
 1

SI Appendix 

 

Femtosecond Thin Lens Derivation. In polar coordinates a Laguerre-Gaussian ( )1
0LG  

mode has a transverse intensity profile given by,  
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where w is the waist of the focus and 0I  the maximum intensity (1). This ‘donut’ mode 

has an intensity maximum located at  2 2r w=   with a value of, 
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= ,     [S.2] 

where pE  is the energy of the laser pulse and τ  is the full-width-at-half-maximum of the 

pulse duration, assuming a Gaussian temporal profile given by ( )2exp 4ln 2( / )t τ− .  The 

ponderomotive energy ( )PU r  is proportional to intensity, 

( )
2 2

P 2 3
0

( , )
8

eU r I r
m c
λ ϕ

π ε
= ,    [S.3] 

where m  is the electron mass, e  is the electron charge and λ  the central wavelength of 

the laser radiation.  Near the center of the donut mode focus (or r w ) the intensity 

distribution is approximately parabolic, and hence the ponderomotive energy near the 

donut center is also parabolic.  The potential can be approximated by, 
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in which x  is used instead of r .  For this parabolic approximation to be applicable, the 

spatial extent of the dispersed electron pulse, at 0t = , 
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( ) 00 o o ox v t v tΔ = Δ + Δ ,     [S.5] 

must be much smaller than the laser waist, where the object velocity spread is 

2ov E mEΔ = Δ  (2).  In analogy with a mechanical harmonic oscillator, the quantity in 

the square brackets of Eq. [S.4] can be referred to as the stiffness K ; it has units of 

2J/m N/m= , and at 800 nm has the numerical value of, 

p36
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K

w τ
−≈ × .     [S.6] 

 The effect of this parabolic potential on an ensemble of electrons emitted from a 

source will now be analyzed.  The velocity distribution of the ensemble is centered 

around 0v , with an emission time distribution centered on ot− , where all electrons are 

emitted from the same location 0o ox v t= − .  Assuming a single donut-shaped laser pulse is 

applied at 0t = , and centered at 0x = , the electron ensemble is then influenced by the 

potential 21
2( )U x Kx= .  The thk  electron in the ensemble has an initial velocity 

0k kV v v= +  and emission time k o kT t t= − + .  Using a Galilean transformation to a frame 

moving with velocity 0v , the coordinate x  is replaced with the moving frame coordinate 

0x x v t= − .  Before the electron is influenced by the pulsed potential, the trajectory in the 

lab frame is, 

0( ) ( )k o k kx t v t V t T= − + − ,    [S.7a] 

and in the moving frame, the trajectory is, 

0( )k k k k o k kx t v t v t v t v t= − + + −  .   [S.7b] 

At 0t =  the potential exists for the ultrashort laser pulse duration τ , giving the electron 

an impulse (or ‘kick’) dependent on its instantaneous position in the parabolic potential.   
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In both frames, the position at 0t =  is ( ) ( ) 00 0k k k k k o k kx x x v t v t v t∗= ≡ = − + −  and the 

acceleration is ( ( ) / ) / ( / )P ka U x x m K m x∗= − ∂ ∂ = − .  The change in velocity is then,  

 ( ) * *
k k fv a K m x x tτ τΔ = = − = − ,     [S.8] 

where ( )ft m Kτ=  is the focal time.  Immediately after the potential is turned off the 

electron trajectory becomes, 

 ( ) ( )( )0 0( ) 1k k k k f k k k o k k fx t x V x t t v t v t v t v t v t t t∗ ∗= + − = + + − + − − ,  [S.9a] 

( ) ( )( )0( ) 1k k k k f k k k o k k fx t x v x t t v t v t v t v t t t∗ ∗= + − = + − + − − ,  [S.9b] 

in the lab and moving frames, respectively.  The electron trajectories, before and after 

0t = , can be plotted in both frames to give the equivalent of a ray diagram.  Electrons 

emitted at the same time, i.e. 0kt = , but with different velocities, will meet at the image 

position, 0i ix v t=  in the lab frame at the image time it , whereas in the moving frame, the 

image position is located at 0kx =  with the same image time.  The image time is found 

by setting ( ) 0k ix t = , from Eq. [S.9b], with 0kt = , 

( )( ) 1 / 0  k i k i k o i fx t v t v t t t= + − = ,   [S.10] 

which is equivalent to the lens equation: 1 1 1
o i ft t t− − −+ = . 

 Electrons that are emitted at different times, i.e., 0kt ≠ , will now be considered.  

To find the duration of an electron packet, needed first is the time, ta, it takes the thk  

electron to reach an arbitrary position ax  after the lens.  By equating ( )kx t  to 0 av t , or, 

( )( )0 0 0 1 /a k k k o k k fv t v t v t v t v t v t t t= + + − + − − ,  [S.11] 

and then solving for time gives, 
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The arrival times of electrons with different kt  and kv , for an arbitrary position ax  in the 

lab frame, determines the temporal duration of the electron packet.  The temporal 

duration is the time difference of the thk  electron and the ensemble average ( 0k kv t= = ), 

( ) ( ) ( ), , 0,0a
k k k k kt t v t t v t= − , and has the form, 
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.  [S.13] 

If 1k ot t  and 0 1kv v , Eq. [S.13] becomes, 
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.   [S.14] 

The relationship between kt  and a
kt  at the image time it  (or a i=  in Eq. [S.14]) gives a 

relationship for the temporal magnification of the electron packet.  Using Eq. [S.14], the 

relationship between i
kt  and kt  is simply i

k i k ot t t t= − .  If the magnification is defined as 

i oM t t= −  then the temporal duration at the image time becomes, 

i ot M tΔ = Δ ,     [S.15] 

where otΔ  and itΔ  are the duration of the electron packet at the object and image time, 

respectively.  Durations achievable with a thin temporal lens follow from Eq. [S.15]. 

 

Attosecond Thick Lens Derivation. The co-propagating standing wave is created by 

using two different optical frequencies, constructed by having a higher frequency ( )1ω  
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optical pulse traveling in the same direction as the electron packet and a lower frequency 

( )2ω  traveling in the opposite direction.  When the optical frequencies 1ω , 2ω , and the 

electron velocity 0v  are chosen according to ( ) ( )0 1 2 1 2v c ω ω ω ω= − + , a standing wave 

is produced in the rest frame of the electron (3).  If the electron has a velocity 0 3v c= , 

and 1 22ω ω=  then the co-propagating standing wave has a ponderomotive potential of the 

form, 

2 2 2
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⎛ ⎞
= ⎜ ⎟

⎝ ⎠
,    [S.16a] 

( ) ( ) ( ) ( )1 0 0 2 0 0k c c v c v c v c vω ω ω= = − + = + − ,  [S.16b] 

where 0E  is the peak electric field, λ  the Doppler shifted wavelength and k  is the 

Doppler shifted wavenumber (3).  The envelopes of the laser pulses are ignored in this 

derivation, but they can be engineered so that the standing wave contrast is optimized (4). 

 To find an analytic solution in the thick lens geometry, each individual potential 

well in the standing wave is approximated by a parabolic potential that matches the 

curvature of the sinusoidal potential, ( )
2

2 2 21
P 0 22

1
2 2

eU x E x K x
mc

⎡ ⎤
= ≡⎢ ⎥

⎣ ⎦
.  The motion of 

the electron in the parabolic potential is given by the solution to the harmonic oscillator, 

( ) ( ) ( )1 P 2 Psin cosx t C t C tω ω= + , where P /K mω =  and 1C  and 2C  are determined by 

the initial conditions.  As in the thin lens model, the potential is turned on at 0t =  and 

stays on for a duration τ .  The initial conditions are 0(0)k k k o k kx v t v t v t= − + −  and 

(0)k kv v=  in the co-propagating frame, which gives 1 PkC v ω= , and ( )2 0kC x= .   While 

the potential is on, 0 t τ< < , the equations of motion for the thk  electron are given by, 
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( ) ( )P P
P

( , , ) sin (0)cosk
k k k k

vx t v t t x tω ω
ω

= + ,    [S.17a] 

( ) ( )P P P( , , ) cos (0)sink k k k kv t v t v t x tω ω ω= − .    [S.17b] 

After the potential is turned off, t τ> , the equations of motion for electrons in the co-

propagating and lab frames are respectively, 

( )( , , ) ( ) ( )k k k k kx t v t x v tτ τ τ= − + − ,     [S.18a] 

( )( )0( , , ) ( ) ( )k k k k kx t v t x v v tτ τ τ= − + + − ,    [S.18b] 

with, 

( ) ( ) ( )P P P( ) sin (0)cosk k kx v xτ ω ω τ ω τ= + ,    [S.18c] 

( ) ( )P P P( ) cos (0)sink k kv v xτ ω τ ω ω τ= − .    [S.18d] 

 For 0kv = , the  focal time ft  can be found in the co-propagating frame by solving 

Eq. [S.18a] with ( , 0, ) 0k f k kx t v t= = .  The focal time is then,  

( )P
P

1 cotft ω τ τ
ω

= + .     [S.19] 

For 0τ → , ( )ft m Kτ→ , which is identical to the thin lens definition.  As in the thin 

lens case the image time, it , is defined in the co-propagating frame as the time it takes 

electrons emitted at the same time 0kt = , with an arbitrary kv , to arrive at the origin.  

Using Eq. [S.18a] with ( , ,0) 0k i kx t v =  gives, 

2 2
P1 o f f

i
o f

t t t
t

t t
ω τ τ

τ
+ − +

=
− +

.    [S.20] 

Additionally, the equation for the image time can be rewritten in the form, 
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= ,           [S.21] 

which after the two assumptions, 0τ →  and ( )2
P1o ft t ω  becomes equivalent to the 

lens equation: 1 1 1
o i ft t t− − −+ = . 

 To find the temporal duration of the electron packet in the co-propagating frame 

(similar to that in the thin lens section) at an arbitrary position ax  after the lens, Eq. 

[S.19a] is set equal to 0 av t , 

 ( )( )0 ( ) ( )a k kv t x v tτ τ τ= − + − ,   [S.22] 

and solving for time gives, 

( ) ( )0 ( ) ( )
,

( )
a k k

k k
k

v t x v
t t v

v
τ τ τ
τ

+ +
= .   [S.23] 

The arrival times of electrons, with kt  and kv  at the arbitrary position ax , will determine 

the temporal duration of the electron packet.  The time a
kt  is found by taking the 

difference for time between the thk  electron and the center of the electron ensemble, 

( ) ( ) ( ), , 0,0a
k k k k kt t v t t v t= − , and has the form, 

( ) ( )

( ) ( )

( ) ( ) ( )( ) ( )

P P
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f a o f a fo fa

k k k a f
f k k k f o

v t t v v
t t t t t tt t

t t v t t
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ω τ ω τ τ
ω

ω τ
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− − − − + + −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠=

− + + + − −
. [S.24] 

For P 1ω τ , and ignoring k kv t  terms, Eq. [S.24] can be simplified, resulting in the 

following relation: 

( ) 0
0

1 1 1 1 1,a a
k k k k k o

f a f a o

tt t v t v v t
v t t t t t

⎛ ⎞⎛ ⎞ ⎛ ⎞
= − + − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

.   [S.25] 
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 To this point, the derivation of the thick lens case has been very similar to that of 

the thin lens.  However, for the latter, the spatial extent of the temporal lens is chosen 

such that it is much larger than the dispersed electron packet.  When this condition is met 

all electrons are captured by the parabolic potential.  In contrast, for the thick lens case 

the dispersed electron pulse is much larger than any individual potential well.  Only a 

portion of the electron packet enters each well, which limits the combinations of initial 

velocities and emission times ( kt , kv ) that are focused by a particular well.  The 

combinations of kt  and kv , that enter an individual well also change as the electron 

packet disperses.  In the co-propagating frame, the position of the thk  electron is located 

at, 

0k k o kL v t t v= − ,     [S.26] 

for a time, 0t = , or when the lens is first turned on.  For electrons to be focused by the 

center well the condition, 04 4k o kv t t vλ λ− < − <  must be satisfied.  From Eq. [S.26] we 

see that as the electron packet is allowed to propagate and disperse (or the value of ot  

increases) the allowed values for kt  and kv  to reach a position kL  change; this results in 

two different regimes.  The first regime is when 0o o ot v t v< Δ Δ  and the second is when 

0o o ot v t v> Δ Δ , where otΔ  and ovΔ  are the full widths of the independent temporal and 

velocity distributions at ot .  Only the first regime, 0o o ot v t v< Δ Δ  is considered here due 

to its experimental relevance.  For this regime electrons that have values of kt  that satisfy 

the condition ( ) ( )0 0 0 0 0 04 2 4 2kt v v t t v vλ λ− + Δ < < + Δ  are focused by the central 

well.    
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 To find the temporal duration of the electron pulse at an arbitrary position after 

the thick lens is turned off, Eq. [S.26] is solved for kt  and substituted into Eq. [S.25].  

The standard deviation of the compressed electron pulse at arbitrary time at  is then,  

( ) ( )
( )2 2 2 2 2 2 2

22
2 2

0

4 2
, ,

48
f a o a f aa a

a k k k k k k
f

t t v t t t
t t t v t t v

t v

λ λ λ+ Δ + −
Δ = − = , [S.27] 

where the limits for kL  are used along with an appropriately normalized square 

probability distribution for kv .  The time when the minimum pulse duration occurs is, 

2

2 2 24a f f
f o

t t t
t v

λ
λ

=
+ Δ

,    [S.28] 

and for experimentally realistic parameters is equal to ft .  This implies that the thick lens 

does not image the initial temporal pulse; it temporally focuses the electrons that enter 

each individual well.  Since there is no image in the thick lens regime, the minimum 

temporal duration is not determined by the magnification M as in the thin lens section, 

but is a given by,  

 
( )

2 2 2

2 2 2 2
00 2 312 4

f o f o
f

f o

t v t v
t

vv t v

λ

λ

Δ Δ
Δ =

+ Δ
.   [S.29] 

It should be noted that neither the temporal focal length nor the temporal duration are 

directly dependent on the Doppler shifted wavelength λ , as long as the condition 

0o o ot v t v< Δ Δ  is met. 
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