Supplementary material Studying the effect of cell division on expression patterns of the segment polarity genes

M. Chaves and R. Albert

1 Proof of Theorems 1 and 2

As mentioned in the main text, the proofs are similar to those given in [1], with appropriate index changes. For easier reference and completeness, we provide the proofs next. First, some observations regarding the solutions of system (1):

$$\frac{d\,\hat{X}_{\ell}}{dt} = \alpha_{\ell}(-\hat{X}_{\ell} + F_{\ell}(X_1, X_2, \dots, X_N)), \quad \ell = 1, \dots, N, \tag{1}$$

Let X denote any of the nodes in the network, and α its time rate. Since equations (1) are either of the form $d\hat{X}/dt = \alpha(-\hat{X}+1)$ or $d\hat{X}/dt = -\alpha\hat{X}$, their solutions are continous functions, piecewise combinations of:

$$\hat{X}^{1}(t) = 1 - (1 - \hat{X}^{1}(t_{0})) e^{-\alpha(t - t_{0})}$$
(2)

$$\hat{X}^{0}(t) = \hat{X}^{0}(t_{0}) e^{-\alpha(t-t_{0})}$$
(3)

 $\hat{X}^{1}(t)$ (resp. $\hat{X}^{0}(t)$) is monotonically increasing (resp. decreasing). In addition, note that discrete variables X can only switch between 0 and 1 at those instants when $\hat{X}(t_{switch}) = \theta$, that is:

$$t_{\text{switch}}^{1} = t_{0} + \frac{1}{\alpha} \ln \frac{(1 - \hat{X}(t_{0}))}{1 - \theta}$$
 (4)

$$t_{\text{switch}}^{0} = t_{0} + \frac{1}{\alpha} \ln \frac{\ddot{X}(t_{0})}{\theta}$$
(5)

From Proposition 6.1 of the main text we can immediately conclude:

$$\widehat{wg}_{1,\dots,\mathrm{FS}-1}(t) = \widehat{\mathrm{WG}}_{1,2}(t) = 0, \tag{6}$$

$$\widehat{en}_{\text{FS},\dots,\text{LS}}(t) = \widehat{\text{EN}}_{\text{FS},\dots,\text{LS}}(t) = 0,$$

$$\widehat{\mu}_{\text{FS},\dots,\text{LS}}(t) = \widehat{\mu}_{\text{FS},\dots,\text{LS}}(t) = 0,$$
(7)

$$\widehat{hh}_{\text{FS},\dots,\text{LS}}(t) = \widehat{HH}_{\text{FS},\dots,\text{LS}}(t) = 0, \tag{7}$$

$$\widehat{ci}_{\text{FS},\dots,\text{LS}}(t) = 1 \text{ and } \widehat{\text{CI}}_{\text{FS},\dots,\text{LS}}(t) = 1 - e^{-\alpha_{\text{CI}\text{FS},\dots,\text{LS}} t}.$$
(8)

Lemma 1.1. Let $0 \le t_0 < t_3 \le t_1$ and $0 \le t_2 < t_3$. Define $\delta = \ln \frac{1}{1-\theta} / \max_{1,...,N} \alpha_i$. Assume $\text{CIA}_{\text{FS}}(t) = 0$ for $t \in (t_2, t_3)$, and $wg_{\text{FS}}(t) = 0$ for $t \in [0, t_3)$. Then

- (a) $wg_{FS}(t) = 0$ for $t \in [0, t_3 + \delta)$;
- (b) $WG_{FS}(t) = 0$ for $t \in [0, t_3 + \delta)$;
- (c) $en_{FS-1}(t) = EN_{FS-1}(t) = 0$ for $t \in [0, t_3 + \delta)$;
- (d) $hh_{FS-1}(t) = HH_{FS-1}(t) = 0$ for $t \in [0, t_3 + \delta)$.

Assume further that $PTC_{FS}(t) = 1$ for $t \in (t_0, t_1)$. Then

- (e) $PTC_{FS}(t) = 1$ for all $t \in (t_0, t_3 + \delta)$.
- (f) $\text{CIA}_{FS}(t) = 0$ for all $t \in (t_2, t_3 + \delta)$.

Proof: Part (a) follows directly from the fact that $F_{\text{wggs}}(t) = 0$ on $[0, t_3)$, and from (4).

To prove parts (b), (c), and (d), first note that initial conditions together with $wg_{FS}(t) = 0$ for $t \in [0, t_3)$ imply

$$\widehat{\mathrm{WG}}_{\mathrm{FS}}(t) = 0, \ \widehat{en}_{\mathrm{FS}-1}(t) = \widehat{\mathrm{EN}}_{\mathrm{FS}-1}(t) = 0, \ \widehat{hh}_{\mathrm{FS}-1}(t) = \widehat{\mathrm{HH}}_{\mathrm{FS}-1}(t) = 0,$$

for $t \in [0, t_3]$. Then, from equations (2) to (5) we conclude that the corresponding discrete variables cannot switch from 0 to 1 during an interval of the form $[0, t_3 + \frac{1}{\alpha_j} \ln \frac{1}{1-\theta})$. Taking the largest common interval yields the desired results.

To prove parts (e) and (f), assume also that $PTC_{FS}(t) = 1$ for $t \in (t_0, t_1)$. From (7) and part (d), it follows that function $F_{PTC_{FS}}$ does not switch in the interval $(t_0, t_3 + \delta)$ and in fact $PTC_{FS}(t) = 1$ for all t in this interval. This, together with (7) and part (d) yield $F_{CIA_{FS}}(t) = 0$ for $(t_0, t_3 + \delta)$, so that \widehat{CIA}_{FS} cannot increase in this interval and the discrete level satisfies $CIA_{FS}(t) = 0$ for all $t \in (t_2, t_3 + \delta)$, as we wanted to show.

Corollary 1.2. Let $0 \le t_0 < t_3 \le t_1$ and $0 \le t_2 < t_3$. If $PTC_{FS}(t) = 1$ for $t \in (t_0, t_1)$, $CIA_{FS}(t) = 0$ for $t \in (t_2, t_3)$, and $wg_{FS}(t) = 0$ for $t \in [0, t_3)$, then $wg_{FS}(t) = 0$ for all t.

Proof: Applying Lemma 1.1 we conclude that, given any $k \ge 0$:

$$CIA_{FS}(t) = 0, \text{ for } t \in (t_2, t_3 + k\delta)$$

$$wg_{FS}(t) = 0, \text{ for } t \in [0, t_3 + k\delta)$$

$$PTC_{FS}(t) = 1 \text{ for } t \in (t_0, t_3 + k\delta)$$

imply

$$\begin{aligned} \text{CIA}_{\text{FS}}(t) &= 0, \text{ for } t \in (t_2, t_3 + (k+1)\delta) \\ wg_{\text{FS}}(t) &= 0, \text{ for } t \in [0, t_3 + (k+1)\delta) \\ \text{PTC}_{\text{FS}}(t) &= 1 \text{ for } t \in (t_0, t_3 + (k+1)\delta). \end{aligned}$$

Since δ is finite, we conclude by induction on k that $wg_{FS}(t) = 0$ for all t. *Proof of Theorem 1:* The rule for CIA_{FS} may be simplified to (by (7))

$$F_{\text{CIAFS}} = \text{CI}_{\text{FS}}$$
 and [notPTC_{FS} or $hh_{\text{FS}-1}$ or $\text{HH}_{\text{FS}-1}$].

From equation (8), we have that

$$CI_{FS}(t) = 1, \text{ for all } t > \frac{1}{\alpha_{CI_{FS}}} \ln \frac{1}{1 - \theta}.$$
(9)

On the other hand, since $ptc_{FS}(0) = 1$, by continuity of solutions $ptc_{FS}(t) = 1$ for all $t < \frac{1}{\alpha_{ptc_{FS}}} \ln \frac{1}{\theta}$. This implies that the Patched protein satisfies

$$\widehat{\text{PTC}}_{\text{FS}}(t) = 1 - e^{-\alpha_{\text{PTC}_{\text{FS}}}t}, \ 0 \le t \le \frac{1}{\alpha_{\text{ptc}_{\text{FS}}}} \ln \frac{1}{\theta}$$

and therefore

$$\operatorname{PTC}_{FS}(t) = \begin{cases} 0, & 0 \le t \le \frac{1}{\alpha_{\operatorname{PTC}_{FS}}} \ln \frac{1}{1-\theta} \\ 1, & \frac{1}{\alpha_{\operatorname{PTC}_{FS}}} \ln \frac{1}{1-\theta} < t < \frac{1}{\alpha_{\operatorname{prc}_{FS}}} \ln \frac{1}{\theta}. \end{cases}$$
(10)

By assumption, $\alpha_{\text{PTC}_{\text{FS}}} > \alpha_{\text{prc}_{\text{FS}}}$ and also $\ln \frac{1}{1-\theta} \leq \ln \frac{1}{\theta}$, defining a nonempty interval where PTC_{FS} is expressed. Now let $t_c = \frac{1}{\alpha_{\text{CI}_{\text{FS}}}} \ln \frac{1}{1-\theta}$ and $t_p = \frac{1}{\alpha_{\text{PTC}_{\text{FS}}}} \ln \frac{1}{1-\theta}$. $\widehat{\text{CIA}}_{\text{FS}}(t)$ starts at zero and must remain so while $\text{CI}_{\text{FS}} = 0$, so that

$$CIA_{FS}(t) = 0$$
 for $0 < t < t_c$.

In the case $t_c > t_p$, letting $t_0 = t_p$, $t_1 = \frac{1}{\alpha_{plc_{FS}}} \ln \frac{1}{\theta}$, $t_2 = 0$, and $t_3 = t_c$ in Corollary 1.2, obtains $wg_{FS}(t) = 0$ for all t. This proves item (b) of the theorem, and part of (a).

To finish the proof of item (a), we assume that $(1 - \theta)^2 < \theta$ and must now consider the case $t_c \leq t_p$. Then

$$\widehat{\mathrm{CIA}}_{\mathrm{FS}}(t) = \begin{cases} 0, & 0 \le t \le t_c \\ 1 - e^{-\alpha_{\mathrm{CIA}_{\mathrm{FS}}}(t-t_c)}, & t_c < t \le t_p \\ \widehat{\mathrm{CIA}}_{\mathrm{FS}}(t_p) e^{-\alpha_{\mathrm{CIA}_{\mathrm{FS}}}(t-t_p)}, & t_p < t \le \frac{1}{\alpha_{ptc_{\mathrm{FS}}}} \ln \frac{1}{\theta}, \end{cases}$$

Following equation (4) with $t_0 = t_c$ and $\widehat{\text{CIA}}_{\text{FS}}(t_0) = 0$, CIA_{FS} might become expressed at time $t_c < t_a < t_p$:

$$t_a = t_c + \frac{1}{\alpha_{\text{CIAFS}}} \ln \frac{1}{1 - \theta}$$

but it would then become zero again at (equation (5) with $t_0 = t_p$)

$$t_b = t_p + \frac{1}{\alpha_{\text{CIAFS}}} \ln \frac{\widehat{\text{CIA}}_{\text{FS}}(t_p)}{\theta}$$

Finally, we show that, even if $\text{CIA}_{\text{FS}}(t) = 1$ for $t \in (t_a, t_b)$, wg_{FS} cannot become expressed in this interval. In this interval, \widehat{wg}_{FS} evolves according to $\widehat{wg}_{\text{FS}}(t) = 1 - e^{-\alpha_{wgFS}(t-t_a)}$, and wg_{FS} can switch to 1 at time

$$t_w = t_a + \frac{1}{\alpha_{\rm wg_{FS}}} \ln \frac{1}{1-\theta}.$$

We will show that $t_w > t_b$, so $wg_{FS}(t) = 0$ in the interval $[0, t_b)$. Writing

$$\ln \frac{\widehat{\operatorname{CIA}}_{\text{FS}}(t_p)}{\theta} = \ln \frac{\widehat{\operatorname{CIA}}_{\text{FS}}(t_p)}{1-\theta} \frac{1-\theta}{\theta} = \ln \frac{\widehat{\operatorname{CIA}}_{\text{FS}}(t_p)}{1-\theta} + \ln \frac{1-\theta}{\theta} \le \ln \frac{1}{1-\theta} + \ln \frac{1}{1-\theta}$$

where we have used $\widehat{\text{CIA}}_{\text{FS}}(t_p) \leq 1$ and the assumption on θ : $\frac{1-\theta}{\theta} \leq \frac{1}{1-\theta}$. Therefore

$$t_b \le t_p + \frac{2}{\alpha_{\text{CIAFS}}} \ln \frac{1}{1-\theta} < \frac{1}{\alpha_{\text{\tiny WSFS}}} \ln \frac{1}{1-\theta} + \frac{1}{\alpha_{\text{CIAFS}}} \ln \frac{1}{1-\theta} < t_w$$

where we have used the timescale separation assumption (A1). Letting $t_0 = t_p$, $t_2 = 0$, and $t_1 = t_3 = \min\{t_b, \alpha_{ptc_{FS}}^{-1} \ln \frac{1}{\theta}\}$ in the Corollary, obtains $wg_{FS}(t) = 0$ for all t.

We will next show that if $wg_{LS}(t) = 1$ in a given interval [0, T), then in fact $wg_{LS}(t)$ remains expressed for a longer time, up to $T + \delta$, with $\delta > 0$. This is mainly due to assumption (A1), which says that mRNAs take longer than proteins to update their discrete values, because they have longer half-lives: $\alpha_{mRNA}^{-1} > \alpha_{Pnot}^{-1}$. This allows the initial signal " $wg_{LS} = 1$ " to travel down the network, sequencially affecting the wingless protein, *engrailed*, *hedgehog* and CIA, and feed back into *wingless* allowing wg_{LS} to remain expressed for a further time interval.

Lemma 1.3. Let $T \ge \frac{1}{\alpha_{wg_{LS}}} \ln \frac{1}{\theta}$ and define

$$\delta = \frac{1}{\alpha_{\rm WG_{LS}}} \ln \frac{\left(1 - e^{-\frac{\alpha_{\rm WG_{LS}}}{\alpha_{\rm wg_{LS}}} \ln \frac{1}{\theta}}\right)}{\theta}.$$
 (11)

If $wg_{LS}(t) = 1$ for $0 \le t < T$, then

- (a) WG_{LS}(t) = 1 for $t \in (\frac{1}{\alpha_{\text{WGrs}}} \ln \frac{1}{1-\theta}, T+\delta);$
- (b) $en_1(t) = 1$ for $t \in [0, T + \delta)$;
- (c) $\widehat{EN}_1(t) = 1 e^{-\alpha_{EN_1}t}$ for $t \in [0, T + \delta)$, and $EN_1(t) = 1$ for $(\frac{1}{\alpha_{EN_1}} \ln \frac{1}{1-\theta}, T + \delta)$;
- (d) $ci_1(t) = 0$, $CI_1(t) = 0$, $CIA_1(t) = 0$, and $CIR_1(t) = 0$ for $t \in [0, T + \delta)$;

(e)
$$hh_1(t) = 1$$
, for $t \in [0, T + \delta)$;

- (f) $\operatorname{CIA}_{LS}(t) = 1$, for $t \in \left(\frac{1}{\alpha_{\operatorname{CI}_{LS}}} \ln \frac{1}{1-\theta} + \frac{1}{\alpha_{\operatorname{CIA}_{LS}}} \ln \frac{1}{1-\theta}, T+\delta\right)$, and $\operatorname{CIR}_{LS}(t) = 0$, for $t \in [0, T+\delta)$;
- (g) $wg_{LS}(t) = 1$ for $t \in [0, T + \delta)$.

Proof: Let $T \ge \frac{1}{\alpha_{wg_{LS}}} \ln \frac{1}{\theta}$, and assume that $wg_{LS}(t) = 1$ for $0 \le t < T$. To prove part (a), note that $\widehat{WG}_{LS}(t)$ is of the form (2) (with $t_0 = 0$, and $\widehat{WG}_{LS}(0) = 0$) and the corresponding discrete variable is $WG_{LS}(t) = 1$, for $t \in (\frac{1}{\alpha_{WG_{LS}}} \ln \frac{1}{1-\theta}, T)$. Moreover, suppose that $wg_{LS}(t) = 0$ for t > T, then

$$\widehat{\mathrm{WG}}_{\mathrm{LS}}(t) = (1 - e^{-\alpha_{\mathrm{WG}}} e^{-\alpha_{\mathrm{WG}}} e^{-\alpha_{\mathrm{WG}}}, \quad t > T.$$

But WG_{LS} remains 1 until the switching threshold is attained, that is up to time

$$T + \frac{1}{\alpha_{\rm WG_{LS}}} \ln \frac{(1 - e^{-\alpha_{\rm WG_{LS}}T})}{\theta} \ge T + \frac{1}{\alpha_{\rm WG_{LS}}} \ln \frac{(1 - e^{-\alpha_{\rm WG_{LS}}\frac{1}{\alpha_{\rm Wg_{LS}}}\ln\frac{1}{\theta}})}{\theta} \equiv T + \delta$$

Thus we conclude that $WG_{LS}(t) = 1$ in the desired interval.

To prove part (b), observe that $F_{en_1}(t) = WG_{LS}(t)$ for all t, from (6), and recall that $en_1(0) = 1$. From part (a), $F_{en_1}(t) = 1$ for $t \in (\frac{1}{\alpha_{WG_{LS}}} \ln \frac{1}{1-\theta}, T + \delta)$. On the other hand, en_1 can only switch from 1 to 0 at $t = \alpha_{en_1}^{-1} \ln \frac{1}{\theta}$ which is larger than $\alpha_{WG_{LS}}^{-1} \ln \frac{1}{1-\theta}$. So, in fact, $en_1(t) = 1$ for all $0 \le t < T + \delta$.

Part (c) follows immediately by integration of the EN_1 equation.

To prove part (d), first recall $F_{ci_1} = \text{not EN}_1$ and the initial conditions $ci_1(0) = 0 = \text{CI}_1(0) = \text{CIA}_1(0) = \text{CIA}_1(0)$. Therefore $\hat{ci}_1(t)$ increases up to $t = \frac{1}{\alpha_{\text{EN}_1}} \ln \frac{1}{1-\theta}$ and then decreases in $\alpha_{\text{EN}_1}^{-1} \ln \frac{1}{1-\theta} < t < T + \delta$. Now note that the discrete variable $ci_1(t)$ remains 0 in the whole interval $[0, T + \delta)$. This is because \hat{ci}_1 never reaches the θ threshold: this would be attained at some $t \ge \alpha_{ci_1}^{-1} \ln \frac{1}{1-\theta}$ but, since $\alpha_{ci_1}^{-1} \ln \frac{1}{1-\theta} > \alpha_{\text{EN}_1}^{-1} \ln \frac{1}{1-\theta}$, the function \hat{ci}_1 starts decreasing before it could reach the value θ . Finally, from the rules of the Cubitus proteins it is immediate to see that $\text{CI}_1(t) = \text{CIA}_1(t) = \text{CIR}_1(t) = 0$ for $t \in [0, T + \delta)$.

To prove part (e), recall that $F_{hh_1} = \text{EN}_1$ and not CIR₁. From part (a), it follows that $F_{hh_1}(t) = 0$ in the interval $[0, \alpha_{\text{EN}_1}^{-1} \ln \frac{1}{1-\theta})$ and $F_{hh_1}(t) = 1$ in the interval $(\alpha_{\text{EN}_1}^{-1} \ln \frac{1}{1-\theta}, T+\delta)$. Since $hh_1(0) = 1$, $\hat{hh}_1(t)$ decreases in the interval $[0, \alpha_{\text{EN}_1}^{-1} \ln \frac{1}{1-\theta})$ but increases in $(\alpha_{\text{EN}_1}^{-1} \ln \frac{1}{1-\theta}, T+\delta)$. The discrete value is $hh_1(t) = 1$ in the whole interval, since $\hat{hh}_1(t)$ remains above the θ threshold. (The justification is similar to the case of $ci_1(t)$ in part (d).)

To prove part (f), note that part (e) and then the use of (8), allows us to simplify $F_{CIA_{IS}}$:

$$F_{\text{CIALS}}(t) = \text{CI}_{\text{LS}}(t) \text{ and } hh_1(t) = 1, \quad t \in \left(\frac{1}{\alpha_{\text{CILS}}} \ln \frac{1}{1-\theta}, T+\delta\right).$$

Thus

$$\widehat{\mathrm{CIA}}_{\mathrm{LS}}(t) = \begin{cases} 0, & 0 \le t \le \frac{1}{\alpha_{\mathrm{CI}_{\mathrm{LS}}}} \ln \frac{1}{1-\theta} \\ 1 - e^{-\alpha_{\mathrm{CIA}_{\mathrm{LS}}} \left(t - \frac{1}{\alpha_{\mathrm{CI}_{\mathrm{LS}}}} \ln \frac{1}{1-\theta}\right)}, & \frac{1}{\alpha_{\mathrm{CI}_{\mathrm{LS}}}} \ln \frac{1}{1-\theta} < t \le T + \delta, \end{cases}$$

and $\operatorname{CIA}_{LS}(t) = 1$ for $t \in \left[\frac{1}{\alpha_{\operatorname{CI}_{LS}}} \ln \frac{1}{1-\theta} + \frac{1}{\alpha_{\operatorname{CIA}_{LS}}} \ln \frac{1}{1-\theta}, T+\delta\right)$. Observe that this interval is indeed nonempty, by assumption (A1). Finally, $F_{\operatorname{CIR}_{LS}}(t) = \operatorname{CI}_{LS}(t)$ and $\operatorname{not}hh_1(t) = 0$, and hence $\operatorname{CIR}_{LS}(t) = 0$ for $t \in [0, T+\delta)$.

To prove part (g), we note that (from part (f))

$$F_{\rm wg_{LS}}(t) = 1, \quad t \in \left(\frac{1}{\alpha_{\rm CI_{LS}}} \ln \frac{1}{1-\theta} + \frac{1}{\alpha_{\rm CIA_{LS}}} \ln \frac{1}{1-\theta}, T+\delta\right).$$

implying that $\widehat{wg}_{LS}(t)$ increases in this interval. On the other hand, we know that $\widehat{wg}_{LS}(t) \ge \theta$ and $wg_{LS}(t) = 1$ up to at least $t = \frac{1}{\alpha_{wg_{LS}}} \ln \frac{1}{\theta} > \frac{1}{\alpha_{CI_{LS}}} \ln \frac{1}{1-\theta} + \frac{1}{\alpha_{CIA_{LS}}} \ln \frac{1}{1-\theta}$. This shows that in fact $wg_{LS}(t) = 1$ for all $t \in [0, T + \delta)$.

Proof of Theorem 2: Since $wg_{LS}(0) = 1$, from equations (4), (5), we know that the earliest possible switching time from 1 to 0 is $\alpha_{wg_{LS}}^{-1} \ln \frac{1}{\theta}$. Applying Lemma 1.3 with $T = \alpha_{wg_{LS}}^{-1} \ln \frac{1}{\theta}$ establishes that $wg_{LS}(t) = 1$ for $t \in [0, T + \delta)$, with δ given by (11). Next, applying Lemma 1.3 with $T = \alpha_{wg_{LS}}^{-1} \ln \frac{1}{\theta} + k\delta$, $k \in \mathbb{N}$, shows that $wg_{LS}(t) = 1$ for $t \in [0, T + (k + 1)\delta)$. Since δ is finite, we can conclude by induction that $wg_{LS}(t) = 1$ for all $t \ge 0$.

To prove that $PTC_1(t) \equiv 0$, note that $CIA_1(t) \equiv 0$ (Lemma 1.3, with $T = +\infty$) implies $ptc_1(t) \equiv 0$. Since $PTC_1(0) = 0$ and PTC_1 cannot become expressed unless ptc_1 is first expressed, the desired result follows.

References

 M. Chaves, E.D. Sontag, and R. Albert. Methods of robustness analysis for boolean models of gene control networks. *IEE Proc. Syst. Biol.*, 153:154–167, 2006.