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1 Proof of Theorems 1 and 2

As mentioned in the main text, the proofs are similar to those given in [1], with appropriate index changes.
For easier reference and completeness, we provide the proofs next. First, some observations regarding the
solutions of system (1):

d X̂`

dt
= α`(−X̂` + F`(X1, X2, . . . , XN )), ` = 1, . . . , N, (1)

Let X denote any of the nodes in the network, andα its time rate. Since equations (1) are either of the form
dX̂/dt = α(−X̂ + 1) or dX̂/dt = −αX̂, their solutions are continous functions, piecewise combinations
of:

X̂1(t) = 1− (1− X̂1(t0)) e−α(t−t0) (2)

X̂0(t) = X̂0(t0) e−α(t−t0) (3)

X̂1(t) (resp.X̂0(t)) is monotonically increasing (resp. decreasing). In addition, note that discrete variables
X can only switch between 0 and 1 at those instants whenX̂(tswitch) = θ, that is:

t1switch = t0 +
1
α

ln
(1− X̂(t0))

1− θ
(4)

t0switch = t0 +
1
α

ln
X̂(t0)

θ
(5)

From Proposition 6.1 of the main text we can immediately conclude:

ŵg1,...,FS−1(t) = ŴG1,2(t) = 0, (6)

ênFS,...,LS(t) = ÊNFS,...,LS(t) = 0,

ĥhFS,...,LS(t) = ĤHFS,...,LS(t) = 0, (7)

ĉiFS,...,LS(t) = 1 and ĈIFS,...,LS(t) = 1− e
−αCIFS,...,LS

t
. (8)

Lemma 1.1. Let 0 ≤ t0 < t3 ≤ t1 and 0 ≤ t2 < t3. Define δ = ln 1
1−θ/ max1,...,N αi. Assume

CIAFS(t) = 0 for t ∈ (t2, t3), andwgFS(t) = 0 for t ∈ [0, t3). Then

(a) wgFS(t) = 0 for t ∈ [0, t3 + δ);

(b) WGFS(t) = 0 for t ∈ [0, t3 + δ);

(c) enFS−1(t) = ENFS−1(t) = 0 for t ∈ [0, t3 + δ);

(d) hhFS−1(t) = HHFS−1(t) = 0 for t ∈ [0, t3 + δ).

Assume further that PTCFS(t) = 1 for t ∈ (t0, t1). Then
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(e) PTCFS(t) = 1 for all t ∈ (t0, t3 + δ).

(f) CIA FS(t) = 0 for all t ∈ (t2, t3 + δ).

Proof: Part (a) follows directly from the fact thatFwgFS
(t) = 0 on [0, t3), and from (4).

To prove parts (b), (c), and (d), first note that initial conditions together withwgFS(t) = 0 for t ∈ [0, t3)
imply

ŴGFS(t) = 0, ênFS−1(t) = ÊNFS−1(t) = 0, ĥhFS−1(t) = ĤHFS−1(t) = 0,

for t ∈ [0, t3]. Then, from equations (2) to (5) we conclude that the corresponding discrete variables cannot
switch from 0 to 1 during an interval of the form[0, t3 + 1

αj
ln 1

1−θ ). Taking the largest common interval
yields the desired results.

To prove parts (e) and (f), assume also that PTCFS(t) = 1 for t ∈ (t0, t1). From (7) and part (d), it
follows that functionFPTCFS does not switch in the interval(t0, t3 + δ) and in fact PTCFS(t) = 1 for all t in
this interval. This, together with (7) and part (d) yieldFCIAFS(t) = 0 for (t0, t3 + δ), so thatĈIAFS cannot
increase in this interval and the discrete level satisfies CIAFS(t) = 0 for all t ∈ (t2, t3 + δ), as we wanted to
show.

Corollary 1.2. Let 0 ≤ t0 < t3 ≤ t1 and0 ≤ t2 < t3. If PTCFS(t) = 1 for t ∈ (t0, t1), CIAFS(t) = 0 for
t ∈ (t2, t3), andwgFS(t) = 0 for t ∈ [0, t3), thenwgFS(t) = 0 for all t.

Proof: Applying Lemma 1.1 we conclude that, given anyk ≥ 0:

CIAFS(t) = 0, for t ∈ (t2, t3 + kδ)
wgFS(t) = 0, for t ∈ [0, t3 + kδ)
PTCFS(t) = 1 for t ∈ (t0, t3 + kδ)

imply

CIAFS(t) = 0, for t ∈ (t2, t3 + (k + 1)δ)
wgFS(t) = 0, for t ∈ [0, t3 + (k + 1)δ)
PTCFS(t) = 1 for t ∈ (t0, t3 + (k + 1)δ).

Sinceδ is finite, we conclude by induction onk thatwgFS(t) = 0 for all t.
Proof of Theorem 1:The rule for CIAFS may be simplified to (by (7))

FCIAFS = CIFS and[notPTCFS or hhFS−1 or HHFS−1].

From equation (8), we have that

CIFS(t) = 1, for all t >
1

αCIFS

ln
1

1− θ
. (9)

On the other hand, sinceptcFS(0) = 1, by continuity of solutionsptcFS(t) = 1 for all t < 1
αptcFS

ln 1
θ . This

implies that the Patched protein satisfies

P̂TCFS(t) = 1− e−αPTCFS
t, 0 ≤ t ≤ 1

αptcFS

ln
1
θ

and therefore

PTCFS(t) =

{
0, 0 ≤ t ≤ 1

αPTCFS
ln 1

1−θ

1, 1
αPTCFS

ln 1
1−θ < t < 1

αptcFS
ln 1

θ .
(10)
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By assumption,αPTCFS > αptcFS
and alsoln 1

1−θ ≤ ln 1
θ , defining a nonempty interval where PTCFS is ex-

pressed. Now lettc = 1
αCIFS

ln 1
1−θ andtp = 1

αPTCFS
ln 1

1−θ . ĈIAFS(t) starts at zero and must remain so while

CIFS = 0, so that

CIAFS(t) = 0 for 0 < t < tc.

In the casetc > tp, lettingt0 = tp, t1 = 1
αptcFS

ln 1
θ , t2 = 0, andt3 = tc in Corollary 1.2, obtainswgFS(t) = 0

for all t. This proves item (b) of the theorem, and part of (a).
To finish the proof of item (a), we assume that(1 − θ)2 < θ and must now consider the casetc ≤ tp.

Then

ĈIAFS(t) =


0, 0 ≤ t ≤ tc
1− e−αCIAFS

(t−tc), tc < t ≤ tp
ĈIAFS(tp) e−αCIAFS

(t−tp), tp < t ≤ 1
αptcFS

ln 1
θ ,

Following equation (4) witht0 = tc andĈIAFS(t0) = 0, CIAFS might become expressed at timetc < ta < tp:

ta = tc +
1

αCIAFS

ln
1

1− θ
,

but it would then become zero again at (equation (5) witht0 = tp)

tb = tp +
1

αCIAFS

ln
ĈIAFS(tp)

θ
.

Finally, we show that, even if CIAFS(t) = 1 for t ∈ (ta, tb), wgFS cannot become expressed in this interval.
In this interval,ŵgFS evolves according tôwgFS(t) = 1− e−αwgFS (t−ta), andwgFS can switch to 1 at time

tw = ta +
1

αwgFS

ln
1

1− θ
.

We will show thattw > tb, sowgFS(t) = 0 in the interval[0, tb). Writing

ln
ĈIAFS(tp)

θ
= ln

ĈIAFS(tp)
1− θ

1− θ

θ
= ln

ĈIAFS(tp)
1− θ

+ ln
1− θ

θ
≤ ln

1
1− θ

+ ln
1

1− θ

where we have used̂CIAFS(tp) ≤ 1 and the assumption onθ: 1−θ
θ ≤ 1

1−θ . Therefore

tb ≤ tp +
2

αCIAFS

ln
1

1− θ
<

1
αwgFS

ln
1

1− θ
+

1
αCIAFS

ln
1

1− θ
< tw

where we have used the timescale separation assumption (A1). Lettingt0 = tp, t2 = 0, andt1 = t3 =
min{tb, α−1

ptcFS
ln 1

θ} in the Corollary, obtainswgFS(t) = 0 for all t.
We will next show that ifwgLS(t) = 1 in a given interval[0, T ), then in factwgLS(t) remains expressed

for a longer time, up toT + δ, with δ > 0. This is mainly due to assumption (A1), which says that mRNAs
take longer than proteins to update their discrete values, because they have longer half-lives:α−1

mRNA > α−1
Prot.

This allows the initial signal “wgLS = 1” to travel down the network, sequencially affecting the wingless
protein,engrailed, hedgehogand CIA, and feed back intowinglessallowingwgLS to remain expressed for a
further time interval.

Lemma 1.3. Let T ≥ 1
αwgLS

ln 1
θ and define

δ =
1

αWGLS

ln
(1− e

−
αWGLS
αwgLS

ln 1
θ )

θ
. (11)

If wgLS(t) = 1 for 0 ≤ t < T , then
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(a) WGLS(t) = 1 for t ∈ ( 1
αWGLS

ln 1
1−θ , T + δ);

(b) en1(t) = 1 for t ∈ [0, T + δ);

(c) ÊN1(t) = 1− e−αEN1
t for t ∈ [0, T + δ), and EN1(t) = 1 for ( 1

αEN1
ln 1

1−θ , T + δ);

(d) ci1(t) = 0, CI1(t) = 0, CIA1(t) = 0, and CIR1(t) = 0 for t ∈ [0, T + δ);

(e) hh1(t) = 1, for t ∈ [0, T + δ);

(f) CIA LS(t) = 1, for t ∈ ( 1
αCILS

ln 1
1−θ + 1

αCIALS
ln 1

1−θ , T + δ), and CIRLS(t) = 0, for t ∈ [0, T + δ);

(g) wgLS(t) = 1 for t ∈ [0, T + δ).

Proof: Let T ≥ 1
αwgLS

ln 1
θ , and assume thatwgLS(t) = 1 for 0 ≤ t < T . To prove part (a), note that

ŴGLS(t) is of the form (2) (witht0 = 0, andŴGLS(0) = 0) and the corresponding discrete variable is
WGLS(t) = 1, for t ∈ ( 1

αWGLS
ln 1

1−θ , T ). Moreover, suppose thatwgLS(t) = 0 for t > T , then

ŴGLS(t) = (1− e−αWGLS
T )e−αWGLS

(t−T ), t > T.

But WGLS remains 1 until the switching threshold is attained, that is up to time

T +
1

αWGLS

ln
(1− e−αWGLS

T )
θ

≥ T +
1

αWGLS

ln
(1− e

−αWGLS
1

αwgLS
ln 1

θ )
θ

≡ T + δ.

Thus we conclude that WGLS(t) = 1 in the desired interval.
To prove part (b), observe thatFen1(t) = WGLS(t) for all t, from (6), and recall thaten1(0) = 1. From

part (a),Fen1(t) = 1 for t ∈ ( 1
αWGLS

ln 1
1−θ , T + δ). On the other hand,en1 can only switch from 1 to 0 at

t = α−1
en1

ln 1
θ which is larger thanα−1

WGLS
ln 1

1−θ . So, in fact,en1(t) = 1 for all 0 ≤ t < T + δ.

Part (c) follows immediately by integration of thêEN1 equation.
To prove part (d), first recallFci1 = not EN1 and the initial conditionsci1(0) = 0 = CI1(0) =

CIA1(0) = CIR1(0). Thereforeĉi1(t) increases up tot = 1
αEN1

ln 1
1−θ and then decreases inα−1

EN1
ln 1

1−θ <

t < T + δ. Now note that the discrete variableci1(t) remains 0 in the whole interval[0, T + δ). This
is becausêci1 never reaches theθ threshold: this would be attained at somet ≥ α−1

ci1
ln 1

1−θ but, since

α−1
ci1

ln 1
1−θ > α−1

EN1
ln 1

1−θ , the functionĉi1 starts decreasing before it could reach the valueθ. Finally,
from the rules of the Cubitus proteins it is immediate to see that CI1(t) = CIA1(t) = CIR1(t) = 0 for
t ∈ [0, T + δ).

To prove part (e), recall thatFhh1 = EN1 and not CIR1. From part (a), it follows thatFhh1(t) = 0
in the interval[0, α−1

EN1
ln 1

1−θ ) andFhh1(t) = 1 in the interval(α−1
EN1

ln 1
1−θ , T + δ). Sincehh1(0) = 1,

ĥh1(t) decreases in the interval[0, α−1
EN1

ln 1
1−θ ) but increases in(α−1

EN1
ln 1

1−θ , T + δ). The discrete value is

hh1(t) = 1 in the whole interval, sincêhh1(t) remains above theθ threshold. (The justification is similar to
the case ofci1(t) in part (d).)

To prove part (f), note that part (e) and then the use of (8), allows us to simplifyFCIALS:

FCIALS(t) = CILS(t) and hh1(t) = 1, t ∈
(

1
αCILS

ln
1

1− θ
, T + δ

)
.

Thus

ĈIALS(t) =


0, 0 ≤ t ≤ 1

αCILS
ln 1

1−θ

1− e
−αCIALS

(
t− 1

αCILS
ln 1

1−θ

)
, 1

αCILS
ln 1

1−θ < t ≤ T + δ,
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and CIALS(t) = 1 for t ∈ [ 1
αCILS

ln 1
1−θ + 1

αCIALS
ln 1

1−θ , T +δ). Observe that this interval is indeed nonempty,

by assumption (A1). Finally,FCIRLS(t) = CILS(t) and nothh1(t) = 0, and hence CIRLS(t) = 0 for t ∈
[0, T + δ).

To prove part (g), we note that (from part (f))

FwgLS
(t) = 1, t ∈

(
1

αCILS

ln
1

1− θ
+

1
αCIALS

ln
1

1− θ
, T + δ

)
,

implying thatŵgLS(t) increases in this interval. On the other hand, we know thatŵgLS(t) ≥ θ andwgLS(t) =
1 up to at leastt = 1

αwgLS
ln 1

θ > 1
αCILS

ln 1
1−θ + 1

αCIALS
ln 1

1−θ . This shows that in factwgLS(t) = 1 for all

t ∈ [0, T + δ).
Proof of Theorem 2:SincewgLS(0) = 1, from equations (4), (5), we know that the earliest possible

switching time from 1 to 0 isα−1
wgLS

ln 1
θ . Applying Lemma 1.3 withT = α−1

wgLS
ln 1

θ establishes thatwgLS(t) =
1 for t ∈ [0, T + δ), with δ given by (11). Next, applying Lemma 1.3 withT = α−1

wgLS
ln 1

θ + kδ, k ∈ N,
shows thatwgLS(t) = 1 for t ∈ [0, T + (k + 1)δ). Sinceδ is finite, we can conclude by induction that
wgLS(t) = 1 for all t ≥ 0.

To prove that PTC1(t) ≡ 0, note that CIA1(t) ≡ 0 (Lemma 1.3, withT = +∞) impliesptc1(t) ≡ 0.
Since PTC1(0) = 0 and PTC1 cannot become expressed unlessptc1 is first expressed, the desired result
follows.
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