

The numerical investigations presented above showed that the indirect
method was efficient not only for heavy calculations on a planned mating
design but also for statistical investigations, especially for calculating aver-
age relationship coefficients. The reason of this efficiency was that, due to
considering sparse inverses of the relationship matrices, numerous inferences
could be obtained from a single or two back explorations of the population
pedigree. Inbreeding coefficients were assumed to be available. However, the
mere indirect method might be resorted to for calculating these coefficients
themselves. The efficiency of such a calculation depended highly on the
sparseness of the mating design corresponding to existing individuals.
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