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SI Text
Data. The basic unit of information in a collaborative tagging
system is a post, i.e., a triple of the form (user, resource, {tags}).
In del.icio.us and in BibSonomy (as well as in many other
collaborative tagging systems) a post is complemented with a
time stamp that records the physical time of the tagging event.
Therefore, the temporal ordering of posts can be preserved and
the dynamical evolution of the system over time can be recon-
structed and investigated. In the following, we describe the 2
datasets that were used for the experimental part of this study.
Data from del.icio.us. The del.icio.us dataset we used consists of
�5 � 106 posts, comprising �650,000 users, 1.9 �106 resources
(bookmarks), and 2.5 � 106 distinct tags. It covers almost 3 years
of user activity, from early 2004 up to November 2006.

Data were collected in a 2-stage process. The first stage,
started in mid-2005, was aimed at having a list of active del.i-
cio.us users as large as possible. The database of users was
initially populated with a recursive crawl from the home page of
del.icio.us (following resource, tag, and user links). At the same
time, the system was continuously monitored to detect new users
or the activity of existing users that were not in our database yet.
This was achieved by monitoring the home page of del.icio.us for
fresh posts and, later, by monitoring the really simple syndication
(RSS) feeds provided by del.icio.us. The second stage consisted
of a distributed crawl of the system on a per-user basis. During
the period 10–24 November 2006, the user pages of all of the
users present in our database were crawled and parsed to extract
posts. Each downloaded post contains an anonymized user ID,
a resource URL (together with a unique resource ID), tags, and
a time stamp. Overall, 667,128 user pages of the del.icio.us
community were crawled, for a total of 18,782,132 resources,
2,454,546 distinct tags, and 140,333,714 tag assignments (triples).

The data were subsequently postprocessed for the present
study. We discarded all posts containing no tags (�7% of the
total). Because del.icio.us is case-preserving but not case sensi-
tive, we ignored capitalization in tag comparison and counted all
different capitalizations of a given tag as instances of the same
lowercase tag. The time stamp of each post was used to establish
post ordering and determine the temporal evolution of the
system. Posts with invalid timestamps, i.e., times set in the future
or before del.icio.us started operating, were discarded as well
(�0.5% of the total).

Except for the normalization of character case, no lexical
normalization was applied to tags during postprocessing. The
notion of identity of tags is identified with the notion of identity
of their string representation.
Data from BibSonomy. BibSonomy (3) is a smaller system than
del.icio.us, but it was designed keeping data sharing in mind.
Because of this, there is no need to crawl BibSonomy by
downloading HTML pages and parsing them. Direct access to
post data in structured form is available by using the BibSonomy
application programming interface (API), www.bibsonomy.org/
help/doc/api.html. Moreover, the BibSonomy team periodically
releases snapshot datasets of the full system and makes them
available to the research community. For the present work, we
used the dataset released on January 2008 (www.kde.cs.uni-
kassel.de/bibsonomy/dumps/2007–12-31.tgz).

BibSonomy allows 2 different types of resources: bookmarks
(i.e., URLs of web pages, similar to del.icio.us) and BibTeX
entries. To make contact with the analysis done for del.icio.us,
we restricted the dataset to the posts involving bookmark
resources only. The resulting dataset we used comprises 1,400

users, 127,115 resources, 37,966 distinct tags, and 503,928 tag
assignments (triples). The data from BibSonomy was postpro-
cessed in the same way as the data from del.icio.us.

Although the BibSonomy dataset is much smaller than the
del.icio.us dataset, it is a valuable one: direct access to BibSon-
omy’s database guarantees that the BibSonomy dataset is free
from biases due to the data collection procedure. This is
important because it allows us to show that the investigated
features of the data are robust across different systems and not
only established in a case where biases due to data collection
could be possible.

Network Characterization. In this section, we recall, in more details
than in the main text, the definition of various quantities
customarily used to characterize complex networks.

Each node i of a network is first characterized by its degree ki
(number of links). In a weighted network, each link i–j carries
moreover a weight wij, and an important measure of a node’s
importance is given by its strength si, defined as

si � �
j���i�

wij, [s1]

where the sum runs over the set �(i) of i’s neighbors. This
quantity naturally generalizes the degree by measuring the
strength of vertices in terms of the total weight of their connec-
tions. A first characterization of a network’s properties is ob-
tained by the statistical distributions of the nodes’ degree and
strength, and the distributions of link weights: P(k), P(s), P(w).
Moreover, it is customary to investigate the average strength s(k)
of vertices with degree k:

s�k� �
1

Nk
�

i

�k,ki
si, [s2]

where Nk is the number of nodes of degree k and �k,ki is the
Kronecker symbol, taking value 1 if ki � k and 0 otherwise.

To shed light on a network’s topological correlations, 2 main
quantities are customarily measured. The clustering coefficient
ci of a node i measures the local cohesiveness around this node
(5). It is defined as the ratio of the number of links between the
ki neighbors of i and the maximum number of such links, ki(ki �
1)/2. The clustering spectrum measures the average clustering
coefficient of nodes of degree k, according to

C�k� �
1

Nk
�

i

�k,ki
ci. [s3]

Moreover, correlations between the degrees of neighboring
nodes are conveniently measured by the average nearest neigh-
bors degree of a vertex i, knn,i � 1/ki¥j��(i)kj, and the average
degree of the nearest neighbors, knn(k), for vertices of degree k
(6)

knn�k� �
1

Nk
�

i

�k,ki
knn,i. [s4]

In the absence of correlations between degrees of neighboring
vertices, knn(k) is a constant. An increasing behavior of knn(k)
corresponds to the fact that vertices with high degree have a
larger probability to be connected with large-degree vertices
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(assortative mixing). On the contrary, a decreasing behavior of
knn(k) defines a disassortative mixing, in the sense that high-
degree vertices have a majority of neighbors with low degree,
whereas the opposite holds for low-degree vertices (7).

These quantities have been generalized to weighted networks
(8). The weighted clustering coefficient of a node i,

cw�i� �
1

si�ki � 1�
�

j,h���i�, j���h�

�wij � wih�

2
, [s5]

considers not only the presence of triangles in the neighborhood
of i, but also their total relative edge weights with respect to the
vertex’s strength. The weighted clustering spectrum Cw(k) is the
weighted clustering coefficient averaged over all vertices with
degree k. If the weighted clustering is larger than the clustering
coefficient, triangles are more likely formed by edges with larger
weights and thus carry a strong signification for the network.

Similarly, the weighted average nearest-neighbor degree is
defined as

knn,i
w �

1
si

�
j���i�

wijkj. [s6]

This quantity performs a local weighted average of the nearest
neighbor degrees according to the normalized weight of the
connecting edges, wij/si, measuring the effective affinity to
connect with high- or low-degree neighbors according to the
magnitude of the actual interactions. The average of knn,i

w over all
vertices with degree k, knn

w (k), marks the weighted assortative or
disassortative properties considering the actual interactions
among the system’s elements.

Robustness of Data Characteristics. To check the robustness of the
data analysis, we have considered several tags from the 2
analyzed datasets, del.icio.us and BibSonomy. For each dataset,
the tag number corresponds to its popularity ranking, where the
popularity is simply given by the number of posts in which it
appears. For each tag, we perform the same analysis as in the
main text, considering only the posts that contain this tag. We
measure the growth of the vocabulary associated with this tag as
a function of the number of posts containing it. Typical sublinear
power-law growths are obtained, as shown in Fig. S1.

We also build the cooccurrence network of each tag, and
characterize these networks using the measures detailed in Data
above. As Figs. S2 and S3 show, all networks display the same
qualitative properties, both at the topological level and for the
weighted quantities: broad distributions are observed for the
degrees, weights and strengths; the average strength of nodes of
degree k is linear at small k and has a superlinear growth at large
k; nontrivial correlations are observed, with a disassortative
trend, and strong clustering; at large degree, the weighted
correlations are stronger than the topological ones, showing that
large weights are preferentially connecting nodes with large
degree.

Heaps’ Law and Zipf’s Law. In this short section, we briefly recall
how Heap‘s law can be simply derived from Zipf’s law, as
presented in ref. 1. Let us consider Nd distinct tags corresponding
to a total of N annotations. Each tag i has been used ni times, so
that ¥i�1

Nd ni � N. Zipf’s law states that, if the tags are ranked in
decreasing order of frequency, the ith has frequency ni � A/i�,
where A � N/¥i�1

Nd i�� is a normalizing factor. For � � 1, A is thus
of order N for large N and Nd. Let us assume that the least-
frequent word appears only once (or a number of times of order
1); then nNd

� �(1), which translates into �(1) � A/Nd
� and thus

N � �(Nd
�). Therefore, the number of different tags Nd scales as

N�, which is the Heap’s law, with � � 1/�.

Random Walks: Number of Distinct Nodes Visited. As explained in
the main text, we consider an exploration process on a network
which is taken as a sketch of a semantic space, each node
corresponding to a tag. Starting from a fixed initial node i0
(chosen at random), we perform a random walk of a certain
length. In this picture, a random walk corresponds to a post (of
the same length) in a tagging system: the cooccurrence of 2 tags
is represented by the fact that the 2 corresponding nodes are
visited in the same random walk. The growth of the number of
different tags cooccurring with an initial fixed tag, when the
number of posts increases, corresponds then to the growth of the
number of distinct visited sites as a function of the number nRW
of random walks performed.
Analytics. Let us first consider random walks of fixed length l
starting from a given node i0. We denote by pi the probability for
each of these random walks to visit node i. The probability that
i has not been visited after nRW random walks is then simply

Prob� i not visited� � �1 � pi�
nRW, [s7]

because the random walks are independent stochastic processes,
and the probability that i has been visited at least once reads

Prob� i visited� � 1 � Prob� i not visited� � 1 � �1 � pi�
nRW.

[s8]

The average number of distinct nodes visited after nRW random
walks is then given, without any assumption on the network’s
structure, by

Ndistinct � �
i

�1 � �1 � pi�
nRW� , [s9]

where the sum runs over all nodes of the network.
Although this exact expression is not yet really informative, it

is possible to go further under some simple assumptions [we also
note that analytical results are available in the case of random
walks performed either on lattices or on fractal substrates (2)].
Because all of the random walks start from the same origin i0, it
is useful to divide the network into successive ‘‘rings’’ (4), each
ring of label l being formed by the nodes at distance l from i0. The
ring l � 1 is formed by the neighbors of i0, the ring l � 2 by the
neighbors’ neighbors that are not part of ring 1, and so forth. We
denote by Nl the number of nodes in ring l. We now make the
assumption that all Nl nodes at distance l have the same
probability to be reached by a random walk starting from i0
(which is the sole element of ring 0). This is rigorously true for
example for a tree with constant coordination number, and more
generally will hold approximately in homogeneous networks,
whereas stronger deviations are expected in heterogeneous
networks. Let us assume moreover that the random walk of
length lmax consists, at each step, of moving from one ring l to the
next ring l 	 1. This is once again rigorously true for a
self-avoiding random-walk on a tree and can be expected to hold
approximately if Nl grows fast enough with l: the probability to
go from ring l to ring l 	 1 is then larger than to go back to ring
l � 1 or to stay within ring l. For each random walk of length lmax,
we then have pi � 1/Nl for each node i in ring l � lmax, and after
nRW walks, the average number of distinct visited nodes reads

Ndistinct � �
l�0

lmax

Nl�1 � �1 � 1/Nl�
nRW� . [s10]

The expression (s10) lends itself to numerical investigation using
various forms for the growth of Nl as a function of l. We obtain
that, as nRW increases, Ndistinct increases, with an approximate
power-law form, and saturates as nRW 3 
 at the total number
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of reachable nodes ¥l�0
lmaxNl. Moreover, the increase at low nRW is

sublinear if Nl grows fast enough with l (at least �l2), and is closer
to linear if lmax increases.

Let us now consider, under the same assumptions, that the
successive random walks have randomly distributed lengths
according to a certain P(l). Each ring l, on average, is then
reached by a random walk nRW � ¥l��lP(l�) ' nRWP�(l) times,
so that we have approximately

Ndistinct � �
l�0




Nl�1 � �1 � 1/Nl�
nRWP��l�� , [s11]

where the sum (provided it converges) now runs over all possible
lengths.

If P(l) is narrowly distributed around an average value, the
form (s11) will not differ very much from the case of fixed length
given by Eq. s10. Conversely, for a broad P(l), longer random
walks will occur as nRW increases and the tail of P(l) is sampled,
allowing visits to nodes situated further from i0 and avoiding the
saturation effect observed for random walks of fixed length.

In some particular cases, a further analytical insight into the
form of Ndistinct(nRW) can be obtained:

Y assume that Nl � la, and that P(l) is power-law distributed (P(l)
�1/lb). Then Ndistinct(nRW) � ¥l�0


 la (1 � exp(�nRW/(c
la	b�1))), where c is a constant. The terms in the sum become
negligible for l larger than nRW

1/(a	b�1), whereas they are close
to la for smaller values of l. The sum therefore behaves as

Ndistinct � nRW
�a	1�/�a	b�1�, [s12]

i.e., a power-law. For instance, for b � 3 we obtain a sublinear
power-law growth with exponent (a 	 1)/(a 	 2), i.e., 2/3 for
a � 1, or 3/4 for a � 2.

Y assume that Nl � zl, which corresponds to a tree in which each
node has z 	 1 neighbors, and P(l) � 1/lb. Then Ndistinct(nRW) �
¥l�0


 zl (1 � exp(�nRW/(czllb� 1)). As in the previous case, the
terms in the sum become negligible for l � (log(nRW) � (b �
1)log(log(nRW/log(z))))/log(z), while they are close to zl for
smaller l. Thus the sum behaves as

Ndistinct � nRW/� log�nRW��b�1, [s13]

i.e., we obtain a linear behavior with logarithmic corrections,
which is known to be very similar to sublinear power-law
behaviors.

We have thus shown analytically, under reasonable assump-
tions, that performing fixed length random walks starting from
the same node yields a growth of the number of distinct visited
sites (representing the vocabulary size) as a function of the
number of random walks (representing posts), which is sublinear
with a saturation effect, and that broad distributions of the walks
lengths lead to sublinear growths of the vocabulary, and avoid
the saturation effect.
Numerics. Model networks considered. We have considered net-
works with very different topologies to test the robustness of our
approach with respect to the structure of the underlying network.

The Watts–Strogatz model has been put forward in ref. 5 as an
example of network with large transitivity and at the same time
small-world properties, i.e., short distances between nodes. The
construction procedure starts with a ring of N vertices in which
each vertex is symmetrically connected to its 2m nearest neigh-
bors (m vertices clockwise and counterclockwise). Then, for
every vertex, each edge connected to a clockwise neighbor is
rewired with probability p, and preserved with probability 1 �
p. The rewiring connects the edge’s endpoint to a randomly
chosen vertex, avoiding self-connections, and thus creating

shortcuts between distant parts of the ring. For 1/N �� p �� 1,
a network with a large number of triangles (due to the initial ring
structure) and small diameter (thanks to the shortcuts) is
obtained. The degree distribution is homogeneous, i.e., peaked
around its average value.

The random scale-free network obtained from the uncorre-
lated configuration model (9), in contrast, has a broad degree
distribution P(k)� k�	 (we have used 	 � 2.8 and 	 � 2.3) and
a low clustering coefficient.

We have also considered the homogeneous Erdös–Rényi
random graph, in which nodes are linked with a uniform
probability. In this case, small diameter and small clustering
coefficient are obtained, and the degree distribution is homo-
geneous. Moreover, a model of strongly clustered scale-free
network (10) has also been used.

Results. We have performed numerical simulations on the
model networks presented above, using random walks of fixed
length, or of randomly chosen lengths extracted from a given
distribution P(l). Fig. S4 shows the number of distinct visited
nodes as a function of the number of random walks performed
on the Watts–Strogatz network and on the random scale-free
network. Similar results are obtained if the underlying network
is an Erdös–Rényi random graph or a strongly clustered scale-
free network. For random walks of fixed length, a sublinear
behavior is observed, followed by a saturation effect. For broadly
distributed lengths, on the other hand, the sublinear power
law-like behavior does not show any saturation, in agreement
with the analytical insights obtained above.

Artificial Cooccurrence Networks. As explained in the main text, we
use the random walks performed on the initial network to
construct a synthetic cooccurrence network as follows: Each
random walk of length l, which visits nodes i0,…,il, is transformed
into a clique in the cooccurrence network, connecting the visited
nodes. Each link ia–ib of the cooccurrence network has a weight
corresponding to the number of times ia and ib were visited by the
same random walk. Because, in our framework, a random walk
is associated with a post, this construction mimics exactly the
construction of the real tag co-occurrence network.

As a substrate for the random walks (i.e., as artificial semantic
space), we have considered networks with markedly different
properties, as explained in the previous section: with homoge-
neous and heterogeneous degree distributions, with small or
large clustering. Moreover, we have considered random walks
either of fixed length or of broadly distributed lengths. In each
case, we have analyzed the artificial cooccurrence network
obtained after various numbers of random walks. The charac-
teristics investigated are described in Network Characterization
above.

Fig. S5 shows the data corresponding to the cooccurrence
networks for random walks of lengths distributed according to
P(l) � l�3, performed on a random scale-free network of N �
5 � 105 nodes. The top figure corresponds to the cooccurrence
network obtained after nRW � 104, and the bottom figure to
nRW � 5 � 104. As nRW increases, the size of the cooccurrence
network increases (here �2 � 104 nodes for nRW � 104, and
�7 � 104 nodes for nRW � 5 � 104), and the average and the
maximal degrees increase as well. The statistical distributions
and correlations keep the same qualitative shape, with broadly
distributed degrees, strengths and weights, a disassortative trend,
and weighted correlations which are systematically larger than
the unweighted ones, showing how larger weights are observed
between nodes of large degree and on triangles.

Fig. S6 displays data for a synthetic co-occurrence network
built from random walks performed on the same Watts–Strogatz
network as in the main text, but with fixed length l � 5. Although
the main qualitative features of the cooccurrence network
appear to be robust and can be observed even at fixed l, some
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differences are detectable. These differences are also clear in
Fig. S7, which allows the direct comparison of the characteristics
of cooccurrence networks built from random walks on a random
graph (Erdös–Rényi network) for a fixed random walk length
and for 2 different length distributions, namely P(l) � l�4 and
P(l) � l�3. Clearly, all features are qualitatively robust, with a
better quantitative agreement when P(l) is closer to the exper-
imental distribution of post lengths. For fixed l, in particular, we
observe that the separation of the curves representing weighted
and unweighted correlation properties occur at very small k,
whereas the weighted and unweighted curves are equal over a
certain range of degrees for broadly distributed random walk
lengths. This is consistent with the results shown in Fig. 4 of the
main text concerning the correlations between the weight of a
link and the degrees of its extremities: Equality between
weighted and unweighted quantities is indeed observed here for
nodes with s � k, i.e., which are typically visited only once (by
the rare walks with large l); when l is fixed instead, such rare
events do not occur, and each node is visited several times, so
that typically s � k.

An Even Finer Characterization: Structural Similarity of Nodes. We
present here additional data and discussion on the distribution
of tag similarities in real and synthetic cooccurrence networks.
We recall that the similarity of 2 nodes i1 and i2 can be defined as

sim� i1, i2� � �
j

wi1jwi2j

�� � wi1�
2 � � wi2�

2
, [s14]

which is simply the scalar product of the vectors of normalized
weights of nodes i1 and i2. This quantity measures the similarities
between neighborhoods of nodes and is therefore a correlation
of a higher order than the ones previously presented (clustering
or assortativity properties).

In Fig. S8, we report the histograms of pairwise similarities
between nodes in various cooccurrence networks. We first
present the data for the tag cooccurrence network of various tags
of del.icio.us and BibSonomy: A clearly skewed character of the
distributions is observed, with a peak for low values of the
similarities. The data are quite similar for the various tags
investigated in BibSonomy, whereas the peak can be more or less
broad for del.icio.us. Fig. S8 also displays the similarity histo-
grams observed for the networks constructed according to the

mechanism proposed in the main text, i.e., random walks of
broadly distributed lengths, performed on underlying networks
with various properties. A very similar behavior is observed, with
a (more or less pronounced) peak at low values of the similarity.
We emphasize that the shape observed for these histograms is
quite specific of the cooccurrence networks studied here: we
have indeed computed such histograms for a set of well known
network models and real-world networks, obtaining typically a
strong peak at zero similarity and qualitatively different tails.

For comparison, we also display the histogram of similarities
for networks constructed from artificial tags with the following
null model: (i) we start with a list of tags whose a priori
frequencies follow a Zipf’s law of exponent �; (ii) we construct
artificial posts of length l distributed as l�3 by choosing at random
l tags with probability proportional to their a priori frequency
(the first tag of each post is always the same, because for the real
data we are considering the posts containing all a given tag); (iii)
we build the corresponding cooccurrence network. Clearly, this
null model (which contains the Zipf’s law as an ingredient, in
contrast to our mechanism) does not contain any semantic
correlations as the tags are used without any correlations. As
shown in Fig. S8, the distribution of similarities is then indeed
very different, and in particular it is much less skewed. Inter-
estingly, the similarity distributions of some del.icio.us tags are
in fact closer to the ones obtained for the null model than to the
ones obtained from the random walk mechanisms. First of all,
different tags have cooccurrence networks with distinct prop-
erties, corresponding to distinct semantic neighborhoods. It is
therefore not surprising that the distributions of cosine similar-
ities differ from one tag to another. In the framework of our
model, this means that different models of semantic networks on
which the random walks are performed are needed to describe
the different tags’ cooccurrence networks. In particular, we
hypothesize that the tags whose cosine similarity distribution is
less skewed correspond to tags whose ‘‘semantic neighborhood’’
has weaker correlations: The null model (in which no correla-
tions are present) can then reproduce reasonably well their
cooccurrence network’s properties.

We emphasize however, on the one hand, that this null model
contains as an ingredient the Zipf’s law, in contrast with our
mechanism and, on the other hand, that a precise fitting of the
cooccurrence networks properties, although in principle doable
by specifically fine-tuning the properties of the network on which
random walks are performed, is beyond the purpose of our work.
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3. Hotho A, Jäschke R, Schmitz C, Stumme G (2006) BibSonomy: A social bookmark and

publication sharing system. Proceedings of the Conceptual Structures Tool Interop-
erability Workshop at the 14th International Conference on Conceptual Structures,
Aalborg, Denmark, July 2006, de Moor A, Polovina S, Delugach H, eds (Aalborg Univ
Press, Aalbord, Denmark).

4. Baronchelli A, Loreto V (2006) Ring structures and mean first passage time in networks.
Phys Rev E 73:026103.

5. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘‘small-world’’ networks. Nature
393:440–442.

6. Pastor-Satorras R, Vázquez A, Vespignani A (2001) Dynamical and correlation proper-
ties of the Internet. Phys Rev Lett 87:258701.

7. Newman MEJ (2002) Assortative mixing in networks. Phys Rev Lett 89:208701.
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Fig. S1. Experimental data for the growth of the cooccurring tag vocabulary in del.icio.us (Left) and BibSonomy (Right), for a few tags of different popularities
(the tag number corresponds to its popularity rank). For each tag, the time-ordered list of posts containing it was extracted, and the number of distinct tags
cooccurring with the chosen tag is plotted here as a function of the number of posts (i.e., time increases along the x axis). The number associated with each tag
corresponds to its global rank in terms of usage frequency. The dotted line corresponds to a linear growth, whereas the continuous line is a power-law growth
with exponent 0.8. A sublinear power-law behavior across several orders of magnitude is visible for all tags and for both systems. The steps in the del.icio.us data
(tags 550 and 1,060) are caused by spam posts containing a very large number of spurious tags. The curve for tag 15 in BibSonomy exhibits a different behavior:
Direct inspection shows that the corresponding posts were all injected into BibSonomy at the same time by a single user, probably using an automated procedure.
Thus, the evolution of the vocabulary cooccurring with this tag is neither social nor driven by human dynamics.
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Fig. S2. Properties of the cooccurrence networks of the tags 80 (a and b) and 1,060 (c and d) in del.icio.us. The tag number corresponds to its popularity rank
in the database analyzed. a and c show the broad distributions of degrees k, strengths s, and weights w. The Insets show the average strength of nodes of degree
k, with a superlinear growth at large k. b and d display the weighted (knn

w ) and unweighted (knn) average degree of nearest neighbors, and weighted (Cw) and
unweighted (C) average clustering coefficients of nodes of degree k. In all figures, both raw data and logarithmically binned data are shown.
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Fig. S3. Same as Fig. S2 for the cooccurrence networks of the tags 6 (a and b) and 8 (c and d) in BibSonomy.
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Fig. S5. Properties of the synthetic cooccurrence networks obtained from random walks on an uncorrelated scale-free graph [obtained from the uncorrelated
configuration model (9)], with degree distribution P(k) � k�	, 	 � 2.3; the cooccurrence network is obtained from nRW � 104 (Upper) and 5 � 104 (Lower) random
walks of random lengths distributed according to a broad P(l).
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Fig. S6. Properties of the synthetic cooccurrence networks obtained from nRW � 105 random walks of fixed length l � 5 performed on a Watts–Strogatz network
of size 5 � 104 nodes and average degree 8, rewiring probability P � 0.1.
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Fig. S7. Properties of the synthetic cooccurrence networks obtained from nRW � 104 random walks performed on an Erdös–Renyi network of N � 105 nodes
with average degree 
k� � 5. The random walks have fixed length l � 5 (Top), random lengths according to P(l)� l�4 (Middle), and broad P(l) � l�3 (Bottom).
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Fig. S8. Distributions of cosine similarities for real and synthetic cooccurrence networks. For del.icio.us and BibSonomy, the tag number represents its popularity
rank in the database. Two types of processes are considered for building synthetic cooccurrence networks: random walks (RW) on various types of networks [ER,
Erdös–Rényi random graph; WS, Watts–Strogatz network; UCM, uncorrelated configuration model (9) with broad degree distribution P(k) � k�	; DMS, highly
clustered scale-free network with degree distribution P(k) � k�3 (10)] and artificial posts built from a list of tags whose a priori frequencies follow a Zipf’s law
of exponent � (symbols).
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