Supplementary material
Studying the effect of cell division on
expression patterns of the segment polarity genes
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1 Proof of Theorems 1 and 2

As mentioned in the main text, the proofs are similar to those given in [1], with appropriate index changes.
For easier reference and completeness, we provide the proofs next. First, some observations regarding the
solutions of system (1):

— L — (=X + Fy(X1,X,...,XN)), £=1,...,N, (1)

Let X denote any of the nodes in the network, anids time rate. Since equations (1) are either of the form
dX/dt = a(—X + 1) ordX /dt = —aX, their solutions are continous functions, piecewise combinations
of:

XUt) = 1—(1—X(t))e oli=t) 2)
X0t) = XOty) elt-to) 3

Xl(t) (resp.f(o(t)) is monotonically increasing (resp. decreasing). In addition, note that discrete variables
X can only switch between 0 and 1 at those instants whiéR,..,) = 0, that is:

A~

1 (1-X())

tslwitch = tO + a In 1-0 (4)
1. X(to)
tgwitch = to + a In 0 (5)
From Proposition 6.1 of the main text we can immediately conclude:

WO, . rs-1(t) = WG12(t) =0, (6)
ens. . s(t) = EI\\IFS,...7LS(t) =0,
hhes 1s() = HHes . 1s(t) = 0, (7)
Cirs..1s(t) =1 and Cles._s(t) = 1 — ¢ “FFsus’, (8)

.....

ClAgs(t) = 0fort € (ta,t3), andwgg(t) = 0fort € [0, t3). Then
(@) wg.(t) =0fort € [0,t3 + 0);
(b) WGs(t) =0fort € [0,t5 + 9);
(c) ens_1(t) = ENgs_1(t) = 0fort € [0,t3 + 0);
(d) hhes—1(t) = HHes_1(¢t) = 0 for t € [0,t3 + 9).

Assume further that PT.Q¢) = 1 for ¢t € (t,t1). Then



(e) PTGs(t) = 1forallt € (tg,t3 + 9).
(f) ClAs(t) =0forallt € (ta,t3+ ).
Proof: Part (a) follows directly from the fact thad,,..(¢) = 0 on [0, t3), and from (4).

To prove parts (b), (c), and (d), first note that initial conditions togetherwh(¢) = 0 for ¢ € [0, t3)
imply

V\/I\GFS(t) = 07 éhts—l(t) = Igl\\llzs—l(t) = 07 ﬁ\h:S—l(t) = H/|\_|FS—1(t) = 07

for t € [0,t3]. Then, from equations (2) to (5) we conclude that the corresponding discrete variables cannot
switch from O to 1 during an interval of the forf, t3 + a—lj In ﬁ). Taking the largest common interval
yields the desired results.

To prove parts (e) and (f), assume also that RTi¢C = 1 for t € (to,t1). From (7) and part (d), it
follows that functionfrrq does not switch in the intervaty, t3 + §) and in fact PTGs(¢) = 1 for all ¢ in
this interval. This, together with (7) and part (d) yidita.¢(t) = 0 for (to,t3 + J), SO that(flﬂFS cannot
increase in this interval and the discrete level satisfies- A= 0 for all ¢ € (t2,t3 + §), as we wanted to
show. [

Corollary 1.2. Let0 <ty < t3 < t; and0 < ty < t3. If PTCes(t) = 1 for ¢ € (to,t1), ClAg(t) = 0 for
t € (to,t3), andwg.¢(t) = 0 for ¢ € [0, t3), thenwg.(t) = 0 for all ¢.

Proof: Applying Lemma 1.1 we conclude that, given a@ny 0:

ClAgs(t) =0, for t € (t2,t3 + kd)
wg¢(t) =0, for t € [0,t3 + ko)
PTGs(t) = 1 for t € (to,t3 + ko)
imply
ClAgs(t) =0, for t € (to,t3+ (k+1)9)
Wg.(t) =0, for t € [0,t3+ (k + 1)J)
PTCGs(t) =1 for t € (to,t3 + (k+ 1)0).

Sincey is finite, we conclude by induction dnthatwg.(t) = 0 for all ¢. [
Proof of Theorem 1The rule for ClAs may be simplified to (by (7))

FClAFS — CIFS a.nd [nOtPTQS or hr}:S_l or HHFS—l]’

From equation (8), we have that

1
In

Cl(t) =1, forallt > .
rs(t) Ocpgs 1—10

(9)

On the other hand, sinqgec.(0) = 1, by continuity of solutiongtc.¢(t) = 1 forall t < ﬁ In %. This
S
implies that the Patched protein satisfies

PTGs(t) =1 — e ®Tas? 0 <t < In &
Qpteg
and therefore
PTC(t) = { i (10)
S 1, apicps lnl—ie <t< aptlch ln%.
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By assumptiongpre.g > apthS and alsoln % <1 defining a nonempty interval where PEGs ex-
pressed. Now let, = 5 andt, = 2

Cls = 0, so that

1
g,
In 5. ClAc(t) starts at zero and must remain so while
S

CIAFS(t) =0 for0<t<t..

Inthe case. > ¢, lettingty = t,,,t; = v ln ,t2 = 0, andtz = t. in Corollary 1.2, obtainsvg.(¢) = 0
S
for all t. This proves item (b) of the theorem, and part of (a).
To finish the proof of item (a), we assume tliat— )% < 6 and must now consider the case< t,,.
Then

0, 0<t <t
ClAes(t) = { 1 —e omes (o), te<t<t,
ClAgs(tp) e s (t*tp)’ tp<t= Qpteeg In %’

Following equation (4) with, = ¢, andéﬁps(to) = 0, CIA:s might become expressed at time< ¢, < t,:

1 1
ta=te+——1In

Y
aC|AFS 1 - 9

but it would then become zero again at (equation (5) wjtk: t,)

1 CIA(
ty =ty + 1 S1Aes(ln)
Qclaps 0

Finally, we show that, even if CIA(t) = 1 for ¢t € (¢4, 1), Wg-s cannot become expressed in this interval.
In this interval Wg., evolves according taig.«(t) = 1 — e~ *vas (*=%e) andwg. can switch to 1 at time

1

1
by =t + ——In—.

Qwgeg

We will show thatt,, > t;, Sowg.(t) = 0 in the intervall0, ¢;). Writing

ClAss(tp) ClAss(tp) 1 — 6 ClAss(tp) 1-6 1 1
=1 =In ———> +In — <1 1
" "TTg 8 " T1-¢ " Tg SMToaMioe
where we have use@IA(t,) < 1 and the assumption dh 152 < 1. Therefore
2 1 1 1 1 1
ty < tp + In < In + In <ty

Qcaps 1 —0  oygg 1—0  agpas 1-10

where we have used the timescale separation assumption (Al). Lettiag,, to = 0, andt; = t3 =
min{t, o In 4} in the Corollary, obtainsg.¢(t) = 0 for all ¢. n

We will next show that ifvg ;(¢) = 1 in a given interval0, T'), then in factwg ¢(¢) remains expressed
for a longer time, up t@" + §, with § > 0. This is mainly due to assumption (A1), which says that mMRNAs
take longer than proteins to update their discrete values, because they have longer haif-fiyes: o5 1.
This allows the initial signalwg = 1” to travel down the network, sequencially affecting the wingless
protein,engrailed, hedgehognd CIA, and feed back intwinglessallowing wg ¢ to remain expressed for a
further time interval.

Lemma 1.3. LetT > ——In 1 and define
WO s

(11)

If wg(t) =1for0 <t <T,then



(8) WGs(t) = 1fort € (5

cIni5 5. T +0);

(b) en(t) =1fort e [0,T+5);

(©) ENy(t) =1 — e @it fort € [0, + 6), and EN(t) = 1 for (e In 729 T +0);
(d) ciy(t) =0, Cli(t) =0, CIA(t) = 0,and CIR (t) = 0for ¢t € [0,T + 9);

(e) hhy(t) =1,fort € [0,T + 9);

(f) CIAs(t) =1, fort € (—ln =g T

n;, 7 +6),and CIRs(t) = 0, fort € [0,T + 6);

aCIA
(9) wg(t) =1fort € [0,T +9).
Proof: Let

1 and assume thatg ,(t) = 1 for 0 < t < T. To prove part (a), note that

WG,s(t) is of the form (2) (Withto = 0, andWG,(0) = 0) and the corresponding discrete variable is
WGs(t) =1, fort € (5 ln 15, T). Moreover, suppose thatg ¢(t) = 0 for ¢t > T, then

WGs(t) = (1 — e~ WasT)e—owes(=1) 4 5
But WG s remains 1 until the switching threshold is attained, that is up to time

_ 1t
1 1 — g~ wesT 1 1 OWGLs awg g 0
T + In ( € <) >T+ In ( € - )

aWGLS 9 aWGLS 0

=T+4+9.

Thus we conclude that W) = 1 in the desired interval.

To prove part (b), observe thﬁ‘gm( ) WGs(t) for all ¢, from (6), and recall thagm (0) = 1. From
part (@), Fen, (1) = 1fort € (5. —In- Q,T + 0). On the other handen; can only switch from 1 to O at
t = ag,! In & which is larger thamWGLS In 5. So, in factenl( )=1forall0 <t<T+39.

Part (c) follows immediately by integration of thEN,; equation.

To prove part (d), first recalF;, = not EN; and the initial conditionsi;(0) = 0 = CI1(0) =
CIA1(0) = CIR;(0). Thereforeci; (¢) increases up to = lel In 1 and then decreasesai, In 115 <
t < T + 6. Now note that the discrete varialte (t) remains 0 in the whole intervad, T + §). This
is because:il never reaches the threshold: this would be attained at some> a ' In =+ g but, since

aglln; > agl In2, the functionci, starts decreasing before it could reach the vﬁlueFlnally,
from the rules of the Cubltus proteins it is immediate to see thattCl= CIA;(t) = CIRy(t) = 0 for
te[0,T+9).

To prove part (e) recaII thak,,, = EN; and not CIR. From part (a), it follows that, (t) = 0
in the interval(0, o In ;) and Fy, (t) = 1 in the interval(ag,. In - 5,7 +6). Sincehh;(0) = 1,

hhy (¢) decreases in the mtervﬁ] agi In 125) but increases iffiog,. In 25,7 + ). The discrete value is

1—
hh;(t) = 1 in the whole interval, S|nclah1(t) remains above the threshold. (The justification is similar to
the case o€i; (¢) in part (d).)
To prove part (f), note that part (e) and then the use of (8), allows us to sinfp|ify:

lnl,T+5>.

og s 1—0

Fons(t) =Cls(t) and hhi(t) =1, te (

Thus

1 1
0, 0<t< iyl

(EmLs(t) ==

1

1
—aciag|t—5=—1In f)
1—e LS( acyg 10

hrl1 0<t<T+5

’ aCILS



and CIAs(t) = 1fort € [ =+ +aC|A In =5, T'+4). Observe that this interval is indeed nonempty,

by assumption (Al). FlnaIIyFC|RLS( ) = CILS( )and nohh;(¢) = 0, and hence CIR(t) = 0 for ¢ €
0,7 + ).
To prove part (g), we note that (from part (f))

1 1 | |
Fog (t) =1, t 1 1 T+
was(t) =1, €<0C|Lsn1—9+ "1 +>’

Qcialg

implying thatwg (¢) increases in this interval On the other hand, we knowwlpt(t) > 0 andwg ¢(¢) =
lupto atleast = a0| In 15 + aOA In 1=5. This shows that in faavg ;(¢) = 1 for all
te[0,T+09). |

Proof of Theorem 2:Sincewg ((0) = 1, from equations (4), (5), we know that the earliest possible
switching time from 1to O i&;gis In % Applying Lemma 1.3 withl" = ozngis ln% establishes thatg . (t) =
1fort € [0,T + §), with § given by (11). Next, applying Lemma 1.3 with = a;gis ln + ko, k € N,
shows thatvg 4(t) = 1 for ¢t € [0,7 + (k + 1)d). Since¢ is finite, we can conclude by induction that
wg () = 1forallt > 0.

To prove that PTE(¢) = 0, note that CIA(¢) = 0 (Lemma 1.3, withl' = +o0) impliesptc, (t) =
Since PTG(0) = 0 and PTG cannot become expressed unlpss is first expressed, the desired result
follows. |

References

[1] M. Chaves, E.D. Sontag, and R. Albert. Methods of robustness analysis for boolean models of gene
control networkslEE Proc. Syst. Bio).153:154-167, 2006.



